A Potential New Source of Therapeutic Agents for the Treatment of Mucocutaneous Leishmaniasis: The Essential Oil of Rhaphiodon echinus
Abstract
:1. Introduction
2. Results
2.1. Essential Oil Obtained and Chemical Analysis
2.2. Visualization Analysis of Descriptor Networks
2.3. Effect of the Essential Oil on DPPH Radicals
2.4. Cytotoxic Activity of R. echinus against Mammalian Fibroblasts
2.5. Bioactivity of EOHs for Promastigotes Forms of Leishmania brasiliensis and Epimastigotes of Trypanosoma cruzi
3. Discussion
3.1. Chemical Composition Analysis of the Essential Oil of R. echinus
3.2. Visualization Analysis of Descriptor Networks
3.3. Effects of the Essential Oil on DPPH Radicals
3.4. Cytotoxic Activity of R. echinus against Mammalian Fibroblasts
3.5. Bioactivity of EOHs for Promastigotes Forms of Leishmania brasiliensis and Epimastigotes of Trypanosoma cruzi
4. Materials and Methods
4.1. Plant Material
4.2. Reagents
4.3. Preparation of the Essential Oil of R. echinus (EORe)
4.4. Chemical Composition Analysis of the EORe
4.5. Visualization Analysis of Descriptor Networks
4.6. Cell Lines Used
4.7. Antioxidant Potential of the EORe
4.7.1. Effect of the Essential Oil on DPPH Radicals
4.7.2. Fe3+ Reducing Power of R. echinus Essential Oil
4.8. Anti-Epimastigote Assay of Trypanosoma cruzi
4.9. Anti-Promastigote Assay of Leishmania brasiliensis
4.10. Cytotoxicity Assay
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Chagas disease (American trypanosomiasis) fact sheet (revised in June 2010): Key facts = Aide-mémoire sur la maladie de Chagas (trypanosomiase américaine) (révisé en juin 2010): Principaux points. Wkly. Epidemiol. Rec. = Relev. Épidémiologique Hebd. 2010, 85, 334–336. Available online: https://apps.who.int/iris/handle/10665/241629/ (accessed on 15 August 2020).
- Yao, C. Leishmania spp. and leishmaniasis on the Caribbean islands. Trans. R. Soc. Trop. Med. Hyg. 2019, 114, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Neub, A.; Krahl, D.; Stich, A.; Amon, U. Cutaneous infection with Leishmania infantum in an infant treated successfully with miltefosine. J. Dtsch. Dermatol. Ges. 2008, 6, 1061–1064. [Google Scholar] [CrossRef] [PubMed]
- Allahverdiyev, A.M.; Abamor, E.S.; Bagirova, M.; Ustundag, C.B.; Kaya, C.; Kaya, F.; Rafailovich, M. Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light. Int. J. Nanomed. 2011, 6, 2705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamagata, Y.; Nakagawa, J. Control of Chagas Disease. In Advances in Parasitology; Elsevier: Amsterdam, The Netherlands, 2006; pp. 129–165. [Google Scholar] [CrossRef]
- WHO. Chagas Disease (Also Known as American Trypanosomiasis); World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Hamedt, A.L.; Ortiz, I.C.; García-Huertas, P.A.; Sáenz, J.; de Araujo, A.C.; De Mattos, J.C.; Rodríguez-Gazquez, M.A.; Triana-Chávez, O. Cytotoxic, mutagenic and genotoxic evaluation of crude extracts and fractions from Piper jericoense with trypanocidal action. Acta Trop. 2014, 131, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.S.; Maia, A.J.; Tintino, S.R.; Oliveira-Tintino, C.D.; Raulino, I.S.; Vega, M.C.; Rolón, M.; Coronel, C.; Barros, L.M.; Duarte, A.E.; et al. Trypanocide, antileishmania and cytotoxic activities of the essential oil from Rosmarinus officinalis L. in vitro. Ind. Crops Prod. 2017, 109, 724–729. [Google Scholar] [CrossRef]
- Baba, G.; Adewumi, A.A.J.; Aina, V.O. Phytochemical Characterization and in-vivo Anti-Malaria Activity of Lantana camara Leaf Extract. Br. J. Pharmacol. Toxicol. 2011, 2, 277–282. [Google Scholar]
- Govaerts, R. WCSP—World Checklist of Selected Plant Families Database in ACCESS: 1-216203. R. Bot. Gard. Kew. Available online: https://wcsp.science.kew.org/acceptedRef.do?name_id=177925/ (accessed on 15 August 2020).
