Pharmacokinetics of Nafamostat, a Potent Serine Protease Inhibitor, by a Novel LC-MS/MS Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mass Spectrometry
2.2. Solid Phase Extraction
2.3. Plasma Sample Preparation and Storage
2.4. Method Validation
2.4.1. Specificity, Linearity, and Sensitivity
2.4.2. Extraction Recovery
2.4.3. Accuracy and Precision
2.4.4. Stability
2.4.5. Dilution Integrity
2.5. Pharmacokinetics of Nafamostat in Rats
3. Materials and Methods
3.1. Materials
3.2. Sample Preparation
3.2.1. Stock Solutions, Calibration Standards, and Quality Control Samples
3.2.2. Sample Extraction
3.3. LC-MS/MS Conditions
3.4. Assay Validation
3.4.1. Specificity, Linearity, and Sensitivity
3.4.2. Accuracy and Precision
3.4.3. Extraction Recovery
3.4.4. Stability
3.4.5. Dilution Integrity
3.5. Pharmacokinetic Studies of Nafamostat in Rats
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Horani, R.A.; Desai, U.R. Recent advances on plasmin inhibitors for the treatment of fibrinolysis-related disorders. Med. Res. Rev. 2014, 34, 1168–1216. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, Y.; Yoshida, H.; Uchino, S.; Yokoyama, K.; Yamamoto, H.; Takinami, M.; Hosoya, T. Nafamostat mesilate as an anticoagulant during continuous veno-venous hemodialysis: A three-year retrospective cohort study. Int. J. Artif. Organs 2011, 34, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Sadahiro, T.; Yuzawa, H.; Kimura, T.; Oguchi, M.; Morito, T.; Mizushima, S.; Hirose, Y. Current practices in acute blood purification therapy in Japan and Topics for furTher. study. Contrib. Nephrol. 2018, 196, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, T.; Sasaki, H.; Shibuya, M.; Suzuki, Y. Spectrofluorometric determination of FUT-175 (nafamstat mesilate) in blood based on trypsin-inhibitory activity. Chem. Pharm. Bull. 1985, 33, 2142–2144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marotta, F.; Fesce, E.; Rezakovic, I.; Chui, D.H.; Suzuki, K.; Ideo, G. Nafamostat mesilate on the course of acute pancreatitis. Protective effect on peritoneal permeability and relation with supervening pulmonary distress. Int. J. Pancreatol. 1994, 16, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, Z.; Zeng, S.; Wang, X.; Liu, W.; Qian, L.; Wei, J.; Yang, X.; Shen, Q.; Gong, Z.; et al. The Molecular Aspect of Antitumor Effects of Protease Inhibitor Nafamostat Mesylate and Its Role in Potential Clinical Applications. Front. Oncol. 2019, 9, 852. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, M.; Schroeder, S.; Kleine-Weber, H.; Muller, M.A.; Drosten, C.; Pohlmann, S. Nafamostat mesylate blocks activation of SARS-CoV-2: New treatment option for COVID-19. Antimicrob. Agents Chemother. 2020, 64, e00754-20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, S.; Rhee, J.Y. Three cases of treatment with nafamostat in elderly patients with COVID-19 pneumonia who need oxygen therapy. Int. J. Infect. Dis. 2020, 96, 500–502. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, W.; Yoneda, T.; Koba, H.; Ueda, T.; Tsuji, N.; Ogawa, H.; Asakura, H. Potential mechanisms of nafamostat therapy for severe COVID-19 pneumonia with disseminated intravascular coagulation. Int. J. Infect. Dis. 2021, 102, 529–531. [Google Scholar] [CrossRef]
- Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020, 30, 269–271. [Google Scholar] [CrossRef]
- Yamamoto, M.; Kiso, M.; Sakai-Tagawa, Y.; Iwatsuki-Horimoto, K.; Imai, M.; Takeda, M.; Kinoshita, N.; Ohmagari, N.; Gohda, J.; Semba, K.; et al. The anticoagulant nafamostat potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and viral infection in vitro in a cell-type-dependent manner. Viruses 2020, 12, 629. [Google Scholar] [CrossRef] [PubMed]
- Ragia, G.; Manolopoulos, V.G. Inhibition of SARS-CoV-2 entry through the ACE2/TMPRSS2 pathway: A promising approach for uncovering early COVID-19 drug therapies. Eur. J. Clin. Pharmacol. 2020, 76, 1623–1630. [Google Scholar] [CrossRef] [PubMed]
- Sanders, J.M.; Monogue, M.L.; Jodlowski, T.Z.; Cutrell, J.B. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA 2020, 323, 1824–1836. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Du, W.; Song, M.; Liu, Q.; Herrmann, A.; Huang, Q. Spontaneous binding of potential COVID-19 drugs (Camostat and Nafamostat) to human serine protease TMPRSS2. Comput. Struct. Biotechnol. J. 2021, 19, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Simonis, A.; Theobald, S.J.; Fatkenheuer, G.; Rybniker, J.; Malin, J.J. A comparative analysis of remdesivir and oTher. repurposed antivirals against SARS-CoV-2. EMBO Mol. Med. 2021, 13, e13105. [Google Scholar] [CrossRef] [PubMed]
- Zhuravel, S.V.; Khmelnitskiy, O.K.; Burlaka, O.O.; Gritsan, A.I.; Goloshchekin, B.M.; Kim, S.; Hong, K.Y. Nafamostat in hospitalized patients with moderate to severe COVID-19 pneumonia: A randomised Phase II clinical trial. EClinicalMedicine 2021, 41, 101169. [Google Scholar] [CrossRef] [PubMed]
- Inokuchi, R.; Kuno, T.; Komiyama, J.; Uda, K.; Miyamoto, Y.; Taniguchi, Y.; Abe, T.; Ishimaru, M.; Adomi, M.; Tamiya, N.; et al. Association between nafamostat mesylate and in-hospital mortality in patients with coronavirus disease 2019: A multicenter observational study. J. Clin. Med. 2022, 11, 116. [Google Scholar] [CrossRef]
- Cao, Y.G.; Zhang, M.; Yu, D.; Shao, J.P.; Chen, Y.C.; Liu, X.Q. A method for quantifying the unstable and highly polar drug nafamostat mesilate in human plasma with optimized solid-phase extraction and ESI-MS detection: More accurate evaluation for pharmacokinetic study. Anal. Bioanal. Chem. 2008, 391, 1063–1071. [Google Scholar] [CrossRef]
- Aoyama, T.; Okutome, T.; Nakayama, T.; Yaegashi, T.; Matsui, R.; Nunomura, S.; Kurumi, M.; Sakurai, Y.; Fujii, S. Synthesis and structure-activity study of protease inhibitors. IV. Amidinonaphthols and related acyl derivatives. Chem. Pharm. Bull. 1985, 33, 1458–1471. [Google Scholar] [CrossRef] [Green Version]
