Nanostructured Lipid Carriers (NLC) for Biologically Active Green Tea and Fennel Natural Oils Delivery: Larvicidal and Adulticidal Activities against Culex pipiens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Oils
2.2. Synthesis of Free (Unloaded) Lipid Nanostructured Carriers (SLN Type 2)
2.3. Synthesis of Oil-Loaded Nanostructured Lipid Carriers
2.3.1. Synthesis of Fennel Oil-Loaded Nanostructured Lipid Carriers
2.3.2. Synthesis of Green Tea Oil-Loaded Nanostructured Lipid Carriers
2.4. Characterization of Free NLC and NLC-Loaded Essential Oils
2.4.1. Droplet Size and Surface Charge
2.4.2. NLC Surface Morphology by Transmission Electron Microscope (TEM)
2.5. Colony of Culex pipiens
2.6. In Vitro Larvicidal Efficacy
2.7. Larvicidal Field Evaluation
2.8. In Vitro Adulticidal Efficacy
2.9. Adulticidal Field Evaluation
2.10. Efficacy of Selected Oils against Non-Target Predators
2.11. Data Analysis
3. Results
3.1. Synthesis of Free and Loaded NLCs
3.1.1. Droplet Size and Surface Charge
3.1.2. NLC Surface Morphology by Transmission Electron Microscope (HR-TEM)
3.2. Larvicidal Laboratory Evaluation
3.3. Larvicidal Field Evaluation
3.4. In Vitro Adulticidal Effect
3.5. Adult Field Mosquito Experiments
3.6. The Efficacy of Oils and NLC against Non-Target Predators
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; del Pilar Rodriguez-Torres, M.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomed. 2008, 3, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niwa, T.; Sasaki, Y.; Uemura, E.; Nakamura, S.; Akiyama, M.; Ando, M.; Sawada, S.; Mukai, S.-A.; Ueda, T.; Taguchi, H. Comprehensive study of liposome-assisted synthesis of membrane proteins using a reconstituted cell-free translation system. Sci. Rep. 2015, 5, 18025. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Kim, B. Synthesis and characterization of ethosomal carriers containing cosmetic ingredients for enhanced transdermal delivery of cosmetic ingredients. Korean J. Chem. Eng. 2018, 35, 792–797. [Google Scholar] [CrossRef]
- Barani, M.; Mirzaei, M.; Torkzadeh-Mahani, M.; Adeli-Sardou, M. Evaluation of carum-loaded niosomes on breast cancer cells: Physicochemical properties, in vitro cytotoxicity, flow cytometric, DNA fragmentation and cell migration assay. Sci. Rep. 2019, 9, 7139. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Du, X.; Meng, X.; Qiu, D.; Qiao, Y. A three-tiered colloidosomal microreactor for continuous flow catalysis. Nat. Commun. 2021, 12, 6113. [Google Scholar] [CrossRef]
- Vora, A.; Londhe, V.; Pandita, N. Herbosomes enhance the in vivo antioxidant activity and bioavailability of punicalagins from standardized pomegranate extract. J. Funct. Foods 2015, 12, 540–548. [Google Scholar] [CrossRef]
- Ahmed, S.; Kassem, M.A.; Sayed, S. Bilosomes as promising nanovesicular carriers for improved transdermal delivery: Construction, in vitro optimization, ex vivo permeation and in vivo evaluation. Int. J. Nanomed. 2020, 15, 9783. [Google Scholar] [CrossRef]
- Pandita, A.; Sharma, P. Pharmacosomes: An emerging novel vesicular drug delivery system for poorly soluble synthetic and herbal drugs. Int. Sch. Res. Not. 2013, 2013, 348186. [Google Scholar] [CrossRef] [Green Version]
- Ashok, K.; Kumar, A.R.; Nama, S.; Brahmaiah, B.; Desu, P.; Rao, C. Sphingosomes: A novel vesicular drug delivery system. Int. J. Pharm. Res. Bio-Sci. 2013, 2, 305–312. [Google Scholar]
- Opatha, S.A.T.; Titapiwatanakun, V.; Chutoprapat, R. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics 2020, 12, 855. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, R.; Kumar, S.; Kulkarni, G.T. Frontier lipid-based carrier systems for drug targeting: A laconic review on niosomes. Pharm. Nanotechnol. 2014, 2, 116–128. [Google Scholar] [CrossRef]
