The SARS-CoV-2 Entry Inhibition Mechanisms of Serine Protease Inhibitors, OM-85, Heparin and Soluble HS Might Be Linked to HS Attachment Sites
Abstract
:1. Introduction
- (a)
- In previous articles [5,6], we hypothesised that viruses prevent the biosynthesis of GAGs (HS/CS/DS/Hep) by attaching themselves to HS attachment sites, which leads to sugars that should be used to make these chains being found in the blood, leading to type 2 diabetes. The question remains as to whether variation in the amount (mass) of GAGs containing D-xylose in the body of a normal healthy person may be sufficient to justify an increase in blood sugar;
- (b)
- Since the previously formulated hypothesis on the binding of viruses, including SARS-CoV-2, at the HS attachment sites on the core proteins, is central, it is important to ascertain whether there are other corroborating facts of this hypothesis in addition to that already provided in the previous article [5];
- (c)
- SARS-CoV-2 has other receptors and cofactors at the cell surface, such as angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), in addition to syndecans 1 and 4. Therefore, why do we favour the strategy of stimulating the biosynthesis of GAGs (by D-xylose)? In various studies, researchers proposed other strategies—for example, considering using serine protease inhibitors to fight SARS-CoV-2 [7,8,9,10,11];
- (d)
- Ascertain whether there is any link between serine protease inhibitors that inhibit SARS-CoV-2 viral entry and HS attachment sites;
- (e)
- Are there still doubts that bioactive D-xylose molecules initiate GAG biosynthesis? Specifically, can molecules, and not only xylosyltransferase enzymes initiate the biosynthesis of HS chains;
- (f)
- The interpretation of the results of Zheng et al. [12] regarding the correlation between the D-xylose and COVID-19 severity.
2. Binding of Viruses (Including SARS-CoV-2) and HS/CS Attachment Sites on Core Proteins
3. Other Receptors or Cofactors of SARS-CoV-2: ACE2/SDC1-4/ADAM17/TMPRSS2
4. COVID-19 Severity, D-xylose and Type 2 Diabetes: Mechanism by Which the D-xylose Lowers the Blood Sugar and Correlation of D-xylose with COVID-19 Severity
4.1. Bioactive D-xylose Molecules: Biosynthesis of HS/CS/DS Chains, Antiglycaemic Properties
4.2. Deregulation of GAGs during Type 2 Diabetes: Estimation of Minimal Mass Variation of HS/CS/DS and Hep
4.3. Correlation of D-xylose with COVID-19 Severity
5. Discussion and Conclusions
- Completely inhibit the biosynthesis of proteoglycans (core proteins and glycosaminoglycans) or keep core proteins and inhibit only GAGs’ chains by heparinase; we discussed the link between the inhibitory properties of heparinase and HS biosynthesis [5]. These options induce the deregulation of endothelial glycocalyx and promote inflammation [79];
- Use soluble HS as competitive inhibitor: soluble HS probably binds at HS attachment sites (Section 2), thus preventing the binding of SARS-CoV-2. In the in vitro studies of Tandon et al. [17], all xyloside GAGs (heparin, HS, DS, chondroitin sulfates D, and E) were able to compete with SARS-CoV-2 for its binding to immobilised heparin [17]. The soluble keratan sulfates that are the unique sulfated GAGs without D-xylose (at first position) were also tested in this study and failed to compete with SARS-CoV-2 [17];
- Serine protease inhibitors, such as camostat mesylate, nafamostat mesylate, and alpha-1-antitrypsin, in addition to inhibiting TMPRSS2, also inhibit the elastase activity, thus reducing the shedding of syndecans and then the endocytosis entry of SARS-CoV-2; in addition, they potentially bind at HS attachment sites (Section 3);
- Use a bioactive compound as a competitive inhibitor: D-xylose, for example, stimulates the biosynthesis of xyloside GAGs (HS, CS, DS) (Section 4), thus preventing the binding of SARS-CoV-2. Xylitol was also shown in several studies to be a competitive inhibitor of SARS-CoV-2 [80]. D-xylose/xylitol has many other properties in relation to the stimulation of HS biosynthesis [6];
- Another option recently studied in an in vivo study by Fang et al. [81] is the use of bacterial lysate OM-85 Broncho-Vaxom® for the control of COVID-19. OM-85 is a mixture of H. influenzae, S. pneumoniae, K. pneumoniae, Klebsiella ozaenae, S. aureus, Streptococcus pyogenes, Streptococcus viridans, and M. catarrhalis [82]. Among them, at least one uses syndecan-1 as a receptor at the cell surface; this is the case of Streptococcus pneumoniae [83]. As previously stated [5], this would mean that Streptococcus pneumoniae binds at HS attachment sites on syndecan-1 (the same potential place as SARS-CoV-2). Heparin, heparan sulfate, and chondroitin sulfate are competitive inhibitors of Streptococcus pneumoniae [84]. From Section 2, because heparin and HS are its competitive inhibitors, we deduce once again the probable binding site of S. pneumoniae on syndecan-1. Therefore, OM-85 is a competitive inhibitor of SARS-CoV-2, as demonstrated by the results of Fang et al. [81]. However, by preventing HS biosynthesis (through one of its binding sites), bacterial lysate OM-85 causes HS inhibition, heparanase overexpression, and the overexpression of metalloproteinase enzymes (including ADAM17), thus inducing the shedding of the ectodomain of syndecans [5]. All these facts were reported by Fang et al. [81]. In addition, the shedding of syndecan-1 ectodomain by Streptococcus pneumoniae was reported [85].
