Electric Double Layer in Water-Organic Mixed Solvents: Titania in 50% Ethylene Glycol
Abstract
:1. Introduction
- The calculation of zeta potential from electrophoretic mobility is not straightforward.
- The relationship between zeta potential and stability is complicated.
- More attention should be paid to proper selection of the surfactant and of the surfactant dose.
2. Results and Discussion
2.1. Conductance
2.2. Debye Length and the Henry Coefficient
2.3. Zeta Potential
3. Materials and Methods
4. Conclusions
- for different EG–water ratios, e.g., 40 or 60% EG;
- for mixtures of other glycols, e.g., of propanediols with water;
- for other solids showing pH-dependent surface charging, e.g., alumina and iron (hydr)oxides;
- for other ionic surfactants.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Szczypa, J.; Wąsowska, L.; Kosmulski, M. Effect of n-alcohols on the potentiometric titrations of rutile. J. Colloid Interface Sci. 1988, 126, 592–595. [Google Scholar] [CrossRef]
- Szczypa, J.; Kajdewicz, I.; Kosmulski, M. Effect of n-alcohols on the electric double layer formed on the surface of controlled pore glass. J. Colloid Interface Sci. 1990, 137, 157–162. [Google Scholar] [CrossRef]
- Kosmulski, M.; Matijevic, E. Zeta potential of anatase (TiO2) in mixed solvents. Colloids Surf. 1992, 64, 57–65. [Google Scholar] [CrossRef]
- Kosmulski, M. Adsorption of methanol and supporting electrolyte on silica and alumina in mixed solvent systems. J. Colloid Interface Sci. 1993, 156, 305–310. [Google Scholar] [CrossRef]
- Kosmulski, M. Misconceptions in the measurements of zeta potentials in ethylene glycol-based heat transfer fluids. Appl. Therm. Eng. 2022, 209, 118282. [Google Scholar] [CrossRef]
- Surakasi, R.; Sagari, J.; Vinjamuri, K.B.; Sanduru, B.; Vadapalli, S. Stability and Thermo-Physical Properties of Ethylene Glycol Based Nanofluids for Solar Thermal Applications. Int. J. Heat Technol. 2021, 39, 137–144. [Google Scholar] [CrossRef]
- Teja, S.R.; Moorthy, C.V.K.N.S.N.; Jayakumar, S.; Kumar, A.K.; Srinivas, V. Ethylene Glycol-Based Nanofluids-Estimation of Stability and Thermophysical Properties. Front. Heat Mass Transf. 2020, 15, 7. [Google Scholar]
- Sundar, L.S.; Ramana, E.V.; Singh, M.K. Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: An experimental study. Int. Comm. Heat Mass Transf. 2014, 56, 86–95. [Google Scholar] [CrossRef]
- Choudhary, S.; Sachdeva, A.; Kumar, P. Time-based analysis of stability and thermal efficiency of flat plate solar collector using iron oxide nanofluid. Appl. Therm. Eng. 2021, 183, 115931. [Google Scholar] [CrossRef]
- Huang, J.W.; Chen, Z.F.; Du, Z.Q.; Xu, X.X.; Zhang, Z.G.; Fang, X.M. A highly stable hydroxylated graphene/ethylene glycol-water nanofluid with excellent extinction property at a low loading for direct absorption solar collectors. Thermochim. Acta 2020, 684, 178487. [Google Scholar] [CrossRef]
- Nagarajan, F.C.; Kannaiyan, S.; Boobalan, C. Intensification of heat transfer rate using alumina-silica nanocoolant. Int. J. Heat Mass Transf. 2020, 149, 119127. [Google Scholar] [CrossRef]
- Choudhary, S.; Sachdeva, A.; Kumar, P. Investigation of the stability of MgO nanofluid and its effect on the thermal performance of flat plate solar collector. Renew. Energy 2020, 147, 1801–1814. [Google Scholar] [CrossRef]
- Amirthalingam, S.; Thangavel, B. On the thermal conductivity and viscosity of bionanofluid with neem (Azadirachta indica) assisted zinc oxide nanoparticles. J. Therm. Sci. Technol. 2020, 15, 20–139. [Google Scholar] [CrossRef]
- Urmi, W.; Rahman, M.M.; Hamzah, W.A.W. An experimental investigation on the thermophysical properties of 40% ethylene glycol based TiO2-Al2O3 hybrid nanofluids. Int. Comm. Heat Mass Transf. 2020, 116, 104663. [Google Scholar] [CrossRef]
- Hong, W.X.; Sidik, N.A.C.; Saidur, R. Effect of surfactants on thermal conductivity of graphene based hybrid nanofluid. In Proceedings of the International Conference on Sustainable Energy and Green Technology 2019, Bangkok, Thailand, 11–14 December 2019; Volume 463, p. 012122. [Google Scholar]
- Xian, H.W.; Sidik, N.A.C.; Saidur, R. Impact of different surfactants and ultrasonication time on the stability and thermophysical properties of hybrid nanofluids. Int. Comm. Heat Mass Transf. 2020, 110, 104389. [Google Scholar] [CrossRef]
