Poly(vinylbenzyl Pyridinium Salts) as Novel Sorbents for Hazardous Metals Ions Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Instrumentation
2.3. Resins Fabrication
2.4. Sorption Studies
3. Results and Discussion
3.1. Structural and Thermal Characterization of Resins
3.2. Sorption Studies
3.2.1. Effect of pH
3.2.2. Effect of Time and Kinetics
3.2.3. Adsorption Isotherms
3.2.4. Comparison with Commercial Sorbents
3.2.5. Adsorption from Mixture of Metal Ions
3.3. Desorption Studies
4. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Jayamurali, D.; Varier, K.M.; Liu, W.; Raman, J.; Ben-David, Y.; Shen, X.; Gajendran, B. An Overview of Heavy Metal Toxicity; Springer: Berlin/Heidelberg, Germany, 2021; pp. 323–342. [Google Scholar] [CrossRef]
- Dash, S.; Kalamdhad, A.S. Understanding the Dynamics of Heavy Metals in a Freshwater Ecosystem through Their Toxicity and Bioavailability Assay. Environ. Dev. Sustain. 2021, 23, 16381–16409. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metals Toxicity and the Environment. Mol. Clin. Environ. Toxicol. 2012, 101, 133. [Google Scholar] [CrossRef] [Green Version]
- Yaqoob, A.A.; Parveen, T.; Umar, K.; Ibrahim, M.N.M. Role of Nanomaterials in the Treatment of Wastewater: A Review. Water 2020, 12, 495. [Google Scholar] [CrossRef] [Green Version]
- Gautam, R.K.; Sharma, S.K.; Mahiya, S.; Chattopadhyaya, M.C. Chapter 1 Contamination of Heavy Metals in Aquatic Media: Transport, Toxicity and Technologies for Remediation; Heavy Metals in Water; Royal Society of Chemistry: London, UK, 2014; pp. 1–24. [Google Scholar] [CrossRef]
- Liu, L.; Li, W.; Song, W.; Guo, M. Remediation Techniques for Heavy Metal-Contaminated Soils: Principles and Applicability. Sci. Total Environ. 2018, 633, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Mao, G.; Han, Y.; Liu, X.; Crittenden, J.; Huang, N.; Ahmad, U.M. Technology Status and Trends of Industrial Wastewater Treatment: A Patent Analysis. Chemosphere 2022, 288, 132483. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.K.; Chiu, K.F.; Lin, C.Y.; Leu, H.J. Electrochemical Treatment of Wastewater: Selectivity of the Heavy Metals Removal Process. Int. J. Hydrog. Energy 2017, 42, 27741–27748. [Google Scholar] [CrossRef]
- Chen, Q.; Yao, Y.; Li, X.; Lu, J.; Zhou, J.; Huang, Z. Comparison of Heavy Metal Removals from Aqueous Solutions by Chemical Precipitation and Characteristics of Precipitates. J. Water Process Eng. 2018, 26, 289–300. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Ahmad, A.; Vijaya Bhaskar Reddy, A. Toxicology and Environmental Application of Carbon Nanocomposite; Green Energy and Technology; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–18. [Google Scholar] [CrossRef]
- Zhou, H.; Zheng, J.; Wang, H.; Wang, J.; Song, X.; Cao, Y.; Fang, L.; Feng, Y.; Xiong, C. Preparation of a novel chloromethylated polystyrene-2-mercapto-1,3,4-thiadiazole chelating resin and its adsorption properties and mechanism for separation and recovery of Hg(II) from aqueous solutions. Water Sci. Technol. 2017, 76, 1915–1924. [Google Scholar] [CrossRef]
- Beaugeard, V.; Muller, J.; Graillot, A.; Ding, X.; Robin, J.J.; Monge, S. Acidic Polymeric Sorbents for the Removal of Metallic Pollution in Water: A Review. React. Funct. Polym. 2020, 152, 104599. [Google Scholar] [CrossRef]
