Expanding the Study of the Cytotoxicity of Incomptines A and B against Leukemia Cells
Abstract
:1. Introduction
2. Results
2.1. Isolation and Cytotoxic Activity of Incomptine A (IA) and Incomptine B (IB)
2.2. Molecular Docking Studies of Incomptine A (IA) and Incomptine B (IB) on Five Selected Pharmacological Receptors Associated to Cancer
3. Discussion
4. Materials and Methods
4.1. Collection and Identification of Decachaeta Incompta
4.1.1. Chemicals
4.1.2. Preparation of the Aerial Parts Extract
4.1.3. Isolation and Purification of Germacrane-Type Sesquiterpene Lactones, Incomptines A (IA) and B (IB)
4.1.4. HPLC-DAD Analysis
4.2. Assay for Growth Inhibition
4.2.1. Leukemia Cell Lines
4.2.2. Cytotoxic Activity
4.3. Molecular Docking of Incomptine A (IA), Incomptine B (IB), Etoposide (ET), and Methotrexate (MTX)
Molecular Docking Validation
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Balunas, M.J.; Kingborn, A.D. Drug discovery from medicinal plants. Life Sci. 2005, 78, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.L. Natural products in drug discovery. Drug Discov. Today 2008, 13, 894–901. [Google Scholar] [CrossRef]
- Bessong, P.O.; Rojas, L.B.; Obi, L.C.; Tshisikawe, P.M.; Igunbor, E.O. Further screening of Venda medicinal plants for activity against HIV type I reverse transcriptase and integrase. Afr. J. Biotechnol. 2006, 5, 526–528. [Google Scholar]
- Wihadmadyatami, H.; Karnati, S.; Hening, P.; Tjahjono, Y.; Maharjanti, F.; Kusindarta, D.L.; Triyono, T. Ethanolic extract Ocimum sanctum Linn. Induces an apoptosis in human lung adenocarcinoma (A549) cells. Heliyon 2019, 5, e02772. [Google Scholar] [CrossRef] [PubMed]
- Ghasemzadeh, A.; Jaafar, H.Z.E.; Rahmat, A. Antioxidant activities, total phenolics and flavonoids content in two varieties of malaysia young ginger (Zingiber officinale Roscoe). Molecules 2010, 15, 4324–4333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seelinger, M.; Popescu, R.; Giessrigl, B.; Jarukamjorn, K.; Unger, C.; Wallnöfer, B.; Fritzer-Szekeres, M.; Szekeres, T.; Diaz, R.; Jäger, W.; et al. Methanol extract of the ethnopharmaceutical remedy Smilax spinosa exhibits anti-neoplastic activity. Int. J. Oncol. 2012, 41, 1164–1172. [Google Scholar] [CrossRef] [Green Version]
- AlSalhi, M.S.; Elangovan, K.; Ranjitsingh, A.J.A.; Murali, P.; Devanesan, S. Synthesis of silver nanoparticles using plant derived 4-N-methyl benzoic acid and evaluation of antimicrobial, antioxidant and antitumor activity. Saudi J. Biol. Sci. 2019, 26, 970–978. [Google Scholar] [CrossRef]
- Babaei, G.; Aliarab, A.; Abroon, S.; Rasmi, Y.; Gholizadeh-Ghaleh Aziz, S. Application of sesquiterpene lactone: A new promising way for cancer therapy based on anticancer activity. Biomed. Pharmacother. 2018, 106, 239–246. [Google Scholar] [CrossRef]
- Zhang, S.; Won, Y.K.; Ong, C.N.; Shen, H.M. Anti-cancer potential of sesquiterpene lactones: Bioactivity and molecular mechanisms. Curr. Med. Chem. 2005, 5, 239–249. [Google Scholar] [CrossRef]
- Turner, B.L. A new species of Decachaeta (Asteraceae: Eupatorieae), from Oaxaca, Mexico. Phytologia 2011, 93, 346–350. [Google Scholar]
- Calzada, F.; Bautista, E.; Hidalgo-Figueroa, S.; Garcia-Hernandez, N.; Barbosa, E.; Velazquez, C.; Ordoñez-Razo, R.M.; Arietta-Garcia, A.G. Antilymphoma effect of incomptine A: In vivo, in silico, and toxicological studies. Molecules 2021, 26, 6646. [Google Scholar] [CrossRef] [PubMed]
- Rial, C.; Varela, R.M.; Molinillo, J.M.G.; Bautista, E.; Ortega Hernandez, A.; Macias, F.A. Phytotoxicity evaluation of sesquiterpene lactones and diterpenes from species of the Decachaeta, Salvia and Podachaenium genera. Phytochem. Lett. 2016, 18, 68–76. [Google Scholar] [CrossRef]
