Isolation and Identification of Pennogenin Tetraglycoside from Cestrum nocturnum (Solanaceae) and Its Antifungal Activity against Fusarium kuroshium, Causal Agent of Fusarium Dieback
Abstract
:1. Introduction
2. Results
2.1. Extraction and Analysis of Phenolic Compounds by UPLC-MS-QqQ
2.2. Fractionation and Antifungal Activity
2.3. Microscopic Analysis
2.4. Spectroscopic and Spectrometric Analyses
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Fungal Strains
4.3. Preparation of the Methanolic Crude Extract
4.4. Analysis of Phenolic Compounds by UPLC-MS-QqQ
4.5. Fractionation
4.5.1. Preliminary Fractionation of the ECn
4.5.2. Subfractionation of the Active Fraction ECn-F4
4.6. In Vitro Evaluation of the Antifungal Activity
4.7. Microscopy Analysis
4.8. Spectroscopic and Spectrometric Analyses of the Active Fraction ECn-F4-25
4.8.1. High-Resolution Mass Spectrometric Analysis
4.8.2. Spectroscopic Analysis of Isolated Pure Compound
4.9. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carrillo, D.; Cruz, L.F.; Kendra, P.E.; Narvaez, T.I.; Montgomery, W.S.; Monterroso, A.; De Grave, C.; Cooperband, M.F. Distribution, pest status and fungal associates of Euwallacea nr. fornicatus in Florida avocado groves. Insects 2016, 7, 55. [Google Scholar] [CrossRef]
- Coleman, T.W.; Poloni, A.L.; Chen, Y.; Thu, P.Q.; Li, Q.; Sun, J.; Rabaglia, R.J.; Man, G.; Seybold, S.J. Hardwood injury and mortality associated with two shot hole borers, Euwallacea spp., in the invaded region of southern CA, USA, and the native region of Southeast Asia. Ann. For. Sci. 2019, 76, 61. [Google Scholar] [CrossRef]
- Boland, J.M.; Woodward, D.L. Impacts of the invasive shot hole borer (Euwallacea kuroshio) are linked to sewage pollution in southern California: The enriched tree hypothesis. PeerJ 2019, 7, e6812. [Google Scholar] [CrossRef]
- Beaver, R.A.; Sittichaya, W.; Liu, L.-Y. A Synopsis of the scolytine ambrosia beetles of Thailand (Coleoptera: Curculionidae: Scolytinae). Zootaxa 2014, 3875, 1–82. [Google Scholar] [CrossRef] [Green Version]
- Lynch, S.C.; Twizeyimana, M.; Mayorquin, J.S.; Wang, D.H.; Na, F.; Kayim, M.; Kasson, M.T.; Thu, P.Q.; Bateman, C.; Rugman-Jones, P.; et al. Identification, pathogenicity and abundance of Paracremonium pembeum sp. nov. and Graphium euwallaceae sp. nov.—Two newly discovered mycangial associates of the polyphagous shot hole borer (Euwallacea sp.) in California. Mycologia 2016, 108, 313–329. [Google Scholar] [CrossRef]
- Eskalen, A.; Stouthamer, R.; Lynch, S.C.; Rugman-Jones, P.F.; Twizeyimana, M.; Gonzalez, A.; Thibault, T. Host range of fusarium dieback and its ambrosia beetle (Coleoptera: Scolytinae) vector in Southern California. Plant Dis. 2013, 97, 938–951. [Google Scholar] [CrossRef] [Green Version]
- García-Avila, C.D.J.; Trujillo-Arriaga, F.J.; López-Buenfil, J.A.; González-Gómez, R.; Carrillo, D.; Cruz, L.F.; Ruiz-Galván, I.; Quezada-Salinas, A.; Acevedo-Reyes, N. First report of Euwallacea nr. fornicatus (Coleoptera: Curculionidae) in Mexico. Fla. Entomol. 2016, 99, 555–556. [Google Scholar] [CrossRef] [Green Version]
- Lira-Noriega, A.; Soberón, J.; Equihua, J. Potential invasion of exotic ambrosia beetles Xyleborus glabratus and Euwallacea sp. in Mexico: A major threat for native and cultivated forest ecosystems. Sci. Rep. 2018, 8, 10179. [Google Scholar] [CrossRef]