- Pandey, V.; Gajbhiye, K.R.; Soni, V. Lactoferrin-appended solid lipid nanoparticles of paclitaxel for effective management of bronchogenic carcinoma. Drug Deliv. 2015, 22, 199–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, J.; Garg, T.; Rath, G.; Goyal, A.K. Advances in nanotechnology-based carrier systems for targeted delivery of bioactive drug molecules with special emphasis on immunotherapy in drug resistant tuberculosis–a critical review. Drug Deliv. 2016, 23, 1676–1698. [Google Scholar] [CrossRef] [PubMed]
- Selim, A.; Megahed, A.A.; Kandeel, S.; Abdelhady, A. Risk factor analysis of bovine leukemia virus infection in dairy cattle in Egypt. Comp. Immunol. Microbiol. Infect. Dis. 2020, 72, 101517. [Google Scholar] [CrossRef]
- Selim, A.; Marawan, M.A.; Ali, A.-F.; Manaa, E.; AbouelGhaut, H.A. Seroprevalence of bovine leukemia virus in cattle, buffalo, and camel in Egypt. Trop. Anim. Health Prod. 2020, 52, 1207–1210. [Google Scholar] [CrossRef]
- Selim, A.; Abdelrahman, A.; Thiéry, R.; Sidi-Boumedine, K. Molecular typing of Coxiella burnetii from sheep in Egypt. Comp. Immunol. Microbiol. Infect. Dis. 2019, 67, 101353. [Google Scholar] [CrossRef]
- Selim, A.; Manaa, E.; Khater, H. Seroprevalence and risk factors for lumpy skin disease in cattle in Northern Egypt. Trop. Anim. Health Prod. 2021, 53, 350. [Google Scholar] [CrossRef]
- Selim, A.; Manaa, E.A.; Alanazi, A.D.; Alyousif, M.S. Seroprevalence, risk factors and molecular identification of bovine leukemia virus in Egyptian Cattle. Animals 2021, 11, 319. [Google Scholar] [CrossRef]
- Jones, R.T.; Ant, T.H.; Cameron, M.M.; Logan, J.G. Novel control strategies for mosquito-borne diseases. Philos. Trans. R. Soc. B 2021, 376, 20190802. [Google Scholar] [CrossRef]
- Selim, A.; Abdelhady, A. The first detection of anti-West Nile virus antibody in domestic ruminants in Egypt. Trop. Anim. Health Prod. 2020, 52, 3147–3151. [Google Scholar] [CrossRef] [PubMed]
- Selim, A.; Radwan, A. Seroprevalence and molecular characterization of West Nile Virus in Egypt. Comp. Immunol. Microbiol. Infect. Dis. 2020, 71, 101473. [Google Scholar] [CrossRef] [PubMed]
- Selim, A.; Abdelhady, A.; Alahadeb, J. Prevalence and first molecular characterization of Ehrlichia canis in Egyptian dogs. Pak. Vet. J. 2020, 41, 117–121. [Google Scholar] [CrossRef]
- Govindarajan, M.; Khater, H.F.; Panneerselvam, C.; Benelli, G. One-pot fabrication of silver nanocrystals using Nicandra physalodes: A novel route for mosquito vector control with moderate toxicity on non-target water bugs. Res. Vet. Sci. 2016, 107, 95–101. [Google Scholar] [CrossRef]
- Khater, H.F. Prospects of botanical biopesticides in insect pest management. Pharmacologia 2012, 3, 641–656. [Google Scholar]
- Khater, H.F. Ecosmart biorational insecticides: Alternative insect control strategies. In Insecticides—Advances in Integrated Pest Management; IntechOpen: Rijeka, Croatia, 2011; pp. 17–61. [Google Scholar]
- Ahmed, N.; Alam, M.; Saeed, M.; Ullah, H.; Iqbal, T.; Al-Mutairi, K.A.; Shahjeer, K.; Ullah, R.; Ahmed, S.; Ahmed, N.A.A.H. Botanical Insecticides Are a Non-Toxic Alternative to Conventional Pesticides in the Control of Insects and Pests. In Global Decline of Insects; IntechOpen: London, UK, 2021. [Google Scholar]
- Khan, N.; Mukhtar, H. Tea and health: Studies in humans. Curr. Pharm. Des. 2013, 19, 6141–6147. [Google Scholar] [CrossRef] [Green Version]
- Khater, H.F. Bioactivity of essential oils as green biopesticides: Recent global scenario. Recent Prog. Med. Plants 2013, 37, 151–218. [Google Scholar]