- Askari, S.; Ettefaghi, E.; Rashidi, A.; Seif, A.; Rudd, J.A.; Alonso, J.A.; Khodabakhshi, S. Ultra-stable nanofluid containing Functionalized-Carbon Dots for heat transfer enhancement in Water/Ethylene glycol systems: Experimental and DFT studies. Energy Rep. 2021, 7, 4222–4234. [Google Scholar] [CrossRef]
- Mukherjee, S.; Halder, T.; Ranjan, S.; Bose, K.; Mishra, P.C.; Chakrabarty, S. Effects of SiO2 nanoparticles addition on performance of commercial engine coolant: Experimental investigation and empirical correlation. Energy 2021, 231, 120913. [Google Scholar] [CrossRef]
- Kosmulski, M.; Eriksson, P.; Rosenholm, J.B. Application of zetametry to determine concentrations of acidic and basic impurities in analytical reagents. Anal. Chem. 1999, 71, 2518–2522. [Google Scholar] [CrossRef]
- Lide, D.R. (Ed.) CRC Handbook of Chemistry and Physics, 87th ed.; CRC: Boca Raton, FL, USA, 2006–2007. [Google Scholar]
- Delgado, A.V.; González-Caballero, F.; Hunter, R.J.; Koopal, L.K.; Lyklema, J. Measurement and Interpretation of Electrokinetic Phenomena (IUPAC Technical Report). Pure Appl. Chem. 2005, 77, 1753–1805. [Google Scholar] [CrossRef] [Green Version]
- Badmus, S.O.; Amusa, H.K.; Oyehan, T.A.; Saleh, T.A. Environmental risks and toxicity of surfactants: Overview of analysis, assessment, and remediation techniques. Environ. Sci. Pollut. Res. 2021, 28, 62085–62104. [Google Scholar] [CrossRef]
- Wang, P.; Kosinski, J.J.; Anderko, A.; Springer, R.D.; Lencka, M.M.; Liu, J. Ethylene Glycol and Its Mixtures with Water and Electrolytes: Thermodynamic and Transport Properties. Ind. Eng. Chem. Res. 2013, 52, 15968–15987. [Google Scholar] [CrossRef]
- Bohne, D.; Fischer, S.; Obermeier, E. Thermal, Conductivity, Density, Viscosity, and Prandtl Numbers of Ethylene Glycol-Water Mixtures. Ber. Bunsenges./Phys. Chem. Chem. Phys. 1984, 88, 739–742. [Google Scholar] [CrossRef]
- Tsierkezos, N.G.; Molinou, I.E. Thermodynamic Properties of Water+Ethylene Glycol at 283.15, 293.15, 303.15, and 313.15 K. Chem. Eng. Data 1998, 43, 989–993. [Google Scholar] [CrossRef]
- Wang, P.; Anderko, A. Computation of dielectric constants of solvent mixtures and electrolyte solutions. Fluid Phase Equilibria 2001, 186, 103–122. [Google Scholar] [CrossRef]
- Åkerlöf, G. Dielectric constants of some organic solvent-water mixtures at various temperatures. J. Am. Chem. Soc. 1932, 54, 4125–4139. [Google Scholar] [CrossRef]
EG Concentration | Particles | Surfactants and Other Additives | Variables | Ref. |
---|---|---|---|---|
100; 90; 80 | MWCNT original and oxidized | CTAB | [6] | |
100; 90; 80 | MWCNT original and oxidized | none | [7] | |
60; 40; 20 | Al2O3 | none | [8] | |
50 | Fe3O4 | SDS, CTAB, SDBS | A | [9] |
50 | functionalized graphene | PVP | [10] | |
50 | Al2O3 + SiO2 | none | [11] | |
50 | MgO | CTAB | SL, A | [12] |
50 | ZnO | none | [13] | |
40 | TiO2, Al2O3 | none | SL, A | [14] |
40 | TiO2, functionalized graphene | SDS, SDBS, CTAB, PVP, SDC, TX-100 | A | [15,16] |
30 | functionalized carbon dots | none | A | [17] |
commercial coolant, >50% EG | SiO2 | none | SL, A | [18] |
c/M | κa | f |
---|---|---|
0.0002 | 1.14 | 1.04 |
0.0004 | 1.62 | 1.05 |
0.0008 | 2.29 | 1.07 |
0.0016 | 3.23 | 1.1 |
0.0032 | 4.57 | 1.14 |
0.004 | 5.11 | 1.15 |
0.008 | 7.23 | 1.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosmulski, M.; Mączka, E. Electric Double Layer in Water-Organic Mixed Solvents: Titania in 50% Ethylene Glycol. Molecules 2022, 27, 2162. https://doi.org/10.3390/molecules27072162
Kosmulski M, Mączka E. Electric Double Layer in Water-Organic Mixed Solvents: Titania in 50% Ethylene Glycol. Molecules. 2022; 27(7):2162. https://doi.org/10.3390/molecules27072162
Chicago/Turabian StyleKosmulski, Marek, and Edward Mączka. 2022. "Electric Double Layer in Water-Organic Mixed Solvents: Titania in 50% Ethylene Glycol" Molecules 27, no. 7: 2162. https://doi.org/10.3390/molecules27072162
APA StyleKosmulski, M., & Mączka, E. (2022). Electric Double Layer in Water-Organic Mixed Solvents: Titania in 50% Ethylene Glycol. Molecules, 27(7), 2162. https://doi.org/10.3390/molecules27072162