The “Historical Materials BAG”: A New Facilitated Access to Synchrotron X-ray Diffraction Analyses for Cultural Heritage Materials at the European Synchrotron Radiation Facility
Abstract
:1. Introduction
2. High-Lateral Resolution 2D X-ray Diffraction Mapping at ID13
2.1. Beamline Description
2.2. Sample Preparation and Mounting
2.3. Data Acquisition
- (1)
- Define the sample name (which will automatically define the structure of data saving, with one folder per sample), and possibly add comments about the sample;
- (2)
- Navigate on the sample holder by clicking on plus/minus steps on the sample stage motors or by clicking directly on the video image. A mosaic photograph of the entire sample holder (collection of optical images taken while raster-scanning the sample holder over 2D large regions) permits the user to observe, grab and queue positions of interest for all the samples at once;
- (3)
- Define a ROI over the 2D area to be scanned. A unique number is associated with each ROI, which will be used in data naming;
- (4)
- Select the conditions for each map (pixel size, dwell time, detector(s), low/high flux (LF/HF) to mitigate beam damage, see below), position of the XRF detector (to mitigate detector saturation);
- (5)
- As an alternative to standard XRPD mapping, a single-point acquisition mode has been implemented for the purpose of beam damage studies. This mode allows the selection of POIs and the repeated acquisition of thousands of XRPD patterns at unique positions, to monitor the evolution in the XRPD patterns (peak position, intensity and width) as a function of accumulated dose;
- (6)
- Build a queue of all the above ROIs and POIs scans and organize them along a priority list.
- (7)
- Once the experimental set-up is back to data acquisition mode (see supporting information), the queue can be easily launched and continuously indicates the on-going and remaining scans.
- (8)
- Data produced during each scan is given a unique and automatic identifier and a proper place within the experiment folder.
- (9)
- Daiquiri also offers the possibility to visualize results in real time, such as XRF emission or XRPD intensity over a pre-set range of channels or angles, respectively. These images can be displayed, superimposed on the registered optical light image, providing in real time first diagnostics about the sample composition.
2.4. Data Processing and Data Analysis
2.5. Assessment of Radiation Damage
3. High-Angular Resolution X-ray Diffraction at ID22
3.1. Beamline Description
3.2. Sample Preparation and Mounting
3.3. Data Acquisition and Data Analysis
3.4. Assessment of Radiation Damage
4. Some Recent Examples of Studies Performed within the BAG Project
4.1. Revisiting the Bamyian Buddhist Paintings to Obtain More Insight into Pigment Syntheses and Early Oil Painting Practices in the Silk Road
4.2. Composition and Stability of Pigments Invented during the Industrialization Period (End of 18th- Beginning of 20th C.)
4.2.1. Deepening the Knowledge of Formulations of Cadmium Red Pigments
4.2.2. Understanding Paint Degradation in Picasso Cadmium Yellows
4.2.3. Tracking the Origin of the Color of “Thénard’s Blue”, from the Manufacture Nationale de Sèvres
4.3. Applications to Conservation Studies
4.3.1. Revealing the Interactions of Inorganic Conservation Treatments with Mg-Containing Frescos
- Identify the new oxalate phases crystallized after the AmOx treatment in the presence of Mg-rich and Ca-rich regions of the fresco;
- Localize the different oxalate phases with respect to each other, as well as to explore their distribution in the different regions of the fresco stratigraphy.