- Souza, A.A.; Rodrigues, S.A. Atividade antimicrobiana do óleo essencial de Rhaphiodon echinus (Nees & Mart) Shauer. Rev. Bras. Biol. Farmácia 2012, 7, 12–17. [Google Scholar]
- Menezes, F.S.; Cardoso, G.L.C.; Pereira, N.A.; Borsatto, A.S.; Kaplan, M.A.C. Phytochemical and pharmacological studies on Rhaphiodon echinus. Fitoterapia 1998, 69, 459–460. [Google Scholar]
- Duarte, A.; de Menezes, I.; Bezerra Morais Braga, M.; Leite, N.; Barros, L.; Waczuk, E.; Pessoa da Silva, M.; Boligon, A.; Teixeira Rocha, J.; Souza, D.; et al. Antimicrobial Activity and Modulatory Effect of Essential Oil from the Leaf of Rhaphiodon echinus (Nees & Mart) Schauer on Some Antimicrobial Drugs. Molecules 2016, 21, 743. [Google Scholar] [CrossRef]
- Yuan, B.-Z.; Bie, Z.-L.; Sun, J. Bibliometric Analysis of Global Research on Muskmelon (Cucumis melo L.) Based on Web of Science. HortScience 2021, 56, 867–874. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Visualizing Bibliometric Networks. In Measuring Scholarly Impact; Springer International Publishing: Cham, Switzerland, 2014; pp. 285–320. [Google Scholar]
- Graphpad Knowledgebase—Article #2041: Why Does Prism Not Plot Some Error Bars? Available online: https://www.graphpad.com/support/faq/why-does-prism-not-plot-some-error-bars/ (accessed on 16 March 2022).
- Coté, H.; Boucher, M.-A.; Pichette, A.; Legault, J. Anti-Inflammatory, Antioxidant, Antibiotic, and Cytotoxic Activities of Tanacetum vulgare L. Essential Oil and Its Constituents. Medicines 2017, 4, 34. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.C.M.; Florêncio, L.C.M.; Silveira, E.R.; Pessoa, O.D.L. Chemical Composition of the Essential Oils of Rhaphiodon echinus (Nees & Mart.) Schauer. J. Essent. Oil Bear. Plants 2009, 12, 674–677. [Google Scholar] [CrossRef]
- Bezerra, J.W.A.; Costa, A.R.; da Silva, M.A.P.; Rocha, M.I.; Boligon, A.A.; da Rocha, J.B.T.; Barros, L.M.; Kamdem, J.P. Chemical composition and toxicological evaluation of Hyptis suaveolens (L.) Poiteau (LAMIACEAE) in Drosophila melanogaster and Artemia salina. S. Afr. J. Bot. 2017, 113, 437–442. [Google Scholar] [CrossRef]
- Benelli, G.; Govindarajan, M.; AlSalhi, M.S.; Devanesan, S.; Maggi, F. High toxicity of camphene and γ-elemene from Wedelia prostrata essential oil against larvae of Spodoptera litura (Lepidoptera: Noctuidae). Environ. Sci. Pollut. Res. 2018, 25, 10383–10391. [Google Scholar] [CrossRef] [PubMed]
- Baral, N.R.; Kavvada, O.; Mendez-Perez, D.; Mukhopadhyay, A.; Lee, T.S.; Simmons, B.A.; Scown, C.D. Techno-economic analysis and life-cycle greenhouse gas mitigation cost of five routes to bio-jet fuel blendstocks. Energy Environ. Sci. 2019, 12, 807–824. [Google Scholar] [CrossRef] [Green Version]
- Firouznia, A.; Rustaiyana, A.; Masoudi, S.; Rahimizade, M.; Bigdeli, M.; Tabatabaei-Anaraki, M. Volatile Constituents of Salvia limbata, Stachys turcomanica, Scutellaria litwinowii and Hymenocrater elegans Four Lamiaceae Herbs from Iran. J. Essent. Oil Bear. Plants 2009, 12, 482–489. [Google Scholar] [CrossRef]
- Rustaiyan, A.; Masoudi, S.; Vahedi, M.; Fathollahi, R. Composition of the Essential Oils of Four Nepeta species from Iran. J. Essent. Oil Bear. Plants 2013, 16, 699–704. [Google Scholar] [CrossRef]