- (a)
- Heparin is a competitive entry inhibitor of dozens of viruses (including SARS-CoV-2) [5];
- (b)
- Heparin significantly and spontaneously stimulates the biosynthesis of cell-layer HS chains (with the same sulfation as highlighted by Nader et al.) (Section 2);
- (c)
- The interaction between HS chains and diverse viruses (including SARS-CoV-2).
6. Limitations
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- JHU. COVID-19 Resource Center. Available online: https://coronavirus.jhu.edu/map.html (accessed on 14 February 2022).
- Lin, D.Y.; Gu, Y.; Wheeler, B.; Young, H.; Holloway, S.; Sunny, S.K.; Moore, Z.; Zeng, D. Effectiveness of COVID-19 Vaccines over a 9-Month Period in North Carolina. N. Engl. J. Med. 2022, 386, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Acharya, K.P.; Ghimire, T.R.; Subramanya, S.H. Access to and equitable distribution of COVID-19 vaccine in low-income countries. NPJ Vaccines 2021, 6, 54. [Google Scholar] [CrossRef]
- Ekwebelem, O.C.; Yunusa, I.; Onyeaka, H.; Ekwebelem, N.C.; Nnorom-Dike, O. COVID-19 vaccine rollout: Will it affect the rates of vaccine hesitancy in Africa? Public Health 2021, 197, e18–e19. [Google Scholar] [CrossRef]
- Cheudjeu, A. Antiviral strategies should focus on stimulating the biosynthesis of heparan sulfates, not their inhibition. Life Sci. 2021, 277, 119508. [Google Scholar] [CrossRef] [PubMed]
- Cheudjeu, A. Correlation of D-xylose with severity and morbidity-related factors of COVID-19 and possible therapeutic use of D-xylose and antibiotics for COVID-19. Life Sci. 2020, 260, 118335. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibi-tor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Li, K.; Meyerholz, D.K.; Bartlett, J.A.; McCray, P.B. The TMPRSS2 Inhibitor Nafamostat Reduces SARS-CoV-2 Pulmonary Infection in Mouse Models of COVID-19. mBio 2021, 12, e00970–e01021. [Google Scholar] [CrossRef]
- Hoffmann, M.; Hofmann-Winkler, H.; Smith, J.C.; Krüger, N.; Arora, P.; Sørensen, L.K.; Søgaard, O.S.; Hasselstrøm, J.B.; Winkler, M.; Hempel, T.; et al. Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBio Med. 2021, 65, 103255. [Google Scholar] [CrossRef]
- Azouz, N.P.; Klingler, A.; Callahan, V.; Akhrymuk, I.; Elez, K.; Raich, L.; Henry, B.; Benoit, J.; Benoit, S.; Noé, F.; et al. Alpha 1 Antitrypsin is an Inhibitor of the SARS-CoV-2–Priming Protease TMPRSS. Pathog. Immun. 2021, 6, 55–74. [Google Scholar] [CrossRef]
- Wettstein, L.; Weil, T.; Conzelmann, C.; Müller, J.A.; Groß, R.; Hirschenberger, M.; Seidel, A.; Klute, S.; Zech, F.; Bozzo, C.P.; et al. Alpha-1 antitrypsin inhibits TMPRSS2 protease activity and SARS-CoV-2 infection. Nat. Commun. 2021, 12, 1726. [Google Scholar] [CrossRef]
- Zheng, H.; Jin, S.; Li, T.; Ying, W.; Ying, B.; Chen, D.; Ning, J.; Zheng, C.; Li, Y.; Li, C.; et al. Metab-olomics reveals sex-specific metabolic shifts and predicts the duration from positive to negative in non-severe COVID-19 patients during recovery process. Comput. Struct. Biotechnol. J. 2021, 19, 1863–1873. [Google Scholar] [CrossRef]
- Delaune, K.P.; Alsayouri, K. Physiology, Noncompetitive Inhibitor; StatPearls Publishing: Treasure Island, FL, USA, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK545242/ (accessed on 22 October 2021).
- Competitive Inhibition. Available online: https://www.sciencedirect.com/topics/medicine-and-dentistry/competitive-inhibition (accessed on 22 October 2021).