4.3.2. Assessing Structural Damage in Wood Vessels
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Cotte, M.; Genty-Vincent, A.; Janssens, K.; Susini, J. Applications of synchrotron X-ray nano-probes in the field of cultural heritage. Cr. Phys. 2018, 19, 575–588. [Google Scholar] [CrossRef]
- Bertrand, L.; Cotte, M.; Stampanoni, M.; Thoury, M.; Marone, F.; Schöder, S. Development and trends in synchrotron studies of ancient and historical materials. Phys. Rep. 2012, 519, 51–96. [Google Scholar] [CrossRef]
- Janssens, K.; Cotte, M. Using Synchrotron Radiation for Characterization of Cultural Heritage Materials. In Synchrotron Light Sources and Free-Electron Lasers: Accelerator Physics, Instrumentation and Science Applications; Jaeschke, E., Khan, S., Schneider, J.R., Hastings, J.B., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–27. [Google Scholar]
- Gonzalez, V.; Wallez, G.; Calligaro, T.; Cotte, M.; De Nolf, W.; Eveno, M.; Ravaud, E.; Menu, M. Synchrotron-Based High Angle Resolution and High Lateral Resolution X-ray Diffraction: Revealing Lead White Pigment Qualities in Old Masters Paintings. Anal. Chem. 2017, 89, 13203–13211. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, V.; Cotte, M.; Vanmeert, F.; de Nolf, W.; Janssens, K. X-ray Diffraction Mapping for Cultural Heritage Science: A Review of Experimental Configurations and Applications. Chem. Eur. J. 2020, 26, 1703–1719. [Google Scholar] [CrossRef]
- Monico, L.; Janssens, K.H.; Miliani, C.; Brunetti, B.G.; Vagnini, M.; Vanmeert, F.; Falkenberg, G.; Abakumov, A.M.; Lu, Y.; Tian, H.; et al. The Degradation Process of Lead Chromate in paintings by Vincent van Gogh studied by means of Spectromicroscopic methods. Part III: Synthesis, characterization and detection of different crystal forms of the chrome yellow pigment. Anal. Chem. 2013, 85, 851–859. [Google Scholar] [CrossRef]
- Gonzalez, V.; Calligaro, T.; Wallez, G.; Eveno, M.; Toussaint, K.; Menu, M. Composition and microstructure of the lead white pigment in Masters paintings using HR Synchrotron XRD. Microchem. J. 2016, 125, 43–49. [Google Scholar] [CrossRef]
- Gonzalez, V.; Hageraats, S.; Wallez, G.; Eveno, M.; Ravaud, E.; Réfrégiers, M.; Thoury, M.; Menu, M.; Gourier, D. Microchemical analysis of Leonardo da Vinci’s lead white paints reveals knowledge and control over pigment scattering properties. Sci. Rep. 2020, 10, 21715. [Google Scholar] [CrossRef]
- Monico, L.; Janssens, K.H.; Miliani, C.; van der Snickt, G.; Brunetti, B.G.; Cestelli Guidi, M.; Radepont, M.; Cotte, M. The Degradation Process of Lead Chromate in paintings by Vincent van Gogh studied by means of Spectromicroscopic methods. Part IV: Artificial ageing of model samples of co-precipitates of lead chromate and lead sulfate. Anal. Chem. 2013, 85, 860–867. [Google Scholar] [CrossRef]
- Monico, L.; Janssens, K.; Hendriks, E.; Vanmeert, F.; van der Snickt, G.; Cotte, M.; Falkenberg, G.; Brunetti, B.G.; Miliani, C. Evidence for Degradation of the Chrome Yellows in Van Gogh’s Sunflowers: A Study Using Noninvasive In Situ Methods and Synchrotron-Radiation-Based X-ray Techniques. Angew. Chem. 2015, 127, 14129–14133. [Google Scholar] [CrossRef]
- Vanmeert, F.; Hendriks, E.; van der Snickt, G.; Monico, L.; Dik, J.; Janssens, K. Chemical Mapping by Macroscopic X-ray Powder Diffraction (MA-XRPD) of Van Gogh’s Sunflowers: Identification of Areas with Higher Degradation Risk. Angew. Chem. Int. Ed. 2018, 57, 7418–7422. [Google Scholar] [CrossRef] [PubMed]
- Riekel, C.; Burghammer, M.; Davies, R. Progress in Micro-and Nano-Diffraction at the ESRF ID13 Beamline. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2010; p. 012013. [Google Scholar]