- Iqbal, T.; Ahmed, N.; Shahjeer, K.; Ahmed, S.; Al-Mutairi, K.A.; Khater, H.F.; Ali, R.F. Botanical Insecticides and their Potential as Anti-Insect/Pests: Are they Successful against Insects and Pests? In Global Decline of Insects; IntechOpen: London, UK, 2021. [Google Scholar]
- Gasco, M.R. Method for Producing Solid Lipid Microspheres Having a Narrow Size Distribution. U.S. Patent 5250236A, 5 October 1993. [Google Scholar]
- Baz, M. Strategies for Mosquito Control. Ph.D. Thesis, Faculty of Science, Benha University, Benha, Egypt, 2013. [Google Scholar]
- WHO. Larval Source Management: A Supplementary Malaria Vector Control Measure: An Operational Manual; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- WHO. Instructions for Determining the Susceptibility or Resistance of Mosquito Larvae to Insecticides; World Health Organization: Geneva, Switzerland, 1981. [Google Scholar]
- WHO. Guidelines for Laboratory and Field Testing of Mosquito Larvicides; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Vatandoost, H.; Abai, M.R.; Akbari, M.; Raeisi, A.; Yousefi, H.; Sheikhi, S.; Bagheri, A. Comparison of CDC bottle bioassay with WHO standard method for assessment susceptibility level of malaria vector, Anopheles stephensi to three imagicides. J. Arthropod-Borne Dis. 2019, 13, 17. [Google Scholar] [CrossRef]
- WHO. Test Procedures for Insecticide Resistance Monitoring in Malaria Vector Mosquitoes; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Ismaieel, A.R.; Fadl, H.H.; Abu El-Hassan, G.M. A taxonomic review of the aquatic beetles (Hydraenidae: Coleoptera) from Egypt, with two new records. Egypt. J. Aquat. Biol. Fish. 2021, 25, 479–497. [Google Scholar] [CrossRef]
- Shoukry, I. Taxonomic and Ecological Studies on the Species of Order Odonata from Egypt. Master’s Thesis, Ain Shams University, Cairo, Egypt, 1980. [Google Scholar]
- Mulla, M.S.; Norland, L.R.; Fanara, D.M.; Darwazeh, H.A.; McKean, D.W. Control of chironomid midges in recreational lakes. J. Econ. Entomol. 1971, 64, 300–307. [Google Scholar] [CrossRef]
- Yuan, Y.; Gao, Y.; Zhao, J.; Mao, L. Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Res. Int. 2008, 41, 61–68. [Google Scholar] [CrossRef]
- Blasi, P.; Giovagnoli, S.; Schoubben, A.; Ricci, M.; Rossi, C. Solid lipid nanoparticles for targeted brain drug delivery. Adv. Drug Deliv. Rev. 2007, 59, 454–477. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Chaudhury, A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 2011, 12, 62–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendes, A.; Silva, A.C.; Catita, J.A.M.; Cerqueira, F.; Gabriel, C.; Lopes, C.M. Miconazole-loaded nanostructured lipid carriers (NLC) for local delivery to the oral mucosa: Improving antifungal activity. Colloids Surf. B Biointerfaces 2013, 111, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Pardeshi, C.; Rajput, P.; Belgamwar, V.; Tekade, A.; Patil, G.; Chaudhary, K.; Sonje, A. Solid lipid based nanocarriers: An overview/Nanonosači na bazi čvrstih lipida: Pregled. Acta Pharm. 2012, 62, 433–472. [Google Scholar] [CrossRef]
- Borhade, V.; Pathak, S.; Sharma, S.; Patravale, V. Clotrimazole nanoemulsion for malaria chemotherapy. Part I: Preformulation studies, formulation design and physicochemical evaluation. Int. J. Pharm. 2012, 431, 138–148. [Google Scholar] [CrossRef]
- Sugumar, S.; Ghosh, V.; Nirmala, M.J.; Mukherjee, A.; Chandrasekaran, N. Ultrasonic emulsification of eucalyptus oil nanoemulsion: Antibacterial activity against Staphylococcus aureus and wound healing activity in Wistar rats. Ultrason. Sonochem. 2014, 21, 1044–1049. [Google Scholar] [CrossRef]