- Wilson, O.; Jacobs, A.L.; Stewart, S.; Carson, D.D. Expression of externally disposed heparin/heparan sulfate binding sites by uterine epithelial cells. J. Cell. Physiol. 1990, 143, 60–67. [Google Scholar] [CrossRef]
- Trindade, E.S.; Oliver, C.; Jamur, M.C.; Rocha, H.A.; Franco, C.R.; Bouças, R.I.; Jarrouge, T.R.; Pinhal, M.A.; Tersariol, I.L.; Gouvêa, T.C.; et al. The binding of heparin to the extracellular matrix of endothelial cells up-regulates the synthesis of an antithrombotic heparan sulfate proteoglycan. J. Cell. Physiol. 2008, 217, 328–337. [Google Scholar] [CrossRef]
- Tandon, R.; Sharp, J.S.; Zhang, F.; Pomin, V.H.; Ashpole, N.M.; Mitra, D.; McCandless, M.G.; Jin, W.; Liu, H.; Sharma, P.; et al. Effective inhibition of SARS-CoV-2 entry by heparin and enoxaparin derivatives. J. Virol. 2020, 95, e01987–e02020. [Google Scholar] [CrossRef]
- Clausen, T.M.; Sandoval, D.R.; Spliid, C.B.; Pihl, J.; Perrett, H.R.; Painter, C.D.; Narayanan, A.; Majowicz, S.A.; Kwong, E.M.; McVicar, R.N.; et al. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell 2020, 183, 1043–1057. [Google Scholar] [CrossRef]
- Nader, H.B.; Buonassisi, V.; Colburn, P.; Dietrich, C.P. Heparin stimulates the synthesis and modifies the sulfation pattern of heparan sulfate proteoglycan from endothelial cells. J. Cell. Physiol. 1989, 140, 305–310. [Google Scholar] [CrossRef]
- Fransson, L.Å.; Karlsson, P.; Schmidtchen, A. Effects of cycloheximide, brefeldin A, suramin, heparin and primaquine on proteoglycan and glycosaminoglycan biosynthesis in human embryonic skin fibroblasts. Biochim. Biophys. Acta 1992, 1137, 287–297. [Google Scholar] [CrossRef]
- Recalde, M.P.; Carlucci, M.J.; Noseda, M.D.; Matulewicz, M.C. Chemical modifications of algal mannans and xylomannans: Effects on antiviral activity. Phytochemistry 2012, 73, 57–64. [Google Scholar] [CrossRef]
- Yue, J.; Jin, W.; Yang, H.; Faulkner, J.; Song, X.; Qiu, H.; Teng, M.; Azadi, P.; Zhang, F.; Linhardt, R.J.; et al. Heparan Sulfate facilitates spike protein-mediated SARS-CoV-2 host cell invasion and contributes to increased infection of SARS-CoV-2 G614 mutant and in lung cancer. Front. Mol. Biosci. 2021, 8, 649575. [Google Scholar] [CrossRef]
- Hudák, A.; Letoha, A.; Szilák, L.; Letoha, T. Contribution of syndecans to the cellular entry of SARS-CoV-2. Int. J. Mol. Sci. 2021, 22, 5336. [Google Scholar] [CrossRef]
- Kim, S.Y.; Jin, W.; Sood, A.; Montgomery, D.W.; Grant, O.C.; Fuster, M.M.; Fu, L.; Dordick, J.S.; Woods, R.J.; Zhang, F.; et al. Characterization of heparin and severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) spike glycoprotein binding interactions. Antivir. Res. 2020, 181, 104873. [Google Scholar] [CrossRef] [PubMed]
- Peng, R.; Lian-Ao, W.; Wang, Q.; Qi, J.; Gao, G.F. Cell entry of SARS-CoV-2. Trends Biochem. Sci. 2021, 46, 848–860. [Google Scholar] [CrossRef]
- Hudák, A.; Veres, G.; Letoha, A.; Szilák, L.; Letoha, T. Syndecan-4 Is a Key Facilitator of the SARS-CoV-2 Delta Variant’s Superior Transmission. Int. J. Mol. Sci. 2022, 23, 796. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chopra, P.; Li, X.; Bouwman, K.M.; Tompkins, S.M.; Wolfert, M.A.; De Vries, R.P.; Boons, G.J. Heparan sulfate proteoglycans as attachment factor for SARS-CoV-2. ACS Cent. Sci. 2021, 7, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Sexton, D.J.; Skogerson, K.; Devlin, M.; Smith, R.; Sanyal, I.; Parry, T.; Kent, R.; Enright, J.; Wu, Q.L.; et al. Novel peptide inhibitors of angiotensin-converting enzyme 2. J. Biol. Chem. 2003, 278, 15532–15540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karthika, T.; Joseph, J.; Das, V.R.A.; Nair, N.; Charulekha, P.; Roji, M.D.; Raj, V.S. SARS-CoV-2 Cellular Entry Is Independent of the ACE2 Cytoplasmic Domain Signaling. Cells 2021, 10, 1814. [Google Scholar] [CrossRef] [PubMed]
- Koch, J.; Uckeley, Z.M.; Doldan, P.; Stanifer, M.; Boulant, S.; Lozach, P.Y. TMPRSS2 expression dictates the entry route used by SARS-CoV-2 to infect host cells. EMBO J. 2021, 40, e107821. [Google Scholar] [CrossRef]
- Kim, W.R.; Park, E.G.; Kang, K.W.; Lee, S.M.; Kim, B.; Kim, H.S. Expression Analyses of MicroRNAs in Hamster Lung Tissues Infected by SARS-CoV-2. Mol. Cells 2020, 43, 953–963. [Google Scholar] [CrossRef]
- Lartey, N.L.; Valle-Reyes, S.; Vargas-Robles, H.; Jiménez-Camacho, K.E.; Guerrero-Fonseca, I.M.; Castellanos-Martínez, R.; Montoya-García, A.; García-Cordero, J.; Cedillo-Barrón, L.; Nava, P.; et al. ADAM17/MMP inhibition prevents neutrophilia and lung injury in a mouse model of COVID-19. J. Leukoc. Biol. 2021. [Google Scholar] [CrossRef]
- Palau, V.; Riera, M.; Soler, M.J. ADAM17 inhibition may exert a protective effect on COVID-19. Nephrol. Dial. Transplant. 2020, 35, 1071–1072. [Google Scholar] [CrossRef]