- Pouyet, E.; Fayard, B.; Salome, M.; Taniguchi, Y.; Sette, F.; Cotte, M. Thin-sections of painting fragments: Opportunities for combined synchrotron-based micro-spectroscopic techniques. Herit. Sci. 2015, 3, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Pouyet, E.; Lluveras-Tenorio, A.; Nevin, A.; Saviello, D.; Sette, F.; Cotte, M. Preparation of thin-sections of painting fragments: Classical and innovative strategies. Anal. Chim. Acta 2014, 822, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, V.; Gourier, D.; Calligaro, T.; Toussaint, K.; Wallez, G.; Menu, M. Revealing the origin and history of lead-white pigments by their Photoluminescence properties. Anal. Chem. 2017, 89, 2909–2918. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, T.Q.; Feng, Z.Y.; Fayard, B.; Pouyet, E.; Cotte, M.; De Nolf, W.; Salomé, M.; Sciau, P. Synchrotron radiation-based multi-analytical approach for studying underglaze color: The microstructure of Chinese Qinghua blue decors (Ming dynasty). Anal. Chim. Acta 2016, 928, 20–31. [Google Scholar] [CrossRef] [Green Version]
- Fisher, S.; Oscarsson, M.; De Nolf, W.; Cotte, M.; Meyer, J. Daiquiri: A web-based user interface framework for beamline control and data acquisition. J. Synchrotron Radiat. 2021, 28, 1996–2002. [Google Scholar] [CrossRef] [PubMed]
- Kieffer, J.; Valls, V.; Blanc, N.; Hennig, C. New tools for calibrating diffraction setups. J. Synchrotron Radiat. 2020, 27, 558–566. [Google Scholar] [CrossRef] [PubMed]
- De Nolf, W.; Vanmeert, F.; Janssens, K. XRDUA: Crystalline phase distribution maps by two-dimensional scanning and tomographic (micro) X-ray powder diffraction. J. Appl. Crystallogr. 2014, 47, 1107–1117. [Google Scholar] [CrossRef] [Green Version]
- Cotte, M.; Fabris, T.; Agostini, G.; Motta Meira, D.; de Viguerie, L.; Solé, V.A. Watching kinetic studies as chemical maps using open-source software. Anal. Chem. 2016, 88, 6154–6160. [Google Scholar] [CrossRef] [PubMed]
- Monico, L.; Cotte, M.; Vanmeert, F.; Amidani, L.; Janssens, K.; Nuyts, G.; Garrevoet, J.; Falkenberg, G.; Glatzel, P.; Romani, A.; et al. Damages Induced by Synchrotron Radiation-Based X-ray Microanalysis in Chrome Yellow Paints and Related Cr-Compounds: Assessment, Quantification, and Mitigation Strategies. Anal. Chem. 2020, 92, 14164–14173. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, L.; Schöeder, S.; Anglos, D.; Breese, M.B.H.; Janssens, K.; Moini, M.; Simon, A. Mitigation strategies for radiation damage in the analysis of ancient materials. TrAC Trends Anal. Chem. 2015, 66, 128–145. [Google Scholar] [CrossRef]
- Walter, P.; Martinetto, P.; Tsoucaris, G.; Brniaux, R.; Lefebvre, M.A.; Richard, G.; Talabot, J.; Dooryhee, E. Making make-up in Ancient Egypt. Nature 1999, 397, 483–484. [Google Scholar] [CrossRef]
- Dejoie, C.; Autran, P.-O.; Bordet, P.; Fitch, A.N.; Martinetto, P.; Sciau, P.; Tamura, N.; Wright, J. X-ray diffraction and heterogeneous materials: An adaptive crystallography approach. Cr. Phys. 2018, 19, 553–560. [Google Scholar] [CrossRef]
- Cotte, M.; Autran, P.-O.; Berruyer, C.; Dejoie, C.; Susini, J.; Tafforeau, P. Cultural and Natural Heritage at the ESRF: Looking Back and to the Future. Synchrotron Radiat. News 2019, 32, 34–40. [Google Scholar] [CrossRef]
- Hodeau, J.-L.; Bordet, P.; Anne, M.; Prat, A.; Fitch, A.; Dooryhee, E.; Vaughan, G.; Freund, A.K. Nine-Crystal Multianalyzer Stage for High-Resolution Powder Diffraction between 6 keV and 40 keV. In Crystal and Multilayer Optics; International Society for Optics and Photonics: Bellingham, WA, USA, 1998; pp. 353–361. [Google Scholar]