- Sari, T.; Mann, B.; Kumar, R.; Singh, R.; Sharma, R.; Bhardwaj, M.; Athira, S. Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocoll. 2015, 43, 540–546. [Google Scholar] [CrossRef]
- Nuchuchua, O.; Sakulku, U.; Uawongyart, N.; Puttipipatkhachorn, S.; Soottitantawat, A.; Ruktanonchai, U. In vitro characterization and mosquito (Aedes aegypti) repellent activity of essential-oils-loaded nanoemulsions. AAPS PharmSciTech 2009, 10, 1234–1242. [Google Scholar] [CrossRef]
- Divsalar, A.; Saboury, A.A.; Nabiuni, M.; Zare, Z.; Kefayati, M.E.; Seyedarabi, A. Characterization and side effect analysis of a newly designed nanoemulsion targeting human serum albumin for drug delivery. Colloids Surf. B Biointerfaces 2012, 98, 80–84. [Google Scholar] [CrossRef]
- Baz, M.M.; Hegazy, M.M.; Khater, H.F.; El-Sayed, Y.A. Comparative Evaluation of Five Oil-Resin Plant Extracts against The Mosquito Larvae, Culex pipiens Say (Diptera: Culicidae). Pak. Vet. J. 2021, 41, 191–196. [Google Scholar] [CrossRef]
- Roni, M.; Murugan, K.; Panneerselvam, C.; Subramaniam, J.; Nicoletti, M.; Madhiyazhagan, P.; Dinesh, D.; Suresh, U.; Khater, H.F.; Wei, H. Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol. Environ. Saf. 2015, 121, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Modise, S.A.; Ashafa, A.O.T. Larvicidal, pupicidal and insecticidal activities of Cosmos bipinnatus, Foeniculum vulgare and Tagetes minuta against Culex quinquefasciatus mosquitoes. Trop. J. Pharm. Res. 2016, 15, 965–972. [Google Scholar] [CrossRef] [Green Version]
- Pavela, R.; Žabka, M.; Bednář, J.; Tříska, J.; Vrchotová, N. New knowledge for yield, composition and insecticidal activity of essential oils obtained from the aerial parts or seeds of fennel (Foeniculum vulgare Mill.). Ind. Crops Prod. 2016, 83, 275–282. [Google Scholar] [CrossRef]
- Sousa, R.M.O.; Rosa, J.S.; Silva, C.A.; Almeida, M.T.M.; Novo, M.T.; Cunha, A.C.; Fernandes-Ferreira, M. Larvicidal, molluscicidal and nematicidal activities of essential oils and compounds from Foeniculum vulgare. J. Pest Sci. 2015, 88, 413–426. [Google Scholar] [CrossRef]
- Rocha, D.K.; Matos, O.; Novo, M.T.; Figueiredo, A.C.; Delgado, M.; Moiteiro, C. Larvicidal activity against Aedes aegypti of Foeniculum vulgare essential oils from Portugal and Cape Verde. Nat. Prod. Commun. 2015, 10, 677–682. [Google Scholar] [CrossRef] [Green Version]
- Zoubiri, S.; Baaliouamer, A.; Seba, N.; Chamouni, N. Chemical composition and larvicidal activity of Algerian foeniculum vulgare seed essential oil. Arab. J. Chem. 2014, 7, 480–485. [Google Scholar] [CrossRef] [Green Version]
- Muema, J.M.; Bargul, J.L.; Nyanjom, S.G.; Mutunga, J.M.; Njeru, S.N. Potential of Camellia sinensis proanthocyanidins-rich fraction for controlling malaria mosquito populations through disruption of larval development. Parasites Vectors 2016, 9, 512. [Google Scholar] [CrossRef] [Green Version]
- Žabar, A.; Cvetković, V.; Rajković, J.; Jović, J.; Vasiljević, P.; Mitrović, T. Larvicidal activity and in vitro effects of green tea (Camellia sinensis L.) water infusion. Biol. Nyssana 2013, 4, 75–79. [Google Scholar]
- Khater, H.F.; Shalaby, A.A.-S. Potential of biologically active plant oils to control mosquito larvae (Culex pipiens, Diptera: Culicidae) from an Egyptian locality. Rev. Inst. Med. Trop. Sao Paulo 2008, 50, 107–112. [Google Scholar] [CrossRef]