- Na, F.; Carrillo, J.; Mayorquin, J.S.; Ndinga-Muniania, C.; Stajich, J.E.; Stouthamer, R.; Huang, Y.-T.; Lin, Y.-T.; Chen, C.-Y.; Eskalen, A. Two novel fungal symbionts Fusarium kuroshium sp. nov. and Graphium kuroshium sp. nov. of kuroshio shot hole borer (Euwallacea sp. nr. fornicatus) cause fusarium dieback on woody host species in California. Plant Dis. 2018, 102, 1154–1164. [Google Scholar] [CrossRef] [Green Version]
- Haselman, J.T.; Kosian, P.A.; Korte, J.J.; Olmstead, A.W.; Degitz, S.J. Effects of multiple life stage exposure to the fungicide prochloraz in Xenopus laevis: Manifestations of antiandrogenic and other modes of toxicity. Aquat. Toxicol. 2018, 199, 240–251. [Google Scholar] [CrossRef]
- Hur, J.; Manoharan, S.; Hur, K.; Kim, J. Toxicological impacts of the fungicide isoprothiolane on common carp, Cyprinus carpio: A multi-biomarker assessment. Toxicol. Lett. 2018, 295, S69–S266. [Google Scholar] [CrossRef]
- Schaaf, A.A. Uso de pesticidas y toxicidad: Relevamiento en la zona agrícola de San Vicente, Santa Fe, Argentina. Rev. Mex. Cienc. Agric. 2013, 4, 323–331. [Google Scholar]
- Reverchon, F.; Contreras-Ramos, S.M.; Eskalen, A.; Guerrero-Analco, J.A.; Quiñones-Aguilar, E.E.; Rios-Velasco, C.; Velázquez-Fernández, J.B. Microbial biocontrol strategies for ambrosia beetles and their associated phytopathogenic fungi. Front. Sustain. Food Syst. 2021, 5, 737977. [Google Scholar] [CrossRef]
- Ramírez-Reyes, T.I.; Aguilar-Colorado, Á.S.; Murrieta-León, D.L.; Licona-Velázquez, L.S.; Bonilla-Landa, I.; Duran-Espinosa, C.; Avendaño-Reyes, S.; Monribot-Villanueva, J.L.; Guerrero-Analco, J.A. Identification of antibacterial phenolics in selected plant species from Mexican cloud forest by mass spectrometry dereplication. Chem. Biodivers. 2019, 16, e1800603. [Google Scholar] [CrossRef]
- Pérez-Saad, H.; Buznego, M.T. Behavioral and antiepileptic effects of acute administration of the extract of the plant Cestrum nocturnum Lin (lady of the night). Epilepsy Behav. 2008, 12, 366–372. [Google Scholar] [CrossRef]
- Al-Reza, S.M.; Rahman, A.; Kang, S.C. Chemical composition and inhibitory effect of essential oil and organic extracts of Cestrum nocturnum L. on food-borne pathogens. Int. J. Food Sci. Technol. 2009, 44, 1176–1182. [Google Scholar] [CrossRef]
- Ahmad, V.U.; Baqai, F.T.; Fatima, I.; Ahmad, R. A spirostanol glycoside from Cestrum nocturnum. Phytochemistry 1991, 30, 3057–3061. [Google Scholar] [CrossRef]
- Guevara-Avendaño, E.; Bejarano-Bolívar, A.A.; Kiel-Martínez, A.-L.; Ramírez-Vázquez, M.; Méndez-Bravo, A.; von Wobeser, E.A.; Sánchez-Rangel, D.; Guerrero-Analco, J.A.; Eskalen, A.; Reverchon, F. Avocado rhizobacteria emit volatile organic compounds with antifungal activity against Fusarium solani, Fusarium sp. associated with Kuroshio shot hole borer, and Colletotrichum gloeosporioides. Microbiol. Res. 2019, 219, 74–83. [Google Scholar] [CrossRef]
- Báez-Vallejo, N.; Camarena-Pozos, D.A.; Monribot-Villanueva, J.L.; Ramírez-Vázquez, M.; Carrión-Villarnovo, G.L.; Guerrero-Analco, J.A.; Partida-Martínez, L.P.; Reverchon, F. Forest tree associated bacteria for potential biological control of Fusarium solani and of Fusarium kuroshium, causal agent of Fusarium dieback. Microbiol. Res. 2020, 235, 126440. [Google Scholar] [CrossRef]