- Dejoie, C.; Coduri, M.; Petitdemange, S.; Giacobbe, C.; Covacci, E.; Grimaldi, O.; Autran, P.-O.; Mogodi, M.W.; Šišak Jung, D.; Fitch, A.N. Combining a nine-crystal multi-analyser stage with a two-dimensional detector for high-resolution powder X-ray diffraction. J. Appl. Crystallogr. 2018, 51, 1721–1733. [Google Scholar] [CrossRef]
- Fitch, A.; Dejoie, C. Combining a multi-analyzer stage with a two-dimensional detector for high-resolution powder X-ray diffraction: Correcting the angular scale. J. Appl. Crystallogr. 2021, 54, 1088–1099. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.P.; Vaughan, G.B.; Fitch, A.N. Merging data from a multi-detector continuous scanning powder diffraction system. Comm. Crystallogr. Comput. 2003, 1, 92. [Google Scholar]
- Cockcroft, J.K.; Fitch, A. Experimental Setups. In Powder Diffraction: Theory and Practice; Dinnebier, R.E., Billinge, S.J.L., Eds.; Royal society of chemistry: London, UK, 2008; pp. 20–57. [Google Scholar]
- Cotte, M.; Susini, J.; Solé, V.A.; Taniguchi, Y.; Chillida, J.; Checroun, E.; Walter, P. Applications of synchrotron-based micro-imaging techniques to the chemical analysis of ancient paintings. J. Anal. At. Spectrom. 2008, 23, 820–828. [Google Scholar] [CrossRef]
- Grazia, C.; Rosi, F.; Gabrieli, F.; Romani, A.; Paolantoni, M.; Vivani, R.; Brunetti, B.G.; Colomban, P.; Miliani, C. UV–Vis-NIR and microRaman spectroscopies for investigating the composition of ternary CdS1− xSex solid solutions employed as artists’ pigments. Microchem. J. 2016, 125, 279–289. [Google Scholar] [CrossRef]
- Monico, L.; Rosi, F.; Vivani, R.; Cartechini, L.; Janssens, K.; Gauquelin, N.; Chezganov, D.; Verbeeck, J.; Cotte, M.; d’Acapito, F.; et al. Deeper insights into the photoluminescence properties and (photo)chemical reactivity of cadmium red (CdS1-xSex) paints in renowned 20th century paintings by state-of-the-art investigations at multiple length scales. Eur. Phys. J. Plus 2022, 137, 311. [Google Scholar] [CrossRef]
- Huckle, W.; Swigert, G.; Wiberley, S.E. Cadmium pigments. Structure and composition. Ind. Eng. Chem. Prod. Res. Dev. 1966, 5, 362–366. [Google Scholar] [CrossRef]
- Al-Bassam, A.; Al-Juffali, A.; Al-Dhafiri, A. Structure and lattice parameters of cadmium sulphide selenide (CdSxSe1− x) mixed crystals. J. Cryst. Growth 1994, 135, 476–480. [Google Scholar] [CrossRef]
- Young, R. (Ed.) The Rietveld Method; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Larson, C.; von Dreele, R. Generalized Crystal Structure Analysis System; Los Alamos National Laboratory: Los Alamos, NM, USA, 2004. [Google Scholar]
- Van der Snickt, G.; Dik, J.; Cotte, M.; Janssens, K.; Jaroszewicz, J.; De Nolf, W.; Groenewegen, J.; van der Loeff, L. Characterization of a degraded cadmium yellow (CdS) pigment in an oil painting by means of synchrotron radiation based X-ray techniques. Anal. Chem. 2009, 81, 2600–2610. [Google Scholar] [CrossRef] [PubMed]
- Van der Snickt, G.; Janssens, K.; Dik, J.; de Nolf, W.; Vanmeert, F.; Jaroszewicz, J.; Cotte, M.; Falkenberg, G.; van der Loeff, L. Combined use of Synchrotron Radiation Based Micro-X-ray Fluorescence, Micro-X-ray Diffraction, Micro-X-ray Absorption Near-Edge, and Micro-Fourier Transform Infrared Spectroscopies for Revealing an Alternative Degradation Pathway of the Pigment Cadmium Yellow in a Painting by Van Gogh. Anal. Chem. 2012, 84, 10221–10228. [Google Scholar] [PubMed]
- Mass, J.L.; Opila, R.; Buckley, B.; Cotte, M.; Church, J.; Mehta, A. The photodegradation of cadmium yellow paints in Henri Matisse’s Le Bonheur de vivre (1905–1906). Appl. Phys. A 2013, 111, 59–68. [Google Scholar] [CrossRef]