- Chaiyasit, D.; Choochote, W.; Rattanachanpichai, E.; Chaithong, U.; Chaiwong, P.; Jitpakdi, A.; Tippawangkosol, P.; Riyong, D.; Pitasawat, B. Essential oils as potential adulticides against two populations of Aedes aegypti, the laboratory and natural field strains, in Chiang Mai province, northern Thailand. Parasitol. Res. 2006, 99, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Caselli, A.; Canale, A. Nanoparticles for mosquito control: Challenges and constraints. J. King Saud Univ. -Sci. 2017, 29, 424–435. [Google Scholar] [CrossRef]
- Govindarajan, M.; Rajeswary, M.; Muthukumaran, U.; Hoti, S.; Khater, H.F.; Benelli, G. Single-step biosynthesis and characterization of silver nanoparticles using Zornia diphylla leaves: A potent eco-friendly tool against malaria and arbovirus vectors. J. Photochem. Photobiol. B Biol. 2016, 161, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Sultana, N.; Raul, P.K.; Goswami, D.; Das, D.; Islam, S.; Tyagi, V.; Das, B.; Gogoi, H.K.; Chattopadhyay, P.; Raju, P.S. Bio-nanoparticle assembly: A potent on-site biolarvicidal agent against mosquito vectors. RSC Adv. 2020, 10, 9356–9368. [Google Scholar] [CrossRef]
- Kamsuk, K.; Choochote, W.; Chaithong, U.; Jitpakdi, A.; Tippawangkosol, P.; Riyong, D.; Pitasawat, B. Effectiveness of Zanthoxylum piperitum-derived essential oil as an alternative repellent under laboratory and field applications. Parasitol. Res. 2007, 100, 339–345. [Google Scholar] [CrossRef]
- Govindarajan, M.; AlQahtani, F.S.; AlShebly, M.M.; Benelli, G. One-pot and eco-friendly synthesis of silver nanocrystals using Adiantum raddianum: Toxicity against mosquito vectors of medical and veterinary importance. J. Appl. Biomed. 2017, 15, 87–95. [Google Scholar] [CrossRef]
- Rajasekharreddy, P.; Rani, P.U. Biofabrication of Ag nanoparticles using Sterculia foetida L. seed extract and their toxic potential against mosquito vectors and HeLa cancer cells. Mater. Sci. Eng. C 2014, 39, 203–212. [Google Scholar] [CrossRef]
- Hikal, W.M.; Baeshen, R.S.; Said-Al Ahl, H.A. Botanical insecticide as simple extractives for pest control. Cogent Biol. 2017, 3, 1404274. [Google Scholar] [CrossRef]
- Khater, H.F.; Geden, C.J. Efficacy and repellency of some essential oils and their blends against larval and adult house flies, Musca domestica L. (Diptera: Muscidae). J. Vector Ecol. 2019, 44, 256–263. [Google Scholar] [CrossRef] [Green Version]
- Khater, H.F.; Geden, C.J. Potential of essential oils to prevent fly strike and their effects on the longevity of adult Lucilia sericata. J. Vector Ecol. 2018, 43, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Graham, H.N. Green tea composition, consumption, and polyphenol chemistry. Prev. Med. 1992, 21, 334–350. [Google Scholar] [CrossRef]
- Reygaert, W.C. Green tea catechins: Their use in treating and preventing infectious diseases. BioMed Res. Int. 2018, 2018, 9105261. [Google Scholar] [CrossRef] [PubMed]
- Shirakami, Y.; Sakai, H.; Kochi, T.; Seishima, M.; Shimizu, M. Catechins and its role in chronic diseases. In Drug Discovery from Mother Nature; Springer: Cham, Denmark, 2016; pp. 67–90. [Google Scholar]
- Baz, M.; Radwan, I.; Selim, A.; Khater, H. Larvicidal and Adulticidal effects of Some Egyptian oils against Culex pipiens. Sci. Rep. 2022, 12, 4406. [Google Scholar] [CrossRef]
- Ling Chang, C.; Kyu Cho, I.; Li, Q.X. Insecticidal activity of basil oil, trans-anethole, estragole, and linalool to adult fruit flies of Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae. J. Econ. Entomol. 2009, 102, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Sutthanont, N.; Choochote, W.; Tuetun, B.; Junkum, A.; Jitpakdi, A.; Chaithong, U.; Riyong, D.; Pitasawat, B. Chemical composition and larvicidal activity of edible plant-derived essential oils against the pyrethroid-susceptible and-resistant strains of Aedes aegypti (Diptera: Culicidae). J. Vector Ecol. 2010, 35, 106–115. [Google Scholar] [CrossRef]