- Xiao, J.; Lu, Q.; Cong, H.; Shen, Y.; Yu, B. Microporous Poly(Glycidyl Methacrylate-Co-Ethylene Glycol Dimethyl Acrylate) Microspheres: Synthesis, Functionalization and Applications. Polym. Chem. 2021, 12, 6050–6070. [Google Scholar] [CrossRef]
- Al Hamouz, O.C.S.; Ali, S.A. Removal of Heavy Metal Ions Using a Novel Cross-Linked Polyzwitterionic Phosphonate. Sep. Purif. Technol. 2012, 98, 94–101. [Google Scholar] [CrossRef]
- Wojciechowska, I.; Wieszczycka, K.; Wojciechowska, A.; Aksamitowski, P. Ether Derivatives—Efficient Fe(III) Extractants from HCl Solution. Sep. Purif. Technol. 2019, 209, 756–763. [Google Scholar] [CrossRef]
- Wieszczycka, K.; Wojciechowska, I.; Aksamitowski, P. Amphiphilic Amidoxime Ether as Cu(I) and Cu(II) Extractant from Waste Etch Solution. Sep. Purif. Technol. 2019, 215, 540–547. [Google Scholar] [CrossRef]
- Aksamitowski, P.; Filipowiak, K.; Wieszczycka, K. Selective Extraction of Copper from Cu-Zn Sulfate Media by New Generation Extractants. Sep. Purif. Technol. 2019, 222, 22–29. [Google Scholar] [CrossRef]
- Wojciechowska, I.; Wieszczycka, K.; Aksamitowski, P.; Wojciechowska, A. Copper Recovery from Chloride Solutions Using Liquid Extraction with Pyridinecarboximidamides as Extractants. Sep. Purif. Technol. 2017, 187, 319–326. [Google Scholar] [CrossRef]
- Wojciechowska, A.; Wieszczycka, K.; Wojciechowska, I. Pb(II) Removal with Hydrophobic Quaternary Pyridinium Salt and Methyl Isobutyl Ketone. Hydrometallurgy 2017, 171, 206–212. [Google Scholar] [CrossRef]
- Wojciechowska, A.; Wieszczycka, K.; Wojciechowska, I.; Olszanowski, A. Lead(II) Extraction from Aqueous Solutions by Pyridine Extractants. Sep. Purif. Technol. 2017, 177, 239–248. [Google Scholar] [CrossRef]
- Wojciechowska, I.; Wieszczycka, K.; Wojciechowska, A. Pyridineimdamide Derivatives—Efficient Zinc(II) Extractants. Sep. Purif. Technol. 2017, 173, 372–380. [Google Scholar] [CrossRef]
- Reis, M.T.A.; Ismael, M.R.C.; Wojciechowska, A.; Wojciechowska, I.; Aksamitowski, P.; Wieszczycka, K.; Carvalho, J.M.R. Zinc(II) Recovery Using Pyridine Oxime-Ether—Novel Carrier in Pseudo-Emulsion Hollow Fiber Strip Dispersion System. Sep. Purif. Technol. 2019, 223, 168–177. [Google Scholar] [CrossRef]
- Loreti, M.A.P.; Reis, M.T.A.; Ismael, M.R.C.; Staszak, K.; Wieszczycka, K. Effective Pd(II) Carriers for Classical Extraction and Pseudo-Emulsion System. Sep. Purif. Technol. 2021, 265, 118509. [Google Scholar] [CrossRef]
- Wojciechowska, A.; Wieszczycka, K.; Framski, G. Synthesis and Spectral Analysis of Pyridine Derivates. Modern Organic Chemistry Research 2017, 2. [Google Scholar] [CrossRef]
- Filipowiak, K.; Dudzińska, P.; Wieszczycka, K.; Buchwald, T.; Nowicki, M.; Lewandowska, A.; Marcinkowska, A. Novel Polymer Sorbents with Imprinted Task-Specific Ionic Liquids for Metal Removal. Materials 2021, 14, 5008. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.L.; Hameed, B.H. Insight into the Adsorption Kinetics Models for the Removal of Contaminants from Aqueous Solutions. J. Taiwan Inst. Chem. Eng. 2017, 74, 25–48. [Google Scholar] [CrossRef]
- Simonin, J.P. On the Comparison of Pseudo-First Order and Pseudo-Second Order Rate Laws in the Modeling of Adsorption Kinetics. Chem. Eng. J. 2016, 300, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Largitte, L.; Pasquier, R. New Models for Kinetics and Equilibrium Homogeneous Adsorption. Chem. Eng. Res. Des. 2016, 112, 289–297. [Google Scholar] [CrossRef]