- Heurich, A.; Hofmann-Winkler, H.; Gierer, S.; Liepold, T.; Jahn, O.; Pöhlmann, S. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J. Virol. 2014, 88, 1293–1307. [Google Scholar] [CrossRef] [Green Version]
- Mykytyn, A.Z.; Breugem, T.I.; Riesebosch, S.; Schipper, D.; van den Doel, P.B.; Rottier, R.J.; Lamers, M.M.; Haagmans, B.L. SARS-CoV-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage site. eLife 2021, 10, e64508. [Google Scholar] [CrossRef]
- Liu, J.; Lu, F.; Chen, Y.; Plow, E.; Qin, J. Integrin mediates cell entry of the SARS-CoV-2 virus independent of cellular receptor ACE2. J. Biol. Chem. 2022, 298, 101710. [Google Scholar] [CrossRef]
- Lopes, R.D.; Macedo, A.V.; Silva, P.G.; Moll-Bernardes, R.J.; Dos Santos, T.M.; Mazza, L.; Feldman, A.; Arruda, G.D.; Denílson, C.; Camiletti, A.S.; et al. Effect of discontinuing vs. continuing angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on days alive and out of the hospital in patients admitted with COVID-19: A randomized clinical trial. JAMA 2021, 325, 254–264. [Google Scholar] [CrossRef]
- Leclézio, A.; Robinson, J.; Banerjee, I. SARS-CoV-2: ACE inhibitors, disastrous or desirable? J. Biomed. Sci. 2020, 7, 40–46. [Google Scholar] [CrossRef]
- Neitzel, J.J. Enzyme catalysis: The serine proteases. Nat. Educ. 2010, 3, 21. [Google Scholar]
- Di Cera, E. Serine proteases. IUBMB Life 2009, 61, 510–515. [Google Scholar] [CrossRef]
- Todd, V.B.; Yang, Y. Compositions and Methods for Heparan Sulfate as a Biomarker for Transplant Rejection. U.S. Patent 14/398,314, 21 April 2016. [Google Scholar]
- Guéant, J.L.; Guéant-Rodriguez, R.M.; Fromonot, J.; Oussalah, A.; Louis, H.; Chery, C.; Gette, M.; Gleye, S.; Callet, J.; Raso, J.; et al. Elastase and exacerbation of neutrophil innate immunity are involved in multi-visceral manifestations of COVID-19. Allergy 2021, 76, 1846–1858. [Google Scholar] [CrossRef]
- Pruessmeyer, J.; Martin, C.; Hess, F.M.; Schwarz, N.; Schmidt, S.; Kogel, T.; Hoettecke, N.; Schmidt, B.; Sechi, A.; Uhlig, S.; et al. A disintegrin and metalloproteinase 17 (ADAM17) mediates inflammation-induced shedding of syndecan-1 and-4 by lung epithelial cells. J. Biol. Chem. 2010, 285, 555–564. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Bound, M.J.; Zhao, B.R.; Standfield, S.D.; Bellon, M.; Jones, K.L.; Horowitz, M.; Rayner, C.K. Effects of a D-xylose preload with or without sitagliptin on gastric emptying, glucagon-like peptide-1, and postprandial glycemia in type 2 diabetes. Diabetes Care 2013, 36, 1913–1918. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Moon, S.; Jung, S.; Park, Y.J.; Yoon, S.; Choe, K.; Yang, C. Glycemic index of sucrose with D-xylose (XF) in hu-mans. Curr. Top. Nutraceutical Res. 2013, 11, 35–39. [Google Scholar]
- Asano, T.; Yoshimura, Y.; Kunugita, K. Sucrase inhibitory activity of D-xylose and effect on the elevation of blood glu-cose in rats. Nippon Eiyo Shokuryo Gakkaishi 1996, 49, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.; Kim, Y.S.; Kim, K.M.; Jung, S.; Yoo, S.H.; Kim, Y. D-xylose as a sugar complement regulates blood glucose lev-els by suppressing phosphoenolpyruvate carboxylase (PEPCK) in streptozotocin-nicotinamide-induced diabetic rats and by en-hancing glucose uptake in vitro. Nutr. Res. Pract. 2016, 10, 11–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, Y.J.; Bak, Y.-K.; Kim, B.; Kim, M.-S.; Lee, J.-H.; Sung, M.-K. Coconut-derived D-xylose affects postprandial glucose and insulin responses in healthy individuals. Nutr. Res. Pract. 2011, 5, 533–539. [Google Scholar] [CrossRef] [Green Version]
- Kipnis, D.M.; Cori, C.F. Studies of tissue permeability. J. Biol. Chem. 1957, 224, 681–693. [Google Scholar] [CrossRef]
- Field, J.B.; Johnson, P. Effect of insulin on D-xylose disappearance in diabetic patients. J. Appl. Physiol. 1960, 15, 979–982. [Google Scholar] [CrossRef]
- Jun, Y.J.; Lee, J.; Hwang, S.; Kwak, J.H.; Ahn, H.Y.; Bak, Y.K.; Koh, J.; Lee, J.H. Beneficial effect of xylose consumption on postprandial hyperglycemia in Korean: A randomized double-blind, crossover design. Trials 2016, 17, 139. [Google Scholar] [CrossRef] [Green Version]
- Vanis, L.; Hausken, T.; Gentilcore, D.; Rigda, R.S.; Rayner, C.K.; Feinle-Bisset, C.; Horowitz, M.; Jones, K.L. Compara-tive effects of glucose and xylose on blood pressure, gastric emptying and incretin hormones in healthy older subjects. Br. J. Nutr. 2011, 105, 1644–1651. [Google Scholar] [CrossRef]
- Yu, Y.; Linhardt, R.J. Xylosyltransferase 1 and the GAG Attachment Site. Structure 2018, 26, 797–799. [Google Scholar] [CrossRef] [Green Version]
- Dumas, M.; Bonte, F. Utilisations du D-Xylose, de ses Esters et des Oligosaccharides Contenant du Xylose Pour Ameliorer la Fonctionnalite des Cellules de L’epiderme. 1999. Available online: https://patents.google.com/patent/WO1999024009A1/fr (accessed on 14 November 2021).