- Pouyet, E.; Cotte, M.; Fayard, B.; Salomé, M.; Meirer, F.; Mehta, A.; Uffelman, E.S.; Hull, A.; Vanmeert, F.; Kieffer, J.; et al. 2D X-ray and FTIR micro-analysis of the degradation of cadmium yellow pigment in paintings of Henri Matisse. Appl. Phys. A 2015, 121, 967–980. [Google Scholar] [CrossRef]
- Monico, L.; Chieli, A.; De Meyer, S.; Cotte, M.; de Nolf, W.; Falkenberg, G.; Janssens, K.; Romani, A.; Miliani, C. Role of the Relative Humidity and the Cd/Zn Stoichiometry in the Photooxidation Process of Cadmium Yellows (CdS/Cd1−xZnxS) in Oil Paintings. Chem. Eur. J. 2018, 24, 11584–11593. [Google Scholar] [CrossRef]
- Monico, L.; Cartechini, L.; Rosi, F.; Chieli, A.; Grazia, C.; De Meyer, S.; Nuyts, G.; Vanmeert, F.; Janssens, K.; Cotte, M.; et al. Probing the chemistry of CdS paints in The Scream by in situ noninvasive spectroscopies and synchrotron radiation x-ray techniques. Sci. Adv. 2020, 6, eaay3514. [Google Scholar] [CrossRef]
- Ghirardello, M.; Otero, V.; Comelli, D.; Toniolo, L.; Dellasega, D.; Nessi, L.; Cantoni, M.; Valentini, G.; Nevin, A.; Melo, M.J. An investigation into the synthesis of cadmium sulfide pigments for a better understanding of their reactivity in artworks. Dye. Pigment. 2021, 186, 108998. [Google Scholar] [CrossRef]
- Comelli, D.; MacLennan, D.; Ghirardello, M.; Phenix, A.; Schmidt Patterson, C.; Khanjian, H.; Gross, M.; Valentini, G.; Trentelman, K.; Nevin, A. Degradation of cadmium yellow paint: New evidence from photoluminescence studies of trap states in Picasso’s Femme (Époque des “Demoiselles d’Avignon”). Anal. Chem. 2019, 91, 3421–3428. [Google Scholar] [CrossRef]
- Ghirardello, M.; Gonzalez, V.; Monico, L.; Nevin, A.; MacLennan, D.; Schmidt Patterson, C.; Burghammer, M.; Réfrégiers, M.; Comelli, D.; Cotte, M. Application of Synchrotron Radiation-Based Micro-Analysis on Cadmium Yellows in Pablo Picasso’s Femme (Époque des “Demoiselles d’Avignon”); Politecnico di Milano: Milano, Italy, 2022; (to be submitted). [Google Scholar]
- Leone, B.; Burnstock, A.; Jones, C.; Hallebeek, P.; Boon, J.; Keune, K. The Deterioration of Cadmium Sulphide Yellow Artists’ Pigments. In Proceedings of the ICOM-CC 14th Triennial Meeting (James & James, 2005), The Hague, The Netherlands, 12–16 September 2005; pp. 803–813. [Google Scholar]
- Levin, B.D.; Finnefrock, A.C.; Hull, A.M.; Thomas, M.G.; Nguyen, K.X.; Holtz, M.E.; Plahter, U.; Grimstad, I.; Mass, J.L.; Muller, D.A. Revealing the nanoparticle composition of Edvard Munch’s The Scream, and implications for paint alteration in iconic early 20th century artworks. arXiv 2019, arXiv:1909.01933. [Google Scholar]
- Chauffeton, C. Etude et Prospection Physico-Chimique d’un pigment historique de la Manufacture Nationale de Sèvres: Le Bleu Thénard. Ph.D Thesis, Paris Sciences et Lettres (ComUE), Paris, France, 2021. [Google Scholar]
- Monico, L.; Cartechini, L.; Rosi, F.; de Nolf, W.; Cotte, M.; Vivani, R.; Maurich, C.; Miliani, C. Synchrotron radiation Ca K-edge 2D-XANES spectroscopy for studying the stratigraphic distribution of calcium-based consolidants applied in limestones. Sci. Rep. 2020, 10, 14337. [Google Scholar] [CrossRef] [PubMed]
- Matteini, M. Inorganic treatments for the consolidation and protection of stone artefacts. Conserv. Sci. Cult. Herit. 2008, 8, 13–27. [Google Scholar]
- Possenti, E.; Colombo, C.; Realini, M.; Song, C.L.; Kazarian, S.G. Time-Resolved ATR–FTIR Spectroscopy and Macro ATR–FTIR Spectroscopic Imaging of Inorganic Treatments for Stone Conservation. Anal. Chem. 2021, 93, 14635–14642. [Google Scholar] [CrossRef] [PubMed]