- Maher, T.; Raus, R.A.; Daddiouaissa, D.; Ahmad, F.; Adzhar, N.S.; Latif, E.S.; Abdulhafiz, F.; Mohammed, A. Medicinal Plants with anti-leukemic effects: A review. Molecules 2021, 26, 2741. [Google Scholar] [CrossRef] [PubMed]
- Tebbi, C.K. Etiology of acute leukemia: A review. Cancers 2021, 13, 2256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Gou, P.; Dupret, J.-M.; Chomienne, C.; Rodrigues-Lima, F. Etoposide, an anticancer drug involved in therapy-related secondary leukemia: Enzymes at play. Transl. Oncol. 2021, 14, 101169. [Google Scholar] [CrossRef]
- Al-Anazi, K.A.; Eltayeb, K.I.; Bakr, M.; Al-Mohareb, F.I. Methotrexate-induced acute leukemia: Report of three cases and review of the literature. Clin. Med. Case Rep. 2009, 2, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Pina-Jimenez, E.; Calzada, F.; Bautista, E.; Ordoñez-Razo, R.M.; Velazquez, C.; Barbosa, E.; Garcia-Hernandez, N. Incomptine a induces apoptosis, ROS production and a differential protein expression on non-Hodgkin’s lymphoma cells. Int. J. Mol. Sci. 2021, 22, 10516. [Google Scholar] [CrossRef]
- Tammaro, M.; Barr, P.; Ricci, B.; Yan, H. Replication-dependent and transcription-dependent mechanism of DNA double-strand break induction by the topoisomerase 2-targeting drug etoposide. PLoS ONE 2013, 8, e79202. [Google Scholar] [CrossRef] [Green Version]
- Bedoui, Y.; Guillot, X.; Selambarom, J.; Guiraud, P.; Giry, C.; Jaffar-Bandjee, M.C.; Ralandison, S.; Gasque, P. Methotrexate an old drug with new tricks. Int. J. Mol. Sci. 2019, 20, 5023. [Google Scholar] [CrossRef] [Green Version]
- Sotillo, W.S.; Villagomez, R.; Smiljamic, S.; Huang, X.; Malakpour, A.; Kempengren, S.; Rodrigo, G.; Almanza, G.; Sterner, O.; Oredsson, S. Anti-cancer stem cell activity of a sesquiterpene lactone isolated from Ambrosia arborescens and of a synthetic derivative. PLoS ONE 2017, 12, e0184304. [Google Scholar] [CrossRef] [Green Version]
- Garcia Manzano, M.F.; Joray, M.B.; Laiolo, J.; Palacios, S.M.; Carpinella, M.C. Cytotoxic activity of germacrane-type sesquiterpene lactones from Dimerostemma aspilioides. J. Nat. Prod. 2020, 83, 1909–1918. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, H.; Tang, C.; Yao, S.; Ke, C.; Xu, C.; Ye, Y. Cytotoxic sesquiterpene lactones from Artemisia anomala. Phytochem. Lett. 2017, 20, 177–180. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, J.; Kinghorn, A.D. Development of anticancer agents from plants-derived sesquiterpene lactones. Curr. Med. Chem. 2016, 23, 2397–2420. [Google Scholar] [CrossRef]
- Shoaib, M.; Shah, I.; Ali, N.; Adhikari, A.; Nawaz Tahir, M.; Ali Shah, S.W.; Ishtiaq, S.; Khan, J.; Khan, S.; Umer, M.N. Sesquiterpene lactone! A promising antioxidant, anticancer and moderate antinociceptive agent from Artemisia macrocephala jaccquem. BMC Complement. Altern. Med. 2017, 17, 27. [Google Scholar] [CrossRef] [Green Version]
- Kreuger, M.R.O.; Grootjans, S.; Biavatti, M.W.; Vandenabeele, P.; D´Herde, K. Sesquiterpene lacrtones as drugs with multiple targets in cancer treatment: Focus on parthenolide. Wolters Klumer Health 2012, 23, 883–896. [Google Scholar] [CrossRef]
- Wen, J.; You, K.R.; Lee, S.Y.; Song, C.H.; Kim, D.G. Oxidative stress-mediated apoptosis: The anticancer effect of the sesquiterpene lactone parthenolide. J. Biol. Chem. 2002, 277, 38954–38964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathema, V.B.; Koh, Y.S.; Thakuri, B.C.; Sillanpää, M. Parthenolide, a sesquiterpene lactone, expresses multiple anti-cancer and anti-inflammatory activities. Inflammation 2012, 35, 560–565. [Google Scholar] [CrossRef]
- Molecular Operating Environment (MOE), 2019.01; Chemical Computing Group ULC: Montreal, QC, Canada, 2021.