- Fang, D.; Zhuang, X.; Huang, L.; Zhang, Q.; Shen, Q.; Jiang, L.; Xu, X.; Ji, F. Developing the New Kinetics Model Based on the Adsorption Process: From Fitting to Comparison and Prediction. Sci. Total Environ. 2020, 725, 138490. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Guo, X. Adsorption Isotherm Models: Classification, Physical Meaning, Application and Solving Method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the Use and Interpretation of Adsorption Isotherm Models: A Review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef]
- Metzger, J.V. Thiazoles and Their Benzo Derivatives. Compr. Heterocycl. Chem. 1984, 6–7, 235–331. [Google Scholar] [CrossRef]
- Beamson, G.; Briggs, D. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database. J. Chem. Educ. 1993, 70, A25. [Google Scholar] [CrossRef]
- Urquhart, S.G.; Ade, H. Trends in the Carbonyl Core (C 1S, O 1S) → Π*C = O Transition in the Near-Edge X-Ray Absorption Fine Structure Spectra of Organic Molecules. J. Phys. Chem. B 2002, 106, 8531–8538. [Google Scholar] [CrossRef]
- Šetka, M.; Calavia, R.; Vojkůvka, L.; Llobet, E.; Drbohlavová, J.; Vallejos, S. Raman and XPS Studies of Ammonia Sensitive Polypyrrole Nanorods and Nanoparticles. Sci. Rep. 2019, 9, 8465. [Google Scholar] [CrossRef] [PubMed]
- Men, S.; Mitchell, D.S.; Lovelock, K.R.J.; Licence, P. X-Ray Photoelectron Spectroscopy of Pyridinium-Based Ionic Liquids: Comparison to Imidazolium- and Pyrrolidinium-Based Analogues. ChemPhysChem 2015, 16, 2211–2218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Goodeal, N.; Chen, Y.; Ganose, A.M.; Palgrave, R.G.; Bronstein, H.; Blunt, M.O. Probing the Chemical Structure of Monolayer Covalent-Organic Frameworks Grown via Schiff-Base Condensation Reactions. Chem. Commun. 2016, 52, 9941–9944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, C.M.; Lee, J.S.; Kim, Y.G. Zirconium Phosphonates Layered Structure Catalysts with Organic Acid Pendants 1. Preparation and Physical Properties. Korean J. Chem. Eng. 1993, 10, 93–99. [Google Scholar] [CrossRef]
- Makovskaya, O.Y.; Kolmachikhina, O.B.; Lobanov, V.G.; Polygalov, S.E. Nickel Sorption from Solutions with High Salt Concentration. IOP Conf. Ser. Mater. Sci. Eng. 2020, 966, 012007. [Google Scholar] [CrossRef]
- Pehlivan, E.; Altun, T. Ion-Exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ Ions from Aqueous Solution by Lewatit CNP 80. J. Hazard. Mater. 2007, 140, 299–307. [Google Scholar] [CrossRef]
- Vaughan, T.; Seo, C.W.; Marshall, W.E. Removal of Selected Metal Ions from Aqueous Solution Using Modified Corncobs. Bioresour. Technol. 2001, 78, 133–139. [Google Scholar] [CrossRef]
- Nekouei, R.K.; Pahlevani, F.; Assefi, M.; Maroufi, S.; Sahajwalla, V. Selective Isolation of Heavy Metals from Spent Electronic Waste Solution by Macroporous Ion-Exchange Resins. J. Hazard. Mater. 2019, 371, 389–396. [Google Scholar] [CrossRef]
- Yahya, M.D.; Yohanna, I.; Auta, M.; Obayomi, K.S. Remediation of Pb (II) Ions from Kagara Gold Mining Effluent Using Cotton Hull Adsorbent. Sci. Afr. 2020, 8, e00399. [Google Scholar] [CrossRef]
- Guo, S.; Wu, K.; Gao, Y.; Liu, L.; Zhu, X.; Li, X.; Zhang, F. Efficient Removal of Zn(II), Pb(II), and Cd(II) in Waste Water Based on Magnetic Graphitic Carbon Nitride Materials with Enhanced Adsorption Capacity. J. Chem. Eng. Data 2018, 63, 3902–3912. [Google Scholar] [CrossRef]