- Levitt, D.; Doreman, A. Control of Chondrogenesis in Limb-Bud Cell Cultures by Bromodeoxyuridine. Proc. Natl. Acad. Sci. USA 1973, 70, 2201–2205. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, N. Synthesis and secretion of an altered chondroitin sulfate proteoglycan. J. Biol. Chem. 1979, 254, 2271–2277. [Google Scholar] [CrossRef]
- Schwartz, N.B. Regulation of chondroitin sulfate synthesis. Effect of beta-xylosides on synthesis of chondroitin sulfate pro-teoglycan, chondroitin sulfate chains, and core protein. J. Biol. Chem. 1977, 252, 6316–6321. [Google Scholar] [CrossRef]
- Schwartz, N.B.; Galligani, L.; Ho, P.L.; Dorfman, A. Stimulation of synthesis of free chondroitin sulfate chains by be-ta-D-xylosides in cultured cells. Proc. Natl. Acad. Sci. USA 1974, 71, 4047–4051. [Google Scholar] [CrossRef] [Green Version]
- Thøgersen, V.B.; Heickendorff, L.; Ledet, T. Effect of insulin and growth hormone on the synthesis of radiolabelled proteoglycans from cultured human arterial smooth-muscle cells. Eur. J. Endocrinol. 1996, 134, 326–330. [Google Scholar] [CrossRef]
- Han, J.; Zhang, F.; Xie, J.; Linhardt, R.J.; Hiebert, L.M. Changes in cultured endothelial cell glycosaminoglycans under hyperglycemic conditions and the effect of insulin and heparin. Cardiovasc. Diabetol. 2009, 8, 46. [Google Scholar] [CrossRef] [Green Version]
- Park, C.; Reinwein, D.; Henderson, M.; Cadenas, E.; Morgan, H. The action of insulin on the transport of glucose through the cell membrane. Am. J. Med. 1959, 26, 674–684. [Google Scholar] [CrossRef]
- Cechowska-Pasko, M.; Pałka, J.; Bańkowski, E. Decrease in the glycosaminoglycan content in the skin of diabetic rats. The role of IGF-I, IGF-binding proteins and proteolytic activity. Mol. Cell. Biochem. 1996, 154, 1–8. [Google Scholar] [CrossRef]
- Dhounchak, S.; Popp, S.K.; Brown, D.J.; Laybutt, D.R.; Biden, T.J.; Bornstein, S.R.; Parish, C.R.; Simeonovic, C.J. Heparan sulfate proteoglycans in beta cells provide a critical link between endoplasmic reticulum stress, oxidative stress and type 2 diabetes. PLoS ONE 2021, 16, e0252607. [Google Scholar]
- Kojima, J.; Nakamura, N.; Kanatani, M.; Omori, K. The glycosaminoglycans in human hepatic cancer. Cancer Res. 1975, 35, 542–547. [Google Scholar]
- Molina, D.K.; DiMaio, V.J.M. Normal organ weights in men. Am. J. Forensic Med. Pathol. 2012, 33, 368–372. [Google Scholar] [CrossRef]
- Theocharis, A.D.; Tsara, M.E.; Papageorgacopoulou, N.; Karavias, D.D.; Theocharis, D.A. Pancreatic carcinoma is characterized by elevated content of hyaluronan and chondroitin sulfate with altered disaccharide composition. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2000, 1502, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Caglar, V.; Kumral, B.; Uygur, R.; Alkoc, O.A.; Ozen, O.A.; Demirel, H. Study of Volume, Weight and Size of Normal Pancreas, Spleen and Kidney in Adults Autopsies. Forensic Med. Anat. Res. 2014, 2, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Mankin, H.J.; Lippiello, L. The Glycosaminoglycans of Normal and Arthritic Cartilage. J. Clin. Investig. 1971, 50, 1712–1719. [Google Scholar] [CrossRef]
- Anonymous. Basic anatomical and physiological data: The skeleton. A report of a Task Group of Committee 2 of the International Com-mission on Radiological Protection. Ann. ICRP 1995, 25, 1–80. [Google Scholar]
- Schmid, K.; Grundboeck-Jusco, J.; Kimura, A.; Tschopp, F.A.; Zollinger, R.; Binette, J.P.; Lewis, W.; Hayashi, S. The distribution of the glycosaminoglycans in the anatomic components of the lung and the changes in concentration of these macro-molecules during development and aging. Biochim. Biophys. Acta (BBA) Gen. Subj. 1982, 716, 178–187. [Google Scholar] [CrossRef]
- Varma, R.S.; Varma, R. Glycosaminoglycans and Proteoglycans of Skin in Glycosaminoglycans and Proteoglycans in Physiological and Pathological Processes of Body Systems; Varma, R.S., Varma, R., Eds.; Karger Publishers: Basel, Switzerland, 1982; pp. 151–164. [Google Scholar]
- Leider, M. On the weight of the skin. J. Investig. Dermatol. 1949, 12, 187–191. [Google Scholar] [CrossRef]