- Aoki, T.; Smith, J.A.; Kasson, M.T.; Freeman, S.; Geiser, D.M.; Geering, A.D.W.; O’Donnell, K. Three novel ambrosia fusarium clade species producing clavate macroconidia known (F. floridanum and F. obliquiseptatum) or predicted (F. tuaranense) to be farmed by Euwallacea spp. (Coleoptera: Scolytinae) on woody hosts. Mycologia 2019, 111, 919–935. [Google Scholar] [CrossRef]
- Freeman, S.; Sharon, M.; Maymon, M.; Mendel, Z.; Protasov, A.; Aoki, T.; Eskalen, A.; O’Donnell, K. Fusarium euwallaceae sp. nov.—A symbiotic fungus of Euwallacea sp., an invasive ambrosia beetle in Israel and California. Mycologia 2013, 105, 1595–1606. [Google Scholar] [CrossRef] [Green Version]
- Nohara, T.; Miyahara, K.; Kawasaki, T. Steroid saponins and sapogenins of underground parts of Trillium kantschaticum Pall. II. Pennogenin- and kryptogenin 3-O-glycosides and related compounds. Chem. Pharm. Bull. 1975, 23, 872–885. [Google Scholar] [CrossRef] [Green Version]
- Nickavar, B.; Sormaghi, M.S.; Mohandesi, S. Steam volatiles of Cestrum nocturnum flowers. J. Essent. Oil Bear. Plants 2009, 12, 181–184. [Google Scholar] [CrossRef]
- Al-Reza, S.M.; Rahman, A.; Ahmed, Y.; Kang, S.C. Inhibition of plant pathogens in vitro and in vivo with essential oil and organic extracts of Cestrum nocturnum L. Pestic. Biochem. Physiol. 2010, 96, 86–92. [Google Scholar] [CrossRef]
- Halim, A.F.; Collins, R.P.; Berigari, M.S. Alkaloids produced by Cestrum nocturnum and Cestrum diurnum. Planta Med. 1971, 20, 44–49. [Google Scholar] [CrossRef]
- Al-Reza, S.M.; Rahman, A.; Cho, Y.-S.; Kang, S.C. Chemical composition and antioxidant activity of essential oil and organic extracts of Cestrum nocturnum L. J. Essent. Oil Bear. Plants 2010, 13, 615–624. [Google Scholar] [CrossRef]
- Rashed, K.N.; Ciric, A.; Glamoclija, J.; Calhelha, R.C.; Ferreira, I.C.F.R.; Sokovic, M. Identification of the bioactive constituents and the antibacterial, antifungal and cytotoxic activities of different fractions from Cestrum nocturnum L. Jordan J. Biol. Sci. 2018, 11, 273–279. [Google Scholar]
- Duraipandiyan, V.; Ignacimuthu, S. Antibacterial and antifungal activity of Cassia fistula L.: An ethnomedicinal plant. J. Ethnopharmacol. 2007, 112, 590–594. [Google Scholar] [CrossRef]
- Cho, J.-Y.; Moon, J.-H.; Seong, K.-Y.; Park, K.-H. Antimicrobial activity of 4-hydroxybenzoic acid and trans4-hydroxycinnamic acid isolated and identified from rice hull. Biosci. Biotechnol. Biochem. 1998, 62, 2273–2276. [Google Scholar] [CrossRef] [Green Version]
- Korosec, B.; Sova, M.; Turk, S.; Kraševec, N.; Novak, M.; Lah, L.; Stojan, J.; Podobnik, B.; Berne, S.; Zupanec, N.; et al. Antifungal activity of cinnamic acid derivatives involves inhibition of benzoate 4-hydroxylase (CYP53). J. Appl. Microbiol. 2014, 116, 955–966. [Google Scholar] [CrossRef] [Green Version]
- Bock, C.H.; Shapiro-Ilan, D.; Wedge, D.E.; Cantrell, C.L. Identification of the antifungal compound, trans-cinnamic acid, produced by Photorhabdus luminescens, a potential biopesticide against pecan scab. J. Pest Sci. 2014, 87, 155–162. [Google Scholar] [CrossRef]
- Amborabé, B.-E.; Fleurat-Lessard, P.; Chollet, J.-F.; Roblin, G. Antifungal effects of salicylic acid and other benzoic acid derivatives towards Eutypa lata: Structure–activity relationship. Plant Physiol. Biochem. 2002, 40, 1051–1060. [Google Scholar] [CrossRef]