- Yamaori, S.; Fujiyama, N.; Kushihara, M.; Funahashi, T.; Kimura, T.; Yamamoto, I.; Sone, T.; Isobe, M.; Ohshima, T.; Matsumura, K.; et al. Involvement of human blood arylesterases and liver microsomal carboxylesterases in nafamostat hydrolysis. Drug Metab. Pharmacokinet. 2006, 21, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Deng, P.; Chen, X.; Zhong, D. Quantification of polar drugs in human plasma with liquid chromatography-tandem mass spectrometry. Bioanalysis 2009, 1, 187–203. [Google Scholar] [CrossRef] [PubMed]
- Chambers, E.; Wagrowski-Diehl, D.M.; Lu, Z.; Mazzeo, J.R. Systematic and comprehensive strategy for reducing matrix effects in LC/MS/MS analyses. J. Chromatogr. B 2007, 852, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Kinoshita, T.; Matsuda, J.; Ogushi, T.; Kawasugi, K.; Yoshimura, Y.; Otromo, M. Phase one study of FUT-175, single and multiple dose study. Jpn. J. Clin. Pharmacol. Ther. 1984, 12, 4941–4964. [Google Scholar]
- Mooney, D.; Coxon, C.; Richards, K.G.; Gill, L.W.; Mellander, P.E.; Danaher, M. A new sensitive method for the simultaneous chromatographic separation and tandem mass spectrometry detection of anticoccidials, including highly polar compounds, in environmental waters. J. Chromatogr. A 2020, 1618, 460857. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; An, L.; Zhang, L.; Wang, R.; Tian, Y.; Zhang, Z. Identification of impurities in nafamostat mesylate using HPLC-IT-TOF/MS: A series of double-charged ions. J. Pharm. Anal. 2020, 10, 346–350. [Google Scholar] [CrossRef]
- Cao, Y.G.; Chen, Y.C.; Hao, K.; Zhang, M.; Liu, X.Q. An in vivo approach for globally estimating the drug flow between blood and tissue for nafamostat mesilate: The main hydrolysis site determination in human. Biol. Pharm. Bull. 2008, 31, 1985–1989. [Google Scholar] [CrossRef] [Green Version]
- US FDA. Bioanalytical Method Validation: Guidance for Industry; US FDA: Silver Spring, MD, USA, 2018. [Google Scholar]
- Li, W.; Zhang, J.; Tse, F.L. Strategies in quantitative LC-MS/MS analysis of unstable small molecules in biological matrices. Biomed. Chromatogr. 2011, 25, 258–277. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Yanez, O.; Osorio, M.I.; Uriarte, E.; Areche, C.; Tiznado, W.; Perez-Donoso, J.M.; Garcia-Beltran, O.; Gonzalez-Nilo, F. In silico study of coumarins and quinolines derivatives as potent inhibitors of SARS-CoV-2 main protease. Front. Chem. 2020, 8, 595097. [Google Scholar] [CrossRef]
- Aoyama, T.; Ino, Y.; Ozeki, M.; Oda, M.; Sato, T.; Koshiyama, Y.; Suzuki, S.; Fujita, M. Pharmacological studies of FUT-175, nafamstat mesilate. I. Inhibition of protease activity in in vitro and in vivo experiments. Jpn. J. Pharmacol. 1984, 35, 203–227. [Google Scholar] [CrossRef] [Green Version]