- Ahmed, A.F.; Shi, M.; Liu, C.; Kang, W. Comparative analysis of antioxidant activities of essential oils and extracts of fennel (Foeniculum vulgare Mill.) seeds from Egypt and China. Food Sci. Hum. Wellness 2019, 8, 67–72. [Google Scholar] [CrossRef]
- Özbek, H.; Uğraş, S.; Dülger, H.; Bayram, I.; Tuncer, I.; Öztürk, G.; Öztürk, A. Hepatoprotective effect of Foeniculum vulgare essential oil. Fitoterapia 2003, 74, 317–319. [Google Scholar] [CrossRef]
- Kwiatkowski, P.; Pruss, A.; Masiuk, H.; Mnichowska-Polanowska, M.; Kaczmarek, M.; Giedrys-Kalemba, S.; Dołęgowska, B.; Zielińska-Bliźniewska, H.; Olszewski, J.; Sienkiewicz, M. The effect of fennel essential oil and trans-anethole on antibacterial activity of mupirocin against Staphylococcus aureus isolated from asymptomatic carriers. Adv. Dermatol. Allergol. 2019, 36, 308. [Google Scholar] [CrossRef]
- Patil, C.D.; Borase, H.P.; Patil, S.V.; Salunkhe, R.B.; Salunke, B.K. Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and nontarget fish Poecillia reticulata. Parasitol. Res. 2012, 111, 555–562. [Google Scholar] [CrossRef]
- Murugan, K.; Priyanka, V.; Dinesh, D.; Madhiyazhagan, P.; Panneerselvam, C.; Subramaniam, J.; Suresh, U.; Chandramohan, B.; Roni, M.; Nicoletti, M. Predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector, Aedes aegypti, in an aquatic environment treated with mosquitocidal nanoparticles. Parasitol. Res. 2015, 114, 3601–3610. [Google Scholar] [CrossRef]
System | Size (DLS) | Zeta Potential | PDI |
---|---|---|---|
Free-NLC | 313 nm | −21.30 mv | 0.099 |
NLC-GT | 277 nm | −28.22 mv | 0.009 |
NLC-F | 287 nm | −34.31 mv | 0.005 |
Oil Name | Tested Materials | Time (h) | Mortality % (Mean ± SE) * of Mosquito Larvae | |||||
---|---|---|---|---|---|---|---|---|
0 ** | 125 | 250 | 500 | 1000 | 2000 | |||
Fennel (Foeniculum vulgare) | Oil | 0.5 | 0.00 ± 0.00 aE | 0.00 ± 0.00 eE | 1.67 ± 1.67 eD | 3.33 ± 1.67 eC | 8.33 ± 1.67 eB | 20.00 ± 0.00 eA |
2 | 0.00 ± 0.00 aF | 1.67 ± 1.67 dE | 3.33 ± 1.67 dD | 8.33 ± 1.67 dC | 21.67 ± 1.67 dB | 33.33 ± 3.33 dA | ||
8 | 0.00 ± 0.00 aF | 3.33 ± 1.67 cE | 8.33 ± 1.67 cD | 18.33 ± 1.67 cC | 41.67 ± 1.67 cB | 60.00 ± 2.89 cA | ||
24 | 0.00 ± 0.00 aF | 8.33 ± 1.67 bE | 21.67 ± 1.67 bD | 41.67 ± 3.33 bC | 61.67 ± 4.41 bB | 85.00 ± 2.89 bA | ||
48 | 0.00 ± 0.00 aF | 13.33 ± 1.67 aE | 30.00 ± 2.89 aD | 58.33 ± 1.67 aC | 81.67 ± 1.67 aB | 100.00 ± 0.00 aA | ||
NLC-F | 0.5 | 0.00 ± 0.00 aF | 6.67 ± 1.67 eE | 11.67 ± 1.67 eD | 18.33 ± 1.67 eC | 33.33 ± 1.67 dB | 40.00 ± 2.89 dA | |
2 | 0.00 ± 0.00 aF | 8.33 ± 1.67 dE | 15.00 ± 0.00 dD | 25.00 ± 2.89 dC | 43.33 ± 4.41 cB | 58.33 ± 1.67 cA | ||
8 | 0.00 ± 0.00 aF | 13.33 ± 1.67 cE | 33.33 ± 1.67 cD | 56.67 ± 1.67 cC | 78.33 ± 1.67 bB | 90.00 ± 2.89 bA | ||
24 | 0.00 ± 0.00 aE | 20.00 ± 2.89 bD | 46.67 ± 3.33 bC | 78.33 ± 1.67 bB | 100.00 ± 0.00 aA | 100.00 ± 0.00 aA | ||
48 | 0.00 ± 0.00 aE | 25.00 ± 2.89 aD | 56.67 ± 4.41 aC | 83.33 ± 3.33 aB | 100.00 ± 0.00 aA | 100.00 ± 0.00 aA | ||
Free-NLC | 0.5 | 0.00 ± 0.00 aE | 0.00 ± 0.00 eE | 3.33 ± 1.67 eD | 5.0 ± 0.00 eC | 8.33 ± 1.67 eB | 16.67 ± 1.67 eA | |
2 | 0.00 ± 0.00 aF | 1.67 ± 1.67 dE | 6.67 ± 1.67 dD | 8.33 ± 1.67 dC | 16.67 ± 1.67 dB | 26.67 ± 1.67 dA | ||
8 | 0.00 ± 0.00 aF | 5.00 ± 0.00 cE | 11.67 ± 1.67 cD | 18.33 ± 4.41 cC | 26.67 ± 3.33 cB | 38.33 ± 3.33 cA | ||
24 | 0.00 ± 0.00 aF | 8.33 ± 1.67 bE | 15.00 ± 2.89 bD | 25.0 ± 5.77 bC | 40.0 ± 2.89 bBB | 50.00 ± 2.89 bA | ||
48 | 0.00 ± 0.00 aF | 11.67 ± 1.67 aE | 20.00 ± 2.89 aD | 31.67 ± 1.67 aC | 48.33 ± 6.01 aB | 58.33 ± 1.67 aA |
