In Vitro Alpha-Glucosidase Inhibitory Activity and the Isolation of Luteolin from the Flower of Gymnanthemum amygdalinum (Delile) Sch. Bip ex Walp.
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Screening
2.2. In Vitro Alpha-Glucosidase Inhibitory Activity
2.3. Luteolin Determination
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Plant Materials
4.3. Phytochemical Screening
4.4. Plant Extraction
4.5. Inhibitory Assay of Alpha-Glucosidase
4.6. Isolation and Structure Determination of Active Compounds
4.7. Determination of Luteolin by TLC-Densitometric Method
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Liu, S.; Yu, Z.; Zhu, H.; Zhang, W.; Chen, Y. In vitro α-glucosidase inhibitory activity of isolated fractions from water extract of Qingzhuan dark tea. BMC Complement. Altern. Med. 2016, 16, 378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shori, A.B. Screening of antidiabetic and antioxidant activities of medicinal plants. J. Integr. Med. 2015, 13, 297–305. [Google Scholar] [CrossRef]
- Meena, S.N.; Kumar, U.; Naik, M.M.; Ghadi, S.C.; Tilve, S.G. α-Glucosidase inhibition activity and in silico study of 2-(benzo[d][1,3]dioxol-5-yl)-4H-chromen-4-one, a synthetic derivative of flavone. Bioorg. Med. Chem. 2019, 27, 2340–2344. [Google Scholar] [CrossRef] [PubMed]
- Kadouh, H.C.; Sun, S.; Zhu, W.; Zhou, K. α-Glucosidase inhibiting activity and bioactive compounds of six red wine grape pomace extracts. J. Funct. Foods 2016, 26, 577–584. [Google Scholar] [CrossRef]
- Hu, X.J.; Wang, X.B.; Kong, L.Y. α-Glucosidase inhibitors via green pathway: Biotransformation for bicoumarins catalyzed by Momordica charantia peroxidase. J. Agric. Food Chem. 2013, 61, 1501–1508. [Google Scholar] [CrossRef]
- Alongi, M.; Anese, M. Effect of coffee roasting on in vitro α-glucosidase activity: Inhibition and mechanism of action. Food Res. Int. 2018, 111, 480–487. [Google Scholar]
- Kumar, S.; Narwal, S.; Kumar, V.; Prakash, O. α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharm. Rev. 2011, 5, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Swamy, J.; Prabhakar, G.; Rasingam, L.; Kamalakar, P. Gymnanthemum amygdalinum (Asteraceae)—A New Addition to the Flora of Peninsular India. Int. J. Adv. Res. Sci. Technol. 2015, 4, 449–451. [Google Scholar]
- Kaur, D.; Kaur, N.; Chopra, A. A comprehensive review on phytochemistry and pharmacological activities of Vernonia amygdalina. J. Pharm. Phytochem. 2019, 8, 2629–2636. [Google Scholar]
- Alara, O.R.; Abdurahman, N.H.; Abdul, M.S.K.; Olalere, O.A. Phytochemical and pharmacological properties of Vernonia amygdalina: A review. J. Chem. Eng. Ind. Biotechnol. 2017, 2, 80–96. [Google Scholar] [CrossRef]
- Ijeh, I.I.; Ejike, C.E. Current perspectives on the medicinal potentials of Vernonia amygdalina Del. J. Med. Plants Res. 2011, 5, 1051–1061. [Google Scholar]
- Toyang, N.J.; Verpoorte, R. A review of the medicinal potentials of plants of the genus Vernonia (Asteraceae). J. Ethnopharmacol. 2013, 146, 681–723. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, G.; Pan, J.; Wang, Y. α-Glucosidase by Luteolin: Kinetics, interaction and molecular docking. Int. J. Biol. Macromol. 2014, 64, 213–223. [Google Scholar] [CrossRef]
- Cuong, D.T.D.; Dat, H.T.; Duan, N.T.; Thuong, P.D. Isolation and characterization of six flavonoids from the leaves of Sterculia foetida Linn. Vietnam J. Chem. 2019, 57, 438–442. [Google Scholar] [CrossRef]
- Schwingel, L.C.; Schwingel, G.O.; Storch, N.; Barreto, F.; Bassani, V.L. 3-O-Methylquercetin from organic Nicotiana tabacum L. trichomes: Influence of the variety, cultivation and extraction parameters. Ind. Crops Prod. 2014, 55, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.D.N.; Bevara, G.B.; Kaja, L.K.; Badana, A.K.; Malla, R.R. Protective effect of 3-O-methyl quercetin and kaempferol from Semecarpus anacardium against H2O2 induced cytotoxicity in lung and liver cells. BMC Complement. Altern. Med. 2016, 16, 376. [Google Scholar] [CrossRef] [Green Version]
- Anh, H.L.T.; Vinh, L.B.; Lien, L.T.; Cuong, P.V.; Arai, M.; Ha, T.P. In vitro study on α-amylase inhibitory and α-glucosidase of a new stigmastane-type steroid saponin from the leaves of Vernonia amygdalina. Nat. Prod. Res. 2021, 35, 873–879. [Google Scholar] [CrossRef]