- Pacella, E.; Pacella, F.; De Paolis, G.; Parisella, F.R.; Turchetti, P.; Anello, G.; Cavallotti, C. Glycosaminoglycans in the Human Cornea: Age-Related Changes. Ophthalmol. Eye Dis. 2015, 7, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Staprans, I.; Felts, J.M. Isolation and characterization of glycosaminoglycans in human plasma. J. Clin. Investig. 1985, 76, 1984–1991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, J. Plasma Protein Tests: How to Interpret Abnormal Results. 2018. Available online: https://www.guidelinesinpractice.co.uk/liver-disease/plasma-protein-tests-how-to-interpret-abnormal-results/454286.article (accessed on 22 October 2021).
- Stevens, R.L.; Colombo, M.; Gonzales, J.J.; Hollander, W.; Schmid, K. The glycosaminoglycans of the human artery and their changes in atherosclerosis. J. Clin. Investig. 1976, 58, 470–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leta, G.C.; Mourão, P.A.; Tovar, A.M. Human venous and arterial glycosaminoglycans have similar affinity for plasma low-density lipoproteins. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2001, 1586, 243–253. [Google Scholar] [CrossRef] [Green Version]
- Wolff, C.B.; Collier, D.J.; Shah, M.; Saxena, M.; Brier, T.J.; Kapil, V.; Green, D.; Lobo, M. A Discussion on the Regulation of Blood Flow and Pressure. In Oxygen Transport to Tissue XXXVII; Springer: New York, NY, USA, 2016; Volume 876, pp. 129–135. [Google Scholar] [CrossRef]
- Schmidt, E.P.; Yang, Y.; Janssen, W.J.; Gandjeva, A.; Perez, M.J.; Barthel, L.; Zemans, R.L.; Bowman, J.C.; Koyanagi, D.E.; Yunt, Z.X.; et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat. Med. 2012, 18, 1217–1223. [Google Scholar] [CrossRef] [Green Version]
- Cannon, M.L.; Westover, J.B.; Bleher, R.; Sanchez-Gonzalez, M.A.; Ferrer, G. In Vitro Analysis of the Anti-viral Potential of nasal spray constituents against SARS-CoV-2. bioRxiv 2020. [Google Scholar] [CrossRef]
- Fang, L.; Zhou, L.; Tamm, M.; Roth, M. OM-85 Broncho-Vaxom®, a Bacterial Lysate, Reduces SARS-CoV-2 Binding Proteins on Human Bronchial Epithelial Cells. Biomedicines 2021, 9, 1544. [Google Scholar] [CrossRef]
- Suárez, N.; Ferrara, F.; Rial, A.; Dee, V.; Chabalgoity, J.A. Bacterial Lysates as Immunotherapies for Respiratory Infections: Methods of Preparation. Front. Bioeng. Biotechnol. 2020, 8, 545. [Google Scholar] [CrossRef]
- Bartlett, A.H.; Park, P.W. Heparan Sulfate Proteoglycans in Infection. In Glycans in Diseases and Therapeutics; Springer: Berlin/Heidelberg, Germany, 2011; pp. 31–62. [Google Scholar] [CrossRef]
- Tonnaer, E.L.; Hafmans, T.G.; Van Kuppevelt, T.H.; Sanders, E.A.; Verweij, P.E.; Curfs, J.H. In-volvement of glycosaminoglycans in the attachment of pneumococci to nasopharyngeal epithelial cells. Microbes Infect. 2006, 8, 316–322. [Google Scholar] [CrossRef]
- Chen, Y.; Hayashida, A.; Bennett, A.E.; Hollingshead, S.K.; Park, P.W. Streptococcus pneumoniae Sheds Syndecan-1 Ectodomains through ZmpC, a Metalloproteinase Virulence Factor. J. Biol. Chem. 2007, 282, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Conway, R.; Konig, M.F.; Graef, E.R.; Webb, K.; Yazdany, J.; Kim, A.H. Inflammatory arthritis in patients with COVID-19. Transl. Res. 2021, 232, 49–59. [Google Scholar] [CrossRef]
- Kleesiek, K.; Reinards, R.; Okusi, J.; Wolf, B.; Greiling, H. UDP-D-Xylose: Proteoglycan Core Protein β-D-Xylosyltransferase: A New Marker of Cartilage Destruction in Chronic Joint Diseases. Clin. Chem. Lab. Med. 1987, 25, 473–481. [Google Scholar] [CrossRef] [Green Version]
- Chevalier, X.; Conrozier, T. Access to highly purified chondroitin sulfate for appropriate treatment of osteoarthritis: A review. J. Med. Access 2017, 1, e134–e144. [Google Scholar] [CrossRef] [Green Version]
- Henrotin, Y.; Mathy, M.; Sanchez, C.; Lambert, C. Chondroitin sulfate in the treatment of osteoarthritis: Fromin vitrostudies to clinical recommendations. Ther. Adv. Musculoskelet. Dis. 2010, 2, 335–348. [Google Scholar] [CrossRef] [Green Version]