- Ishizaki, M.; Tanaka, H.; Kajiwara, D.; Toyohara, T.; Wakahara, K.; Inagaki, N.; Nagai, H. Nafamostat mesilate, a potent serine protease inhibitor, inhibits airway eosinophilic inflammation and airway epithelial remodeling in a murine model of allergic asthma. J. Pharmacol. Sci. 2008, 108, 355–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuwa, M.; Kageyama, M.; Ohashi, K.; Sasaoka, M.; Sato, R.; Tanaka, M.; Tashiro, K. Nafamostat and sepimostat identified as novel neuroprotective agents via NR2B N-methyl-D-aspartate receptor antagonism using a rat retinal excitotoxicity model. Sci. Rep. 2019, 9, 20409. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, V.; Lee, M.; Nguyen Cao, T.G.; Shim, M.S. Polysorbate-Based Drug Formulations for Brain-Targeted Drug Delivery and Anticancer Therapy. Appl. Sci. 2021, 11, 9336. [Google Scholar] [CrossRef]
- Haq, A.; Michniak-Kohn, B. Effects of solvents and penetration enhancers on transdermal delivery of thymoquinone: Permeability and skin deposition study. Drug Deliv. 2018, 25, 1943–1949. [Google Scholar] [CrossRef] [Green Version]
- Kaul, S.; Jain, N.; Nagaich, U. Ultra deformable vesicles for boosting transdermal delivery of 2-arylpropionic acid class drug for management of musculoskeletal pain. J. Pharm. Investig. 2022, 1–15. [Google Scholar] [CrossRef]
- Zhang, H.; Yao, M.; Morrison, R.A.; Chong, S. Commonly used surfactant, tween 80, improves absorption of P-glycoprotein substrate, digoxin, in rats. Arch. Pharm. Res. 2003, 26, 768–772. [Google Scholar] [CrossRef]
- Tran, P.; Park, J.-S. Recent trends of self-emulsifying drug delivery system for enhancing the oral bioavailability of poorly water-soluble drugs. J. Pharm. Investig. 2021, 51, 439–463. [Google Scholar] [CrossRef]
- Pangeni, R.; Kang, S.; Jha, S.K.; Subedi, L.; Park, J.W. Intestinal membrane transporter-mediated approaches to improve oral drug delivery. J. Pharm. Investig. 2021, 51, 137–158. [Google Scholar] [CrossRef]
- Jha, S.K.; Karki, R.; Puttegowda, V.D.; Harinarayana, D. In vitro intestinal permeability studies and pharmacokinetic evaluation of famotidine microemulsion for oral delivery. Int. Sch. Res. Not. 2014, 2014, 452051. [Google Scholar] [CrossRef] [Green Version]
- Shah, B. Microemulsion as a promising carrier for nose to brain delivery: Journey since last decade. J. Pharm. Investig. 2021, 51, 611–634. [Google Scholar] [CrossRef]
Washing Solvent | |||||
---|---|---|---|---|---|
1% Formic Acid | 0.1% Formic Acid | Distilled Water | 0.1% Ammonium Hydroxide | ||
Eluting Solvent | 1% formic acid in methanol | 31,842 ± 1914 | 33,517 ± 733 | 30,554 ± 3255 | 35,875 ± 411 |
0.1% formic acid in methanol | 30,784 ± 2930 | 34,495 ± 227 | 34,259 ± 4558 | 37,565 ± 4206 | |
Methanol | 32,590 ± 1869 | 36,666 ± 397 | 35,188 ± 2040 | - | |
0.1% ammonium hydroxide in methanol | 25,608 ± 2646 | 4686 ± 2211 | - | - |
Storage Condition | 0.35% HCl (pH = 1.2) | 1.0% Formic Acid (pH = 2.2) | 0.1% Formic Acid (pH = 2.8) | Saline (pH = 5.5) | 0.1% Ammonium Hydroxide (pH = 10.5) |
---|---|---|---|---|---|
A | 103.67 ± 0.60 | 97.66 ± 6.58 | 66.56 ± 3.73 | 63.47 ± 2.32 | 29.29 ± 1.26 |
B | 104.42 ± 2.50 | 100.05 ± 1.83 | 0.16 ± 0.05 | 0.13 ± 0.03 | 0.09 ± 0.01 |