- Da Rocha Neto, A.C.; Maraschin, M.; Di Piero, R.M. Antifungal activity of salicylic acid against Penicillium expansum and its possible mechanisms of action. Int. J. Food Microbiol. 2015, 215, 64–70. [Google Scholar] [CrossRef]
- Bautista, S.; Barrera, L.L.; Hernandez, A.N.; Velázquez-del Valle, M.; Tejacan, A.; Guillen, D. Powders, extracts and fractions of leaves of Cestrum nocturnum L. and their antifungal activity over two isolations of Fusarium spp. Rev. Cient. UDO Agric. 2008, 8, 42–51. [Google Scholar]
- Kang, L.P.; Bai-Ping, M.A.; Zhang, J.; Xiong, C.Q.; Tan, D.W.; Cong, Y.W. Isolation and identification of steroidal saponins from Paris polyphylla Smith. Chin. J. Med. Chem. 2005, 15, 25–30. [Google Scholar]
- Zhu, L.; Tan, J.; Wang, B.; Guan, L.; Liu, Y.; Zheng, C. In-vitro antitumor activity and antifungal activity of pennogenin steroidal saponins from Paris polyphylla var. yunnanensis. Iran. J. Pharm. Sci. 2011, 10, 279. [Google Scholar]
- Ta, C.A.K.; Guerrero-Analco, J.A.; Roberts, E.; Liu, R.; Mogg, C.D.; Saleem, A.; Otárola-Rojas, M.; Poveda, L.; Sanchez-Vindas, P.; Cal, V.; et al. Antifungal saponins from the Maya Medicinal Plant Cestrum schlechtendahlii G. Don (Solanaceae). Phytother. Res. 2015, 30, 439–446. [Google Scholar] [CrossRef]
- Fu, Y.-L.; Yu, Z.-Y.; Tang, X.-M.; Zhao, Y.; Yuan, X.-L.; Wang, S.; Ma, B.-P.; Cong, Y.-W. Pennogenin glycosides with a spirostanol structure are strong platelet agonists: Structural requirement for activity and mode of platelet agonist synergism. J. Thromb. Haemost. 2008, 6, 524–533. [Google Scholar] [CrossRef]
- Namba, T.; Huang, X.-L.; Shu, Y.-Z.; Huang, S.-L.; Hattori, M.; Kakiuchi, N.; Wang, Q.; Xu, G.-J. Chronotropic effect of the methanolic extracts of the plants of the Paris species and steroidal glycosides isolated from P. vietnamensis on spontaneous beating of myocardial cells. Planta Med. 1989, 55, 501–505. [Google Scholar] [CrossRef]
- Matsuda, H.; Pongpiriyadacha, Y.; Morikawa, T.; Kishi, A.; Kataoka, S.; Yoshikawa, M. Protective effects of steroid saponins from Paris polyphylla var. yunnanensis on ethanol- or indomethacin-induced gastric mucosal lesions in rats: Structural requirement for activity and mode of action. Bioorg. Med. Chem. Lett. 2003, 13, 1101–1106. [Google Scholar] [CrossRef]
- Sharma, N.; Tripathi, A. Fungitoxicity of the essential oil of Citrus sinensis on post-harvest pathogens. World J. Microbiol. Biotechnol. 2006, 22, 587–593. [Google Scholar] [CrossRef]
- Juárez-Trujillo, N.; Monribot-Villanueva, J.L.; Alvarado, M.; Luna-Solano, G.; Guerrero-Analco, J.A.; Jiménez-Fernández, M. Phenolic profile and antioxidative properties of pulp and seeds of Randia monantha Benth. Ind. Crop. Prod. 2018, 124, 53–58. [Google Scholar] [CrossRef]
- Monribot-Villanueva, J.L.; Altúzar-Molina, A.; Aluja, M.; Zamora-Briseño, J.A.; Elizalde-Contreras, J.M.; Bautista-Valle, M.V.; Santos, J.A.d.L.; Sánchez-Martínez, D.E.; Rivera-Reséndiz, F.J.; Vázquez-Rosas-Landa, M.; et al. Integrating proteomics and metabolomics approaches to elucidate the ripening process in white Psidium guajava. Food Chem. 2022, 367, 130656. [Google Scholar] [CrossRef]
- R Core Team. The R Project for Statistical Computing. 2013. Available online: https://www.r-project.org/ (accessed on 19 November 2020).