Oil Name | Tested Materials | Time (h) | Mortality % (Mean ± SE) * of Mosquito Larvae | |||||
---|---|---|---|---|---|---|---|---|
0 ** | 125 | 250 | 500 | 1000 | 2000 | |||
Green tea (Camellia sinensis) | Oil | 0.5 | 0.00 ± 0.00 eD | 0.00 ± 0.00 eD | 0.00 ± 0.00 eD | 3.33 ± 1.67 eC | 8.33 ± 1.67 eB | 13.33 ± 1.67 eA |
2 | 0.00 ± 0.00 aF | 1.67 ± 1.67 dE | 3.33 ± 1.67 dD | 6.67 ± 1.67 dC | 18.33 ± 1.67 dB | 28.33 ± 1.67 dA | ||
8 | 0.00 ± 0.00 aF | 3.33 ± 1.67 cE | 8.33 ± 1.67 cD | 16.67 ± 1.67 cC | 35.00 ± 2.89 cB | 53.33 ± 1.67 cA | ||
24 | 0.00 ± 0.00 aF | 8.33 ± 1.67 bE | 18.33 ± 1.67 bD | 38.33 ± 1.67 bC | 56.67 ± 3.33 bB | 80.00 ± 2.89 bA | ||
48 | 0.00 ± 0.00 aF | 11.67 ± 1.67 aE | 26.67 ± 1.67 aD | 55.00 ± 2.89 aC | 80.00 ± 2.89 aB | 100.00 ± 0.00 aA | ||
NLC-GT | 0.5 | 0.00 ± 0.00 aF | 5.00 ± 0.00 eE | 10.00 ± 0.00 eD | 16.67 ± 1.67 eC | 28.33 ± 1.67 eB | 35.00 ± 2.89 dA | |
2 | 0.00 ± 0.00 aF | 8.33 ± 1.67 dE | 13.33 ± 1.67 dD | 21.67 ± 1.67 dC | 40.00 ± 2.89 dB | 56.67 ± 1.67 cA | ||
8 | 0.00 ± 0.00 aF | 11.67 ± 1.67 cE | 33.33 ± 1.67 cD | 50.00 ± 2.89 cC | 75.00 ± 2.89 cB | 88.33 ± 1.67 bA | ||
24 | 0.00 ± 0.00 aF | 20.00 ± 2.89 bE | 45.00 ± 2.89 bD | 70.00 ± 2.89 bC | 95.00 ± 2.89 bB | 100.00 ± 0.00 aA | ||
48 | 0.00 ± 0.00 aF | 23.33 ± 1.67 aDE | 55.00 ± 2.89 aC | 80.00 ± 2.89 aB | 100.00 ± 0.00 aA | 100.00 ± 0.00 aA | ||
Free-NLC | 0.5 | 0.00 ± 0.00 aE | 0.00 ± 0.00 eE | 3.33 ± 1.67 eD | 5.0 ± 0.00 eC | 8.33 ± 1.67 eB | 16.67 ± 1.67 eA | |
2 | 0.00 ± 0.00 aF | 1.67 ± 1.67 dE | 6.67 ± 1.67 dD | 8.33 ± 1.67 dC | 16.67 ± 1.67 dB | 26.67 ± 1.67 dA | ||
8 | 0.00 ± 0.00 aF | 5.00 ± 0.00 cE | 11.67 ± 1.67 cD | 18.33 ± 4.41 cC | 26.67 ± 3.33 cB | 38.33 ± 3.33 cA | ||
24 | 0.00 ± 0.00 aF | 8.33 ± 1.67 bE | 15.00 ± 2.89 bD | 25.0 ± 5.77 bC | 40.0 ± 2.89 bBB | 50.00 ± 2.89 bA | ||
48 | 0.00 ± 0.00 aF | 11.67 ± 1.67 aE | 20.00 ± 2.89 aD | 31.67 ± 1.67 aC | 48.33 ± 6.01 aB | 58.33 ± 1.67 aA |
Oil Name | Tested Materials | LC50 (95%CI) * | LC90 (95%CI) | LC95 (95%CI) | Chi (Sig) | Equation | R2 |
---|---|---|---|---|---|---|---|
Fennel (Foeniculum vulgare) | Oil | 643.81 (556.16–751.24) | 2911.80 (2220.73–4188.70 | 4466.34 (3228.20–6943.48) | 3.102 (0.089 a) | Y = −1.955 + 0.16 E – 3 * X | 0.941 |
NLC-F | 251.71 (224.06–280.58) | 637.52 (549.36–771.17) | 829.67 (695.16–1046.64) | 9.368 (0.014 a) | Y = −3.175 + 0.26 E – 3 * X | 0.922 | |
Green tea (Camellia sinensis) | Oil | 746.52 (638.96–885.48) | 3719.81 (2731.38–5681.86) | 5864.60 (4052.26–9792.05) | 2.761 (0.091 a) | Y = −1.837 + 0.162 E – 3 * X | 0.959 |
NLC-GT | 278.63 (243.05–311.57) | 825.55 (700.73–1016.21) | 1125.62 (925.22–1452.73) | 7.261 (0.035 a) | Y = −2.698 + 0.212 E – 3 * X | 0.919 |
Oil Name | Tested Materials | Conc. (%) | Mortality% (Mean ± SE) | LC50 (95%CI) * | LC90 (95%CI) | LC95 (95%CI) | Chi (Sig) | Equation | R2 |
---|---|---|---|---|---|---|---|---|---|
Fennel (Foeniculum vulgare) | Oil | 0 | 3.33 ± 3.33 e | 2.805 (0.285–3.685) | 6.236 (4.173–12.699) | 12.748 (7.332–35.19) | 7.656 (0.053 a) | Y = 1.1699 + 0.185 * x | 0.991 |
2.0 | 36.67 ± 6.67 d | ||||||||
5.0 | 56.67 ± 3.33 c | ||||||||
10.0 | 70.00 ± 5.77 b | ||||||||
15.0 | 83.33 ± 3.33 a | ||||||||
20.0 | 90.00 ± 5.77 a | ||||||||
NLC-F | 0.0 | 6.67 ± 3.33 c | 0.259 (0.131–0.377) | 1.599 (1.1019–1.8134) | 2.180 (1.667–3.414) | 5.387 (0.067 a) | Y = −1.780 + 0.291 * X | 0.927 | |
0.5 | 73.33 ± 3.33 b | ||||||||
1.0 | 80.00 ± 0.00 b | ||||||||
2.0 | 93.33 ± 3.33 a | ||||||||
3.0 | 100.00 ± 0.00 a | ||||||||
4.0 | 100.00 ± 0.00 a | ||||||||
Free-NLC | 0.0 | 0.00 ± 0.00 f | 9.630 (4.386–12.562) | 23.171 (10.232–64.924) | 44.196 (21.346–99.819) | 5.005 (0.017 a) | Y = 1.1899 + 0.221 * x | 0.973 | |