- Calore, N.; Botteon, A.; Colombo, C.; Comunian, A.; Possenti, E.; Realini, M.; Sali, D.; Conti, C. High Resolution ATR μ-FTIR to map the diffusion of conservation treatments applied to painted plasters. Vib. Spectrosc. 2018, 98, 105–110. [Google Scholar] [CrossRef]
- Pujol i Hamelink, M. Medieval shipbuilding in Catalonia, Spain (13th–15th centuries): One principle, different processes. Int. J. Naut. Archaeol. 2016, 45, 283–295. [Google Scholar] [CrossRef]
- Norbakhsh, S.; Bjurhager, I.; Almkvist, G. Impact of iron (II) and oxygen on degradation of oak–modeling of the Vasa wood. Holzforschung 2014, 68, 649–655. [Google Scholar] [CrossRef]
- Aluri, E.R.; Reynaud, C.; Bardas, H.; Piva, E.; Cibin, G.; Mosselmans, J.F.W.; Chadwick, A.V.; Schofield, E.J. The Formation of Chemical Degraders during the Conservation of a Wooden Tudor Shipwreck. ChemPlusChem 2020, 85, 1632–1638. [Google Scholar] [CrossRef]
- Fors, Y.; Nilsson, T.; Risberg, E.D.; Sandström, M.; Torssander, P. Sulfur accumulation in pinewood (Pinus sylvestris) induced by bacteria in a simulated seabed environment: Implications for marine archaeological wood and fossil fuels. Int. Biodeterior. Biodegrad. 2008, 62, 336–347. [Google Scholar] [CrossRef]
- Fors, Y.; Grudd, H.; Rindby, A.; Jalilehvand, F.; Sandström, M.; Cato, I.; Bornmalm, L. Sulfur and iron accumulation in three marine-archaeological shipwrecks in the Baltic Sea: The Ghost, the Crown and the Sword. Sci. Rep. 2014, 4, 4222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gettens, R.J.; Kühn, H.; Chase, W.T. 3. Lead white. Stud. Conserv. 1967, 12, 125–139. [Google Scholar]
- Cotte, M.; Pouyet, E.; Salome, M.; Rivard, C.; De Nolf, W.; Castillo-Michel, H.; Fabris, T.; Monico, L.; Janssens, K.; Wang, T.; et al. The ID21 X-ray and infrared microscopy beamline at the ESRF: Status and recent applications to artistic materials. J. Anal. At. Spectrom. 2017, 32, 477–493. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cotte, M.; Gonzalez, V.; Vanmeert, F.; Monico, L.; Dejoie, C.; Burghammer, M.; Huder, L.; de Nolf, W.; Fisher, S.; Fazlic, I.; et al. The “Historical Materials BAG”: A New Facilitated Access to Synchrotron X-ray Diffraction Analyses for Cultural Heritage Materials at the European Synchrotron Radiation Facility. Molecules 2022, 27, 1997. https://doi.org/10.3390/molecules27061997
Cotte M, Gonzalez V, Vanmeert F, Monico L, Dejoie C, Burghammer M, Huder L, de Nolf W, Fisher S, Fazlic I, et al. The “Historical Materials BAG”: A New Facilitated Access to Synchrotron X-ray Diffraction Analyses for Cultural Heritage Materials at the European Synchrotron Radiation Facility. Molecules. 2022; 27(6):1997. https://doi.org/10.3390/molecules27061997
Chicago/Turabian StyleCotte, Marine, Victor Gonzalez, Frederik Vanmeert, Letizia Monico, Catherine Dejoie, Manfred Burghammer, Loïc Huder, Wout de Nolf, Stuart Fisher, Ida Fazlic, and et al. 2022. "The “Historical Materials BAG”: A New Facilitated Access to Synchrotron X-ray Diffraction Analyses for Cultural Heritage Materials at the European Synchrotron Radiation Facility" Molecules 27, no. 6: 1997. https://doi.org/10.3390/molecules27061997
APA StyleCotte, M., Gonzalez, V., Vanmeert, F., Monico, L., Dejoie, C., Burghammer, M., Huder, L., de Nolf, W., Fisher, S., Fazlic, I., Chauffeton, C., Wallez, G., Jiménez, N., Albert-Tortosa, F., Salvadó, N., Possenti, E., Colombo, C., Ghirardello, M., Comelli, D., ... Susini, J. (2022). The “Historical Materials BAG”: A New Facilitated Access to Synchrotron X-ray Diffraction Analyses for Cultural Heritage Materials at the European Synchrotron Radiation Facility. Molecules, 27(6), 1997. https://doi.org/10.3390/molecules27061997