Compound Name | Content (μg g−1) |
---|---|
L-Phenylalanine | 12.47 ± 0.07 |
4-Hydroxybenzoic acid | 10.48 ± 0.10 |
t-Cinnamic acid | 2.99 ± 0.06 |
Salicylic acid | 2.36 ± 0.02 |
Vanillic acid | 1.19 ± 0.02 |
Kaempferide | 0.58 ± 0.01 |
Vanillin | 0.56 ± 0.00 |
4-Hydroxyphenylacetic acid | 0.35 ± 0.07 |
p-Anisic acid | 0.18 ± 0.00 |
Secoisolariciresinol | 0.13 ± 0.02 |
p-Coumaric acid | 0.06 ± 0.00 * |
Ferulic acid | 0.03 ± 0.00 * |
No. | 13C | DEPT-Q135 | 1H (J in Hz) |
---|---|---|---|
1 | 38.10 | CH2 | 1.78–1.75 [m, 1H] |
1.01–0.96 [m, 1H] | |||
2 | 30.70 | CH2 | 2.11–2.09 [m, 1H] |
1.88–1.81 [m, 1H] | |||
3 | 70.80 | CH | 3.89–3.83 [m, 1H] |
4 | 39.95 | CH2 | 2.79 [dd, 1H] J = 3.0, 13.1 |
2.69 [t, 1H] J = 12.0 | |||
5 | 141.47 | C | -------- |
6 | 122.27 | CH | 5.369–5.360 [m, 1H] |
7 | 32.97 | CH2 | 1.98–1.92 [m, 1H] |
1.58–1.52 [m, 1H] | |||
8 | 32.88 | CH | 1.67–1.61 [m, 1H] |
9 | 50.85 | CH | 1.0–0.95 [m, 1H] |
10 | 37.70 | C | ---------- |
11 | 21.50 | CH2 | 1.62–1.58 [m, 1H] |
1.55–1.49 [m, 1H] | |||
12 | 32.61 | CH2 | 2.16–2.11 [m, 1H] |
1.55–1.50 [m, 1H] | |||
13 | 45.60 | C | -------- |
14 | 53.62 | CH | 2.08–2.02 [m, 1H] |
15 | 32.29 | CH2 | 2.24–2.19[m, 1H] |
1.54–1.48 [m, 1H] | |||
16 | 90.68 | CH | 4.44–4.42 [m, 1H] |
17 | 90.71 | C | -------- |
18 | 17.62 | CH3 | 0.96 [s, 3H] |
19 | 19.93 | CH3 | 1.08 [s, 3H] |
20 | 45.35 | CH | 2.28 [q, 1H] J = 7.2 |
21 | 9.95 | CH3 | 1.22 [d, 3H] J = 7.2 |
22 | 110.39 | C | -------- |
23 | 32.55 | CH2 | 1.77–1.79 [m, 2H] |
24 | 29.31 | CH2 | 1.62–1.59 [m, 2H] |
25 | 30.94 | CH | 1.62–1.59 [m,1H] |
26 | 67.28 | CH2 | 3.55–3.49 [m, 2H] |
27 | 17.72 | CH3 | 0.71 [d, 3H] J = 5.5 |
No. | 13C | DEPTQ135 | 1H (J in Hz) |
Glucose | |||
1 | 100.94 | CH | 4.92 [d, 1H] J = 7.1 |
2 | 78.65 | CH | 4.14–4.11 [m, 1H] |
3 | 78.24 | CH | 4.17–4.12 [m, 1H] |
4 | 78.97 | CH | 4.27–4.23 [m, 1H] J = 8.8 |
5 | 77.39 | CH | 3.65–3.62 [m, 1H] |
6 | 61.95 | CH2 | 4.20–4.17 [m, 1H] |
4.04 [dd, 1H] J = 3.5,12.1 | |||
Rhamnose I | |||
1 | 102.83 | CH | 5.69 [s, 1H] |
2 | 73.33 | CH | 4.51–4.50 [m, 1H] |
3 | 73.63 | CH | 4.48–4.46 [m, 1H] J = 8.65 |
4 | 80.87 | CH | 4.36–4.32 [m, 1H] J = 9.25 |
5 | 68.98 | CH | 4.73–4.70 [m, 1H] |