2.0 | 20.00 ± 0.00 e | ||||||||
5.0 | 33.33 ± 6.67 d | ||||||||
10.0 | 40.00 ± 5.77 c | ||||||||
15.0 | 53.33 ± 3.33 b | ||||||||
20.0 | 66.67 ± 8.82 a |
Oil Name | Tested Materials | Time (Mint) | Mortality% (Mean ± SE) | LC50 (95%CI) * | LC90 (95%CI) | LC95 (95%CI) | Chi (Sig) | Equation | R2 |
---|---|---|---|---|---|---|---|---|---|
Green tea (Camellia sinensis) | Oil | 0.0 | 3.33 ± 3.33 f | 4.212 (0.599–5.425) | 9.648 (6.124–21.279) | 19.184 (10.555–55.446) | 4.967 (0.174 a) | Y = 1.216 + 0.180 * x | 0.953 |
2.0 | 23.33 ± 3.33 e | ||||||||
5.0 | 50.00 ± 5.77 d | ||||||||
10.0 | 60.00 ± 0.00 c | ||||||||
15.0 | 76.67 ± 8.82 b | ||||||||
20.0 | 83.33 ± 3.33 a | ||||||||
NLC-GT | 0.0 | 6.67 ± 3.33 f | 0.402 (0.322–0.562) | 1.813 (1.523–2.272) | 2.687 (2.160–3.664) | 5.405 (0.144 a) | Y = −2.126 + 0.240 * X | 0.922 | |
0.5 | 66.67 ± 3.33 e | ||||||||
1.0 | 76.67 ± 3.33 d | ||||||||
2.0 | 86.67 ± 3.33 c | ||||||||
3.0 | 96.67 ± 3.33 b | ||||||||
4.0 | 100.00 ± 0.00 a | ||||||||
Free-NLC | 0.0 | 0.00 ± 0.00 f | 9.630 (4.385–12.562) | 23.171 (10.232–64.924) | 44.196 (21.346–99.819) | 5.005 (0.017 a) | Y = 1.1899 + 0.221 * x | 0.973 | |
2.0 | 20.00 ± 0.00 e | ||||||||
5.0 | 33.33 ± 6.67 d | ||||||||
10.0 | 40.00 ± 5.77 c | ||||||||
15.0 | 53.33 ± 3.33 b | ||||||||
20.0 | 66.67 ± 8.82 a |
Oil Name | Tested Materials | Sites | Mean Number/Site ± SE | % Mean Reduction |
---|---|---|---|---|
Fennel (Foeniculum vulgare) | Control | home 1 | 23.4 ± 5.41 a | 0.0 |
home 2 | ||||
home 3 | ||||
Oil | home 1 | 4.56 ± 1.28 b | 83.6 | |
home 2 | ||||
home 3 | ||||
NLC-F | home 1 | 0.22 ± 0.22 b | 100.0 | |
home 2 | ||||
home 3 | ||||
Green tea (Camellia sinensis) | Control | home 1 | 22.81 ± 5.41 a | 0.0 |
home 2 | ||||
home 3 | ||||
Oil | home 1 | 5.89 ± 1.28 b | 79.1 | |
home 2 | ||||
home 3 | ||||
NLC-GT | home 1 | 0.22 ± 0.22 b | 100.0 | |
home 2 | ||||
home 3 |
Oil Name | Treatment | Mosquito Predator Types | ||
---|---|---|---|---|
G. affinis | C. tripunctatus | S. urinator | ||
Foeniculum vulgare | Control * | 76.00 ± 2.08 bcA | 60.67 ± 2.40 cB | 25.00 ± 0.58 aC |
Oil | 76.67 ± 2.40 abcA | 59.00 ± 3.51 cB | 23.67 ± 0.88 abC | |
NLC-F | 76.33 ± 0.88 abcA | 59.67 ± 0.33 cB | 24.67 ± 1.33 abC | |
Camellia sinensis | Oil | 75.67 ± 1.76 cA | 66.00 ± 10.00 bB | 23.33 ± 2.03 abC |
NLC-GT | 77.67 ± 1.86 aA | 68.00 ± 3.06 aB | 24.67 ± 0.88 abC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radwan, I.T.; Baz, M.M.; Khater, H.; Selim, A.M. Nanostructured Lipid Carriers (NLC) for Biologically Active Green Tea and Fennel Natural Oils Delivery: Larvicidal and Adulticidal Activities against Culex pipiens. Molecules 2022, 27, 1939. https://doi.org/10.3390/molecules27061939
Radwan IT, Baz MM, Khater H, Selim AM. Nanostructured Lipid Carriers (NLC) for Biologically Active Green Tea and Fennel Natural Oils Delivery: Larvicidal and Adulticidal Activities against Culex pipiens. Molecules. 2022; 27(6):1939. https://doi.org/10.3390/molecules27061939
Chicago/Turabian StyleRadwan, Ibrahim Taha, Mohamed M. Baz, Hanem Khater, and Abdelfattah M. Selim. 2022. "Nanostructured Lipid Carriers (NLC) for Biologically Active Green Tea and Fennel Natural Oils Delivery: Larvicidal and Adulticidal Activities against Culex pipiens" Molecules 27, no. 6: 1939. https://doi.org/10.3390/molecules27061939
APA StyleRadwan, I. T., Baz, M. M., Khater, H., & Selim, A. M. (2022). Nanostructured Lipid Carriers (NLC) for Biologically Active Green Tea and Fennel Natural Oils Delivery: Larvicidal and Adulticidal Activities against Culex pipiens. Molecules, 27(6), 1939. https://doi.org/10.3390/molecules27061939