- Henriette, B.M.; Marius, K.S.; Donatien, K.; Souleymane, S.; Agbémébia, Y.A.; Zenabou, S.; Alfred, S.T. Aboubakar Biopreservation of meat using the essential oil from Hyptis suaveolens Poit. (Lamiaceae) in Burkina Faso. Afr. J. Biotechnol. 2019, 18, 808–818. [Google Scholar] [CrossRef]
- de Oliveira, M.R.C.; Barros, L.M.; Duarte, A.E.; Gabriely de Lima Silva, M.; da Silva, B.A.F.; Oliveira Brito Pereira Bezerra, A.; Oliveira Tintino, C.D.M.; Afonso Pereira de Oliveira, V.; Boligon, A.A.; Kamdem, J.P.; et al. GC-MS Chemical Characterization and In Vitro Evaluation of Antioxidant and Toxic Effects Using Drosophila melanogaster Model of the Essential Oil of Lantana montevidensis (Spreng) Briq. Medicina 2019, 55, 194. [Google Scholar] [CrossRef] [Green Version]
- Pereira, P.S.; Maia, A.J.; Duarte, A.E.; Oliveira-Tintino, C.D.M.; Tintino, S.R.; Barros, L.M.; Vega-Gomez, M.C.; Rolón, M.; Coronel, C.; Coutinho, H.D.M.; et al. Cytotoxic and anti-kinetoplastid potential of the essential oil of Alpinia speciosa K. Schum. Food Chem. Toxicol. 2018, 119, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.S.; Oliveira, C.V.; Maia, A.J.; Tintino, S.R.; Oliveira-Tintino, C.D.; Vega-Gomez, M.C.; Rolón, M.; Coronel, C.; Duarte, A.E.; Barros, L.M.; et al. Cytotoxicity of Essential Oil Cordia verbenaceae against Leishmania brasiliensis and Trypanosoma cruzi. Molecules 2021, 26, 4485. [Google Scholar] [CrossRef] [PubMed]
- Niksic, H.; Becic, F.; Koric, E.; Gusic, I.; Omeragic, E.; Muratovic, S.; Miladinovic, B.; Duric, K. Cytotoxicity screening of Thymus vulgaris L. essential oil in brine shrimp nauplii and cancer cell lines. Sci. Rep. 2021, 11, 13178. [Google Scholar] [CrossRef] [PubMed]
- Monzote, L.; García, M.; Montalvo, A.M.; Scull, R.; Miranda, M. Chemistry, cytotoxicity and antileishmanial activity of the essential oil from Piper auritum. Mem. Inst. Oswaldo Cruz 2010, 105, 168–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorda, R.; Sacerdoti-Sierra, N.; Voller, J.; Havlíček, L.; Kráčalíková, K.; Nowicki, M.W.; Nasereddin, A.; Kryštof, V.; Strnad, M.; Walkinshaw, M.D.; et al. Anti-leishmanial activity of disubstituted purines and related pyrazolo[4,3-d]pyrimidines. Bioorg. Med. Chem. Lett. 2011, 21, 4233–4237. [Google Scholar] [CrossRef] [PubMed]
- Plano, D.; Baquedano, Y.; Moreno-Mateos, D.; Font, M.; Jiménez-Ruiz, A.; Palop, J.A.; Sanmartín, C. Selenocyanates and diselenides: A new class of potent antileishmanial agents. Eur. J. Med. Chem. 2011, 46, 3315–3323. [Google Scholar] [CrossRef]
- Mukherjee, A.; Padmanabhan, P.K.; Sahani, M.H.; Barrett, M.P.; Madhubala, R. Roles for mitochondria in pentamidine susceptibility and resistance in Leishmania donovani. Mol. Biochem. Parasitol. 2006, 145, 1–10. [Google Scholar] [CrossRef]
- Li, J.; He, Y.; Ma, D.; He, B.; Wang, Y.; Chen, B. Volatile allelochemicals of Chenopodium ambrosioides L. induced mitochondrion-mediated Ca2+-dependent and Caspase-dependent apoptosis signaling pathways in receptor plant cells. Plant Soil 2018, 425, 297–308. [Google Scholar] [CrossRef]
- Rim, I.-S.; Jee, C.-H. Acaricidal effects of herb essential oils against Dermatophagoides farinae and D. pteronyssinus (Acari: Pyroglyphidae) and qualitative analysis of a herb Mentha pulegium (pennyroyal). Korean J. Parasitol. 2006, 44, 133. [Google Scholar] [CrossRef] [Green Version]
- Simões, C.M.; Schenkel, E.P.; Grosmann, G. Farmacognosia: Da Planta ao Medicamento, 6th ed.; Editora da UFRGS/Editora da UFSC: Porto Alegre, Brazil, 2010. [Google Scholar]