- Khan, S.; Khan, T.; Shah, A.J. Total phenolic and flavonoid contents and antihypertensive effect of the crude extract and fractions of Calamintha vulgaris. Phytomedicine 2018, 47, 174–183. [Google Scholar] [CrossRef]
- Proença, C.; Freitas, M.; Ribeiro, D.; Oliveira, E.F.T.; Sousa, J.L.C.; Tomé, S.M. α-Glucosidase inhibition by flavonoids: An in vitro and in silico structure-activity relationship study. J. Enzym. Inhib. Med. Chem. 2017, 32, 1216–1228. [Google Scholar] [CrossRef] [Green Version]
- Hlila, M.B.; Majouli, K.; Jannet, H.B.; Mastouri, M.; Aouni, M.B.S. Antioxidant and anti α-glucosidase of luteolin and luteolin 7-O-glucoside isolated from Scabiosa arenaria Forssk. J. Coast Life Med. 2017, 5, 317–320. [Google Scholar] [CrossRef]
- Habtamu, A.; Melaku, Y. Antibacterial and antioxidant compounds from the flower extracts of Vernonia amygdalina. Adv. Pharmacol. Sci. 2018, 2018, 4083736. [Google Scholar] [CrossRef] [Green Version]
- Erukainure, O.L.; Chukwuma, C.I.; Sanni, O.; Matsabisa, M.G.; Islam, M.S. Histochemistry, phenolic content, antioxidant, and anti-diabetic activities of Vernonia amygdalina leaf extract. J. Food Biochem. 2019, 43, e12737. [Google Scholar] [CrossRef]
- Panda, S.K.; Luyten, W. Antiparasitic activity in asteraceae with special attention to ethnobotanical use by the tribes of Odisha India. Parasite 2018, 25, 10. [Google Scholar] [CrossRef] [Green Version]
- Djeujo, F.M.; Raggazi, E.; Urettini, M.; Sauro, B.; Chicero, E.; Tonelli, M.; Froldi, G. Magnolol and luteolin inhibition of α-glucosidase activity: Kinetics and type of interaction detected by in vitro and in silico studies. Pharmaceuticals 2022, 15, 205. [Google Scholar]
- Miean, K.H.; Mohamed, S. Flavonoid (myrisetin, quersetin, kaempferol, luteolin and apigenin) content of edible tropical plants. J. Agric. Food Chem. 2001, 49, 3106–3112. [Google Scholar] [CrossRef]
- Harborne, J.B. Phytochemical methods. In Applied Phytochemistry Method; Kosasih, P., Soediro, I., Eds.; ITB Press: Bandung, Indonesia, 1987. [Google Scholar]
- Triadisti, N.; Sauriasari, R.; Elya, B. Fractionation and α-glucosidase Inhibitory Activity of Fractions from Garcinia hombroniana Pierre Leaves Extracts. Pharm. J. 2017, 9, 488–492. [Google Scholar] [CrossRef] [Green Version]
Samples | Inhibition (%) | |
---|---|---|
100 µg/mL | 200 µg/mL | |
Root extract | 4.66 ± 0.39 * | 8.07 ± 0.70 * |
Stem bark extract | 3.63 ± 0.56 * | 5.98 ± 0.60 * |
Leaf extract | 6.02 ± 1.38 * | 8.18 ± 0.85 * |
Flower extract | 59.34 ± 1.26 * | 73.57 ± 0.83 * |
Acarbose | 42.13 ± 0.12 | 66.03 ± 1.11 |
Samples | Inhibition (in %) | |
---|---|---|
100 µg/mL | 200 µg/mL | |
Water fraction | 13.37 ± 1.12 * | 22.95 ± 0.73 * |
Ethyl acetate fraction | 82.11 ± 4.20 * | 87.63 ± 0.78 * |
n-Hexane fraction | 15.43 ± 0.44 * | 32.59 ± 0.80 * |
Acarbose | 43.13 ± 0.92 | 66.83 ± 2.11 |
Samples | IC50 (µg/mL) |
---|---|
Methanolic flower extract Ethyl acetate fraction | 47.29 ± 1.12 * 19.24 ± 0.12 * |
Compound 1 | 6.53 ± 0.16 * |
Compound 2 | 38.95 ± 1.59 * |
Acarbose | 73.36 ± 3.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vonia, S.; Hartati, R.; Insanu, M. In Vitro Alpha-Glucosidase Inhibitory Activity and the Isolation of Luteolin from the Flower of Gymnanthemum amygdalinum (Delile) Sch. Bip ex Walp. Molecules 2022, 27, 2132. https://doi.org/10.3390/molecules27072132
Vonia S, Hartati R, Insanu M. In Vitro Alpha-Glucosidase Inhibitory Activity and the Isolation of Luteolin from the Flower of Gymnanthemum amygdalinum (Delile) Sch. Bip ex Walp. Molecules. 2022; 27(7):2132. https://doi.org/10.3390/molecules27072132
Chicago/Turabian StyleVonia, Sheppriola, Rika Hartati, and Muhamad Insanu. 2022. "In Vitro Alpha-Glucosidase Inhibitory Activity and the Isolation of Luteolin from the Flower of Gymnanthemum amygdalinum (Delile) Sch. Bip ex Walp." Molecules 27, no. 7: 2132. https://doi.org/10.3390/molecules27072132
APA StyleVonia, S., Hartati, R., & Insanu, M. (2022). In Vitro Alpha-Glucosidase Inhibitory Activity and the Isolation of Luteolin from the Flower of Gymnanthemum amygdalinum (Delile) Sch. Bip ex Walp. Molecules, 27(7), 2132. https://doi.org/10.3390/molecules27072132