6 | 19.29 | CH3 | 1.55 [d, 3H] J = 6.2 |
Rhamnose II | |||
1 | 103.62 | CH | 6.1409 [s, 1H] |
2 | 73.06 | CH | 4.81–4.80 [m, 1H] |
3 | 73.33 | CH | 4.44–4.42 [m, 1H] J = 3.3, 9.1 |
4 | 74.53 | CH | 4.26–4.22 [m, 1H] J = 9.2 |
5 | 70.82 | CH | 4.31–4.26 [m, 1H] |
6 | 18.85 | CH3 | 1.58 [d, 3H] J = 5.95 |
Rhamnose III | |||
1 | 102.59 | CH | 6.23 [s, 1H] |
2 | 72.92 | CH | 4.78–4.76 [m, 1H] |
3 | 73.33 | CH | 4.57 [dd, 1H] J = 3.35, 9.25 |
4 | 74.68 | CH | 4.32–4.28 [m, 1H] J = 9.2 |
5 | 69.97 | CH | 4.88–4.85 [m, 1H] |
6 | 19.06 | CH3 | 1.74 [d, 3H] J = 6.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valencia-Mejía, E.; León-Wilchez, Y.Y.; Monribot-Villanueva, J.L.; Ramírez-Vázquez, M.; Bonilla-Landa, I.; Guerrero-Analco, J.A. Isolation and Identification of Pennogenin Tetraglycoside from Cestrum nocturnum (Solanaceae) and Its Antifungal Activity against Fusarium kuroshium, Causal Agent of Fusarium Dieback. Molecules 2022, 27, 1860. https://doi.org/10.3390/molecules27061860
Valencia-Mejía E, León-Wilchez YY, Monribot-Villanueva JL, Ramírez-Vázquez M, Bonilla-Landa I, Guerrero-Analco JA. Isolation and Identification of Pennogenin Tetraglycoside from Cestrum nocturnum (Solanaceae) and Its Antifungal Activity against Fusarium kuroshium, Causal Agent of Fusarium Dieback. Molecules. 2022; 27(6):1860. https://doi.org/10.3390/molecules27061860
Chicago/Turabian StyleValencia-Mejía, Erika, Yeli Y. León-Wilchez, Juan L. Monribot-Villanueva, Mónica Ramírez-Vázquez, Israel Bonilla-Landa, and José A. Guerrero-Analco. 2022. "Isolation and Identification of Pennogenin Tetraglycoside from Cestrum nocturnum (Solanaceae) and Its Antifungal Activity against Fusarium kuroshium, Causal Agent of Fusarium Dieback" Molecules 27, no. 6: 1860. https://doi.org/10.3390/molecules27061860
APA StyleValencia-Mejía, E., León-Wilchez, Y. Y., Monribot-Villanueva, J. L., Ramírez-Vázquez, M., Bonilla-Landa, I., & Guerrero-Analco, J. A. (2022). Isolation and Identification of Pennogenin Tetraglycoside from Cestrum nocturnum (Solanaceae) and Its Antifungal Activity against Fusarium kuroshium, Causal Agent of Fusarium Dieback. Molecules, 27(6), 1860. https://doi.org/10.3390/molecules27061860