- Wigfield, A.; Eccles, J.; Rodriguez, D. Natural Products from Plants, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2013; ISBN 8424912993. [Google Scholar]
- Morais-Braga, M.F.B.; Souza, T.M.; Santos, K.K.A.; Guedes, G.M.M.; Andrade, J.C.; Vega, C.; Rolón, M.; Costa, J.G.M.; Saraiva, A.A.F.; Coutinho, H.D.M. Phenol composition, cytotoxic and anti-kinetoplastidae activities of Lygodium venustum SW. (Lygodiaceae). Exp. Parasitol. 2013, 134, 178–182. [Google Scholar] [CrossRef] [Green Version]
- Szuster-Ciesielska, A.; Plewka, K.; Kandefer-Szerszeń, M. Betulin, betulinic acid and butein are inhibitors of acetaldehyde-induced activation of liver stellate cells. Pharmacol. Rep. 2011, 63, 1109–1123. [Google Scholar] [CrossRef]
- Glinma, B.; Gbaguidi, F.A.; Kpoviessi, S.D.S.; Fatondji, R.H.; Poupaert, J.; Accrombessi, G.C. Characterization and antiparasitic activity of benzophenone thiosemicarbazones on trypanosoma brucei brucei. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2011, 12, 33–40. [Google Scholar]
- Barros, L.; Duarte, A.; Morais-Braga, M.; Waczuk, E.; Vega, C.; Leite, N.; de Menezes, I.; Coutinho, H.; Rocha, J.; Kamdem, J. Chemical Characterization and Trypanocidal, Leishmanicidal and Cytotoxicity Potential of Lantana camara L. (Verbenaceae) Essential Oil. Molecules 2016, 21, 209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senthilkumar, A.; Kannathasan, K.; Venkatesalu, V. Chemical constituents and larvicidal property of the essential oil of Blumea mollis (D. Don) Merr. against Culex quinquefasciatus. Parasitol. Res. 2008, 103, 959–962. [Google Scholar] [CrossRef]
- Moura do Carmo, D.F.; Amaral, A.C.F.; Machado, G.M.C.; Leon, L.L.; Silva, J.R. de A. Chemical and Biological Analyses of the Essential Oils and Main Constituents of Piper Species. Molecules 2012, 17, 1819–1829. [Google Scholar] [CrossRef]
- Polanco-Hernández, G.; Escalante-Erosa, F.; García-Sosa, K.; Rosado, M.E.; Guzmán-Marín, E.; Acosta-Viana, K.Y.; Giménez-Turba, A.; Salamanca, E.; Peña-Rodríguez, L.M. Synergistic Effect of Lupenone and Caryophyllene Oxide against Trypanosoma cruzi. Evid-Based Complement. Altern. Med. 2013, 2013, 435398. [Google Scholar] [CrossRef] [Green Version]
- Moreno, É.M.; Leal, S.M.; Stashenko, E.E.; García, L.T. Induction of programmed cell death in Trypanosoma cruzi by Lippia alba essential oils and their major and synergistic terpenes (citral, limonene and caryophyllene oxide). BMC Complement. Altern. Med. 2018, 18, 225. [Google Scholar] [CrossRef]
- Rondon, F.C.; Bevilaqua, C.M.; Accioly, M.P.; Morais, S.M.; Andrade-Júnior, H.F.; Carvalho, C.A.; Lima, J.C.; Magalhães, H.C. In vitro efficacy of Coriandrum sativum, Lippia sidoides and Copaifera reticulata against Leishmania chagasi. Rev. Bras. Parasitol. Veterinária 2012, 21, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Khan, Y.A.; Andrews, N.W.; Mittra, B. ROS regulate differentiation of visceralizing Leishmania species into the virulent amastigote form. Parasitol. Open 2018, 4, e19. [Google Scholar] [CrossRef] [Green Version]
- Leite, N.F.; Sobral-Souza, C.E.; Albuquerque, R.S.; Brito, D.I.V.; Lavor, A.K.L.S.; Alencar, L.B.B.; Tintino, S.R.; Ferreira, J.V.A.; Figueredo, F.G.; Lima, L.F.; et al. Atividade antiparasitária in vitro e citotóxica de cariofileno e eugenol contra Trypanossoma cruzi e Leishmania brasiliensis. Rev. Cuba. Plantas Med. 2013, 18, 522–528. [Google Scholar]