Kinetic Model | Equation | Parameters | |
---|---|---|---|
Pseudo-first order | (2) | qe—amount of metal ions removed at quilibrium qt—amount of metal ions removed at time t k1—pseudo-first-order model k2—pseudo-second order rate constant α -initial sorption rate constant β—desorption constant kip—intra-particle diffusion rate constant C—thickness of boundary layer. | |
Pseudo-second order | (3) | ||
Elovich | (4) | ||
Intra-particle diffusion | (5) | ||
Isotherm Model | Equation | Parameters | |
Langmuir | (6) | Ce—equilibrium concentration of adsorbed metal ions KL—Langmuir equilibrium constant RL—dimensionless separation factor KF—Freundlich equilibrium constant KDR—Dubinin–Radushkevich equilibrium constant qm—maximum sorption capacity n—heterogeneity factor | |
Freundlich | (7) | ||
(8) | |||
Dubinin–Radushkevich | (9) |
Sample | Degree of Quaternization % | Cp1 mmol/g | Pore Size nm | Specific Surface Area m2/g | Contact Angle Degree |
---|---|---|---|---|---|
VBC | - | 5.0 | - | - | - |
VBC-D3EI | 90.1 | 2.1 | 6.6 | 33.3 | 105.4 |
VBC-D4EI | 80.9 | 2.2 | 5.8 | 39.1 | 110.7 |
VBBr | - | 4.7 | - | - | - |
VBBr-D3EI | 84.2 | 1.8 | 7.8 | 28.4 | 123.2 |
VBBr-D4EI | 75.9 | 1.9 | 6.2 | 35.7 | 125.3 |
Tonset, °C | Hp*, J/g | Tp*, °C | |
---|---|---|---|
VBBr | 336 | 10.1 | 80.0 |
VBBr-D3EI | 241 | 30.5 | 90.9 |
VBBr-D4EI | 244 | 36.4 | 94.9 |
VBC | 382 | 23.1 | 83.9 |
VBC-D3EI | 174 | 4.7 | 66.0 |
VBC-D4EI | 213 | 6.7 | 69.3 |
Lewatit TP 207 | 80 | ||
Amberlyst 15 | 150 |
Adsorbent | Adsorption Capacity, mg/g | Ref. | ||||
---|---|---|---|---|---|---|
Pb(II) | Cu(II) | Cd(II) | Zn(II) | Ni(II) | ||
Lewatit CNP 80 | 73.4 | 10.2 | 4.9 | 20.3 | 18.9 | [40] |
Duolite GT-73 | 122.3 | 61.6 | 105.7 | 55.6 | 56.9 | [41] |
Lewatit TP 260 | 1.9 | 70.1 | - | 3.5 | 0.5 | [42] |
Lewatit TP 208 | 1.8 | 71.1 | - | 2.7 | 0.6 | [42] |
Amberlite IRA743 | 1.5 | 36.0 | - | 0.3 | 0.1 | [42] |
VBBr-D4EI | 296.4 | 31.6 | 65.4 | 34.5 | 33.7 | This work |
VBC-D4EI | 90.9 | 33.2 | 65.5 | 201.8 | 26.0 |
Metal | Desorption Agent HCl mol/L | Desorption % | Efficiency Loss 1 % |
---|---|---|---|
Pb(II) | 0.01 | 88.9 | 3.0 |
0.1 | 97.8 | 5.3 | |
Cu(II) | 0.01 | 80.1 | 4.7 |
0.1 | 99.2 | 6.9 | |
Cd(II) | 0.01 | 82.7 | 3.1 |
0.1 | 99.5 | 6.4 | |
Ni(II) | 0.01 | 83.2 | 3.7 |
0.1 | 99.2 | 7.4 | |
Zn(II) | 0.01 | 87.9 | 4.7 |
0.1 | 99.4 | 7.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wieszczycka, K.; Filipowiak, K.; Lewandowska, A.; Marcinkowska, A.; Nowicki, M. Poly(vinylbenzyl Pyridinium Salts) as Novel Sorbents for Hazardous Metals Ions Removal. Molecules 2022, 27, 1723. https://doi.org/10.3390/molecules27051723
Wieszczycka K, Filipowiak K, Lewandowska A, Marcinkowska A, Nowicki M. Poly(vinylbenzyl Pyridinium Salts) as Novel Sorbents for Hazardous Metals Ions Removal. Molecules. 2022; 27(5):1723. https://doi.org/10.3390/molecules27051723
Chicago/Turabian StyleWieszczycka, Karolina, Kinga Filipowiak, Aneta Lewandowska, Agnieszka Marcinkowska, and Marek Nowicki. 2022. "Poly(vinylbenzyl Pyridinium Salts) as Novel Sorbents for Hazardous Metals Ions Removal" Molecules 27, no. 5: 1723. https://doi.org/10.3390/molecules27051723
APA StyleWieszczycka, K., Filipowiak, K., Lewandowska, A., Marcinkowska, A., & Nowicki, M. (2022). Poly(vinylbenzyl Pyridinium Salts) as Novel Sorbents for Hazardous Metals Ions Removal. Molecules, 27(5), 1723. https://doi.org/10.3390/molecules27051723