C | 103.12 ± 2.19 | 101.86 ± 1.51 | 48.25 ± 2.26 | 19.01 ± 1.61 | 5.21 ± 0.32 |
D | 107.15 ± 0.69 | 105.67 ± 0.59 | 0.12 ± 0.07 | 9.93 ± 1.76 | 0.13 ± 0.08 |
Compound | Concentration (ng/mL) | Extraction Recovery (%) |
---|---|---|
Nafamostat (n = 3) | 2 | 83.44 ± 5.22 |
80 | 82.58 ± 2.69 | |
160 | 89.28 ± 2.38 | |
13C6-nafamostat (n = 9) | 100 | 75.28 ± 6.33 |
Concentration (ng/mL) | Intra-Day (n = 5) | Inter-Day (n = 5) | ||||
---|---|---|---|---|---|---|
Concentration Found (ng/mL) | Accuracy (%) | Precision (%) | Concentration Found (ng/mL) | Accuracy (%) | Precision (%) | |
0.5 | 0.49 ± 0.04 | 97.75 | 7.91 | 0.52 ± 0.03 | 104.44 | 4.92 |
2 | 2.10 ± 0.04 | 105.16 | 1.69 | 2.05 ± 0.14 | 102.68 | 6.71 |
80 | 76.63 ± 1.03 | 95.78 | 1.34 | 81.89 ± 3.29 | 102.37 | 4.01 |
160 | 163.12 ± 3.95 | 101.95 | 2.42 | 160.47 ± 1.46 | 100.30 | 0.91 |
Concentration (ng/mL) | Percentage over Theoretical Concentration (%) | |||
---|---|---|---|---|
Autosampler Stability (24 h, 4 °C) | Freeze/Thaw Stability (5 Cycles, −20 °C) | Short-Term Stability (24 h, 20 °C) | Long-Term Stability (2 weeks, −20 °C) | |
2 | 97.2 ± 4.98 | 99.02 ± 3.61 | 96.57 ± 2.66 | 97.25 ± 4.73 |
80 | 101.31 ± 2.00 | 100.40 ± 0.20 | 101.11 ± 1.95 | 99.38 ± 0.49 |
160 | 97.45 ± 0.31 | 98.44 ± 0.58 | 97.64 ± 2.18 | 96.62 ± 1.63 |
Parameters | IV Injection (2 mg/kg, n = 5) | Oral Administration (20 mg/kg, n = 5) | |
---|---|---|---|
Vehicle 1: 10% DMSO | Vehicle 2: 10% DMSO + 10% Tween 80 | ||
t1/2 (h) | 1.34 ± 0.51 | 2.21 ± 1.30 | 2.30 ± 1.11 |
C0 or Cmax (ng/mL) | 5291.16 ± 808.04 | 27.76 ± 8.17 | 33.24 ± 18.76 |
Tmax (h) | - | 0.45 ± 0.21 | 1.00 ± 0.53 |
AUCinf (ng·h/mL) | 447.35 ± 35.93 | 42.43 ± 12.50 | 71.17 ± 29.91 |
Vz or Vz/F (L/kg) | 8.75 ± 3.80 | 1906.08 ± 1841.14 | 998.85 ± 401.04 |
CL or CL/F (mL/min/kg) | 74.91 ± 6.11 | 8558.92 ± 3081. 60 | 5321.71 ± 1985.58 |
Vss (L/kg) | 0.99 ± 0.65 | - | - |
Bioavailability | 0.95 ± 0.25% | 1.59 ± 0.60% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, H.S.; Kim, T.; Gu, D.-H.; Lee, T.S.; Kim, T.H.; Shin, S.; Shin, B.S. Pharmacokinetics of Nafamostat, a Potent Serine Protease Inhibitor, by a Novel LC-MS/MS Analysis. Molecules 2022, 27, 1881. https://doi.org/10.3390/molecules27061881
Oh HS, Kim T, Gu D-H, Lee TS, Kim TH, Shin S, Shin BS. Pharmacokinetics of Nafamostat, a Potent Serine Protease Inhibitor, by a Novel LC-MS/MS Analysis. Molecules. 2022; 27(6):1881. https://doi.org/10.3390/molecules27061881
Chicago/Turabian StyleOh, Hyeon Seok, Taehyung Kim, Dong-Hyeon Gu, Tae Suk Lee, Tae Hwan Kim, Soyoung Shin, and Beom Soo Shin. 2022. "Pharmacokinetics of Nafamostat, a Potent Serine Protease Inhibitor, by a Novel LC-MS/MS Analysis" Molecules 27, no. 6: 1881. https://doi.org/10.3390/molecules27061881
APA StyleOh, H. S., Kim, T., Gu, D. -H., Lee, T. S., Kim, T. H., Shin, S., & Shin, B. S. (2022). Pharmacokinetics of Nafamostat, a Potent Serine Protease Inhibitor, by a Novel LC-MS/MS Analysis. Molecules, 27(6), 1881. https://doi.org/10.3390/molecules27061881