- Tariku, Y.; Hymete, A.; Hailu, A.; Rohloff, J. In vitro Evaluation of Antileishmanial Activity and Toxicity of Essential Oils of Artemisia absinthium and Echinops kebericho. Chem. Biodivers. 2011, 8, 614–623. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, C.V.; Santos, A.O.; Vendrametto, M.C.; Luize, P.S.; Dias Filho, B.P.; Cortez, D.A.G.; Ueda-Nakamura, T. Atividade antileishmania do extrato hidroalcoólico e de frações obtidas de folhas de Piper regnellii (Miq.) C. DC. var. pallescens (C. DC.) Yunck. Rev. Bras. Farmacogn. 2006, 16, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Díaz, R.A.; Ibáñez-Escribano, A.; Burillo, J.; Heras, L.D.; Prado, G.D.; Agulló-Ortuño, M.T.; Julio, L.F.; González-Coloma, A. Trypanocidal, trichomonacidal and cytotoxic components of cultivated Artemisia absinthium Linnaeus (Asteraceae) essential oil. Mem. Inst. Oswaldo Cruz 2015, 110, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Cheikh-Ali, Z.; Adiko, M.; Bouttier, S.; Bories, C.; Okpekon, T.; Poupon, E.; Champy, P. Composition, and Antimicrobial and Remarkable Antiprotozoal Activities of the Essential Oil of Rhizomes of Aframomum sceptrum K. Schum. (Zingiberaceae). Chem. Biodivers. 2011, 8, 658–667. [Google Scholar] [CrossRef]
- Anthony, J.-P.; Fyfe, L.; Smith, H. Plant active components—A resource for antiparasitic agents? Trends Parasitol. 2005, 21, 462–468. [Google Scholar] [CrossRef]
- Siqueira, C.A.T.; Oliani, J.; Sartoratto, A.; Queiroga, C.L.; Moreno, P.R.H.; Reimão, J.Q.; Tempone, A.G.; Fischer, D.C.H. Chemical constituents of the volatile oil from leaves of Annona coriacea and in vitro antiprotozoal activity. Rev. Bras. Farmacogn. 2011, 21, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Saeidnia, S.; Gohari, A.R.; Haddadi, A. Biogenic trypanocidal sesquiterpenes: Lead compounds to design future trypanocidal drugs—A mini review. DARU J. Pharm. Sci. 2013, 21, 35. [Google Scholar] [CrossRef] [Green Version]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; 2007; Available online: https://www.amazon.com/Identification-Essential-Components-Chromatography-Spectrometry/dp/1932633219 (accessed on 23 March 2022).
- Van Eck, N.J.; Waltman, L. Manual for VOSviwer version 1.6.10. CWTS Mean. Metr. 2019, 1, 1–53. [Google Scholar]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Kamdem, J.P.; Stefanello, S.T.; Boligon, A.A.; Wagner, C.; Kade, I.J.; Pereira, R.P.; Preste, A.D.S.; Roos, D.H.; Waczuk, E.P.; Appel, A.S.; et al. In vitro antioxidant activity of stem bark of Trichilia catigua Adr. Juss. Acta Pharm. 2012, 62, 371–382. [Google Scholar] [CrossRef]
- Kamdem, J.P.; Adeniran, A.; Boligon, A.A.; Klimaczewski, C.V.; Elekofehinti, O.O.; Hassan, W.; Ibrahim, M.; Waczuk, E.P.; Meinerz, D.F.; Athayde, M.L. Antioxidant activity, genotoxicity and cytotoxicity evaluation of lemon balm (Melissa officinalis L.) ethanolic extract: Its potential role in neuroprotection. Ind. Crops Prod. 2013, 51, 26–34. [Google Scholar] [CrossRef]
- Vega, C.; Rolón, M.; Martínez-Fernández, A.R.; Escario, J.A.; Gómez-Barrio, A. A new pharmacological screening assay with Trypanosoma cruzi epimastigotes expressing β-galactosidase. Parasitol. Res. 2005, 95, 296–298. [Google Scholar] [CrossRef] [PubMed]