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inform. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
Sample | Leukemia and Lymphoma Cell Lines (CC50 µM) a | |||
---|---|---|---|---|
U-937 | HL-60 | K-562 | REH | |
Incomptine A (IA) | 0.3 ± 0.02 | 0.6 ± 0.02 | 0.3 ± 0.01 | 0.4 ± 0.02 |
Incomptine B (IB) | 1.9 ± 0.2 | 1.0 ± 0.1 | 1.9 ± 0.1 | 2.1 ± 0.03 |
Methotrexate (MTX) | 1.5 ± 0.02 | 0.65 ± 0.01 | 3.4 ± 0.2 | 2.7 ± 0.02 |
Etoposide (ET) | 1.2 ± 0.01 | 1.4 ± 0.03 | 0.7 ± 0.02 | 1.1 ± 0.01 |
Compound | Incomptine A (IA) | Incomptine B (IB) | Methotrexate (MTX) | Etoposide (ET) |
---|---|---|---|---|
∆G | −7.1 | −7.4 | - | −12.3 |
TIIα HBR | DA12 | Gly488, DG13 | - | Asp463 |
NPI | Glu461, Ser464, Arg487 | Glu461, Ser464, Arg487 | - | Glu461, Gly462, Arg487 |
∆G | −6.5 | −5.7 | - | −9.2 |
TIIβ HBR | DG13 | DA12 | - | DC8, DG13 |
NPI | DC8, DT9, DA12 | DC8, DT9, DG13 | - | DA12, DT9, DG10 |
∆G | −7.8 | −8.1 | −9.6 | - |
DHFR HBR | Ala9 | Ala9, Val115 | Ile7, Glu30, Arg31, Asn64 | - |
NPI | Leu22, Trp24, Arg31, Phe34, Thr56, Ser59, Ile60, Val115, Gly116, Tyr121 | Leu22, Trp24 Leu27, Glu30, Arg31, Phe34, Thr56, Ser59, Ile60, Gly116, Tyr121 | Val8, Ala9, Leu22, Phe34, Glu35, Thr56, Ser59, Ile60, Pro61, Leu67, Phe134 | - |
∆G | −7.6 | −7.9 | −9.1 | - |
THFS HBR | Gln100, Leu101 | Gln100, Leu101, Lys56 | Asp48, Tyr53, Leu101, Gly273 | - |
NPI | NADP, Tyr52, Leu56, Pro102, Ile176, Thr279 | NADP, Tyr52, Ile176, Ile238, Thr279 | NADP, Lys56, Gln100, Pro102, Ile138, Tyr240, Pro272, Gly276 | - |
∆G | −7.3 | −7.3 | −8.1 | - |
BCL2 HBR | Trp141, Gly142 | - | Arg104, Ala146 | - |
NPI | Ala97, Phe101, Arg104, Tyr105, Asn140, Val145, Phe195, Tyr199 | Ala97, Gln100, Phe101, Arg104, Tyr105, Asn140, Trp141, Gly142, Val145, Phe195, Leu198, Tyr199 | Phe101, Tyr105, Asp108, Met112, Leu134, Gly142, Arg143, Val145, Phe150 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calzada, F.; Garcia-Hernandez, N.; Hidalgo-Figueroa, S.; Bautista, E.; Barbosa, E.; Velázquez, C.; Hernández-Caballero, M.E. Expanding the Study of the Cytotoxicity of Incomptines A and B against Leukemia Cells. Molecules 2022, 27, 1687. https://doi.org/10.3390/molecules27051687
Calzada F, Garcia-Hernandez N, Hidalgo-Figueroa S, Bautista E, Barbosa E, Velázquez C, Hernández-Caballero ME. Expanding the Study of the Cytotoxicity of Incomptines A and B against Leukemia Cells. Molecules. 2022; 27(5):1687. https://doi.org/10.3390/molecules27051687
Chicago/Turabian StyleCalzada, Fernando, Normand Garcia-Hernandez, Sergio Hidalgo-Figueroa, Elihú Bautista, Elizabeth Barbosa, Claudia Velázquez, and Marta Elena Hernández-Caballero. 2022. "Expanding the Study of the Cytotoxicity of Incomptines A and B against Leukemia Cells" Molecules 27, no. 5: 1687. https://doi.org/10.3390/molecules27051687
APA StyleCalzada, F., Garcia-Hernandez, N., Hidalgo-Figueroa, S., Bautista, E., Barbosa, E., Velázquez, C., & Hernández-Caballero, M. E. (2022). Expanding the Study of the Cytotoxicity of Incomptines A and B against Leukemia Cells. Molecules, 27(5), 1687. https://doi.org/10.3390/molecules27051687