- Iovu, M.; Dumais, G.; du Souich, P. Anti-inflammatory activity of chondroitin sulfate. Osteoarthr. Cartil. 2008, 16, S14–S18. [Google Scholar] [CrossRef] [Green Version]
- Ronca, F.; Palmieri, L.; Panicucci, P.; Ronca, G. Anti-inflammatory activity of chondroitin sulfate. Osteoarthr. Cartil. 1998, 6, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Yanagishita, M. Glycosylphosphatidylinositol-anchored and core protein-intercalated heparan sulfate proteoglycans in rat ovarian granulosa cells have distinct secretory, endocytotic, and intracellular degradative pathways. J. Biol. Chem. 1992, 267, 9505–9511. [Google Scholar] [CrossRef]
- Partridge, L.J.; Urwin, L.; Nicklin, M.J.; James, D.C.; Green, L.R.; Monk, P.N. ACE2-Independent Interaction of SARS-CoV-2 spike protein with human epithelial cells is inhibited by unfractionated heparin. Cells 2021, 10, 1419. [Google Scholar] [CrossRef]
- Targosz-Korecka, M.; Kubisiak, A.; Kloska, D.; Kopacz, A.; Grochot-Przeczek, A.; Szymonski, M. Endothelial glycocalyx shields the interaction of SARS-CoV-2 spike protein with ACE2 receptors. Sci. Rep. 2021, 11, 12157. [Google Scholar] [CrossRef]
Situation 1 Binding of Heparin to the Cell Surface In the Absence of Any Virus | Situation 2 Binding of Heparin to the cell Surface In the Presence of the SARS-CoV-2 | |
---|---|---|
Binding sites on the core protein | Heparin has many binding sites on the cell surface [15]. Wilson and colleagues revealed that some of these binding sites of heparin were on proteins firmly attached to the cell-surface [15]. The results of Trindale and colleagues left them to suggest that these binding sites were the HS attachment sites on the core protein. In fact, Trindale and colleagues concluded that the endogenous HS occupied the heparin binding sites on the surface of endothelial cells [16]. Indeed, in their experiment, heparin was able to bind to the endothelial cell surface, only after the degradation of endogenous HS chains. | Heparin is a competitive inhibitor of SARS-CoV-2 in HEK293T cells [17]. By definition of “competitive inhibitor”, both heparin and SARS-CoV-2 share at least one binding site in common on the HSPGs. Based on Trindale et al. [16], and Wilson et al. [15], these sites seem to be the HS/CS attachment sites on the core protein. |
Importance of N- and O- sulfation in the recognition of binding sites | Wilson et al. [15] showed in 1990 that chemically modified derivatives of heparin, in which either N- or O- sulfation had been suppressed, markedly reduced the ability of the latter to compete for heparin binding sites on the cell surface. | Tandon and colleagues [17] confirmed that N-desulfation of heparin and also O-desulfation reduced the ability of heparin to compete with SARS-CoV-2 binding. This appears as a possible direct consequence of the Wilson et al. [15] observation. In fact, as discussed above, heparin shares a common binding site on the core protein with SARS-CoV-2, and N- or O- desulfation markedly reduced the ability of the heparin to recognise that binding site on the cell surface, according to the Wilson et al. results [15]. Thus, it is not specific to SARS-CoV-2. |
Influence of carboxylation in the recognition of binding sites | Wilson et al. [15] also found that the reduction in the carboxyl groups of heparin significantly decreased the ability of the latter to compete for heparin binding sites on the cell surface. | Studies have shown that the SARS-CoV-2–heparin interaction is chain-length dependent [24]. |
Impact on the cell-layer HS | Heparin significantly spontaneously stimulates the biosynthesis of cell-layer HS [16,19,20]. This stimulation is independent of its binding to the HS attachment sites, as observed by Trindale et al. [16]. | The fact that heparin significantly and spontaneously stimulates the biosynthesis of cell-layer HS [16,19,20] does not support Claussen et al.’s conclusion that HS chains promote SARS-CoV-2 infection of various target cells, since heparin inhibits the viral attachment of SARS-CoV-2 in vitro, despite any explanations we would propose, so as not to link the two effects of heparin. |