- Mikus, J.; Steverding, D. A simple colorimetric method to screen drug cytotoxicity against Leishmania using the dye Alamar Blue®. Parasitol. Int. 2000, 48, 265–269. [Google Scholar] [CrossRef]
- Rolón, M.; Seco, E.M.; Vega, C.; Nogal, J.J.; Escario, J.A.; Gómez-Barrio, A.; Malpartida, F. Selective activity of polyene macrolides produced by genetically modified Streptomyces on Trypanosoma cruzi. Int. J. Antimicrob. Agents 2006, 28, 104–109. [Google Scholar] [CrossRef]
Components | RT (min) a | (%) |
---|---|---|
β-cymene | 3.16 | 0.62 |
β-pinene | 3.60 | 0.99 |
Cineol | 4.17 | 0.67 |
Germacrene B | 8.18 | 1.32 |
Copaene | 8.75 | 1.64 |
Aromadendrene | 8.92 | 4.81 |
α-bisabolene | 9.40 | 12.82 |
α-selinene | 9.56 | 0.72 |
α-Cubebene | 9.77 | 1.27 |
α-humulene | 9.85 | 1.23 |
germacrene D | 10.20 | 10.31 |
γ-elemene | 10.40 | 21.83 |
δ-guaiene | 10.48 | 1.17 |
Cadina-1.4-diene | 10.81 | 1.52 |
Spathulenol | 11.47 | 8.84 |
Caryophyllene oxide | 11.58 | 10.61 |
Viridiflorol | 11.67 | 1.35 |
δ-cadinol | 12.20 | 3.37 |
Oxide α-bisabolol B | 12.36 | 2.03 |
Globulol | 12.52 | 2.72 |
α-Bisabolol | 12.62 | 3.76 |
TOTAL | - | 100 |
Form | Conc. µg/mL | % AA | ±% SD |
---|---|---|---|
Promastigote of L. brasiliensis | 125 | 70.27 | 0.57 |
62.5 | 70.81 | 0.81 | |
31.5 | 10.73 | 1.08 | |
15.62 7.81 | 8.81 0 | 1.38 2.10 | |
R. echinus: LC50 (µg/mL) | 56.45 | 0.82 | |
Pentamidine: LC50 (µg/mL) | 5.72 | 0.41 | |
Epimastigote of T. cruzi | 125 | 0 | 3.06 |
15.62 | 0 | 0.58 | |
R. echinus: LC50 (µg/mL) | - | - | |
Nifurtimox: LC50 (µg/mL) | 3.04 | 0.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, C.V.B.; Silva, P.A.G.d.; Tintino, S.R.; Coronel, C.C.; Gomez, M.C.V.; Rolón, M.; Cunha, F.A.B.d.; Morais-Braga, M.F.B.; Coutinho, H.D.M.; Siyadatpanah, A.; et al. A Potential New Source of Therapeutic Agents for the Treatment of Mucocutaneous Leishmaniasis: The Essential Oil of Rhaphiodon echinus. Molecules 2022, 27, 2169. https://doi.org/10.3390/molecules27072169
Oliveira CVB, Silva PAGd, Tintino SR, Coronel CC, Gomez MCV, Rolón M, Cunha FABd, Morais-Braga MFB, Coutinho HDM, Siyadatpanah A, et al. A Potential New Source of Therapeutic Agents for the Treatment of Mucocutaneous Leishmaniasis: The Essential Oil of Rhaphiodon echinus. Molecules. 2022; 27(7):2169. https://doi.org/10.3390/molecules27072169
Chicago/Turabian StyleOliveira, Carlos Vinicius Barros, Patric Anderson Gomes da Silva, Saulo Relison Tintino, Cathia Cecília Coronel, Maria Celeste Vega Gomez, Mírian Rolón, Francisco Assis Bezerra da Cunha, Maria Flaviana Bezerra Morais-Braga, Henrique Douglas Melo Coutinho, Abolghasem Siyadatpanah, and et al. 2022. "A Potential New Source of Therapeutic Agents for the Treatment of Mucocutaneous Leishmaniasis: The Essential Oil of Rhaphiodon echinus" Molecules 27, no. 7: 2169. https://doi.org/10.3390/molecules27072169
APA StyleOliveira, C. V. B., Silva, P. A. G. d., Tintino, S. R., Coronel, C. C., Gomez, M. C. V., Rolón, M., Cunha, F. A. B. d., Morais-Braga, M. F. B., Coutinho, H. D. M., Siyadatpanah, A., Wilairatana, P., Kamdem, J. P., Barros, L. M., Duarte, A. E., & Pereira, P. S. (2022). A Potential New Source of Therapeutic Agents for the Treatment of Mucocutaneous Leishmaniasis: The Essential Oil of Rhaphiodon echinus. Molecules, 27(7), 2169. https://doi.org/10.3390/molecules27072169