Competition for the binding sites with other xyloside GAGs (HS/CS/DS) | Heparan sulfate and dermatan sulfate are heparin binding competitive inhibitors at the cell surface [15]. | All xyloside GAGs (heparin, HS, DS, chondroitin sulfates D, and E) were able to compete with SARS-CoV-2 for its binding to immobilised heparin [17]. The soluble keratan sulfates that are the unique sulfated GAGs without D-xylose at first position were also tested and failed to compete with SARS-CoV-2 [17]. |
SARS-CoV-2 Receptors/Cofactors | References | Few Inhibitors of Receptors/Cofactors | Essential Character |
---|---|---|---|
HSPGs (Syndecans -4) | [23] | Heparin is used as a competitive inhibitor of the binding of diverse viruses to HSPGS [5] | Inhibition of HSPGs inhibits the viral entry [23,26]. HSPGs are essential for SARS-CoV-2 entry [23,26,27]. |
ACE2 | [7] | DX600 [23,28] | DX600 modestly inhibits SARS-CoV-2 entry [26]. ACE2 is not essential for SARS-CoV-2 entry [26,29]. |
TMPRSS2 | [7,30] | Camostat mesylate [7,9], nafamostat [8,9], alpha-1-antitrypsin [10,11] | Reduction in SARS-CoV-2 entry. TMPRSS2 is not essential for SARS-CoV-2 entry [30]. SARS-CoV-2 binds to cells lacking TMPRSS2 [30]. |
ADAM17 | [31] | Apratastat and TMI-1 [32], TNF-α protease inhibitor 1 (TAPI-1) [33] | ADAM17 inhibitions exert protective effects [32]. ADAM17 is probably not essential for SARS-CoV-2 entry, based on results obtained on SARS-CoV [34]. |
Cathepsin | [35] | Cathepsin inhibitor (E64D) [35] | SARS-CoV-2 is not inhibited by E64D [35]. Cathepsin is not essential for SARS-CoV-2 entry [30,35]. |
integrin | [36] | Integrin inhibitor Cilengitide [36] | Cilengitide significantly inhibits SARS-CoV-2 internalisation [36]; the essential or non-essential character of integrin activation for SARS-CoV-2 entry is not unanimous [36]. |
Elements | GAG Concentration | Estimated Mass of the Element | Estimated GAG Mass (g) |
---|---|---|---|
Liver | 198 µg/g [64] (HS/CS/DS represent 82%) | Average, 1561 g [65] | 0.31 |
Pancreas | HA (29 µg/g) + HS (176 µg/g) + DS (77 µg/g) + CS (38 µg/g) = 0.32 mg/g [66] (thus HS/CS/DS represent 91%) | Average, 87 g [67] | 0.03 |
Cartilage | 149 µg/mg [68] (CS 50%/KS 50%) | Weight of all cartilage in adult humans is estimated to be 1.5% of total body mass [69] | 145.3 |
Lungs | 5 mg/g, average of HS/CS/DS [70] | Average, 800 g for the two lungs [65] | 4.48 |
Skin | 2.02 mg/g (DS 94%, HS 3%, heparin 3%, and Ch-4S/Ch-6S < 2%) [71] | 16% of body weight [72] | 21.01 |
Human cornea tissues | Approximately 115 mg/g [73] | Estimated: 6% of eye weight | 0.10 |
Plasma | Less than 0.5% of total plasma proteins [74] | Plasma proteins constitute approximately 0.5% of total body mass [75] (325 g) | 1.63 |
Blood vessel walls (Venous and arterial walls) | 32 mg/g [76] for arteries and approximately 2 mg/g for veins [77]. We used (32 × (12/72) + 2 × (60/72)) mg/g and obtained 7 mg/g as the average. HS/CS (CSB and C6S)/DS represent 96% ([76]) | Relative volume of veins is 60% of total blood volume, 12% for arteries [78] | 32.76 |
Minimal estimated GAG mass (g) in one person (65 kg) | 205.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheudjeu, A. The SARS-CoV-2 Entry Inhibition Mechanisms of Serine Protease Inhibitors, OM-85, Heparin and Soluble HS Might Be Linked to HS Attachment Sites. Molecules 2022, 27, 1947. https://doi.org/10.3390/molecules27061947
Cheudjeu A. The SARS-CoV-2 Entry Inhibition Mechanisms of Serine Protease Inhibitors, OM-85, Heparin and Soluble HS Might Be Linked to HS Attachment Sites. Molecules. 2022; 27(6):1947. https://doi.org/10.3390/molecules27061947
Chicago/Turabian StyleCheudjeu, Antony. 2022. "The SARS-CoV-2 Entry Inhibition Mechanisms of Serine Protease Inhibitors, OM-85, Heparin and Soluble HS Might Be Linked to HS Attachment Sites" Molecules 27, no. 6: 1947. https://doi.org/10.3390/molecules27061947
APA StyleCheudjeu, A. (2022). The SARS-CoV-2 Entry Inhibition Mechanisms of Serine Protease Inhibitors, OM-85, Heparin and Soluble HS Might Be Linked to HS Attachment Sites. Molecules, 27(6), 1947. https://doi.org/10.3390/molecules27061947