Two Green Micellar HPLC and Mathematically Assisted UV Spectroscopic Methods for the Simultaneous Determination of Molnupiravir and Favipiravir as a Novel Combined COVID-19 Antiviral Regimen
Abstract
:1. Introduction
2. Experimental Section
2.1. Instrumentation and Software
2.2. Materials
2.3. Standard Solution Preparation
2.4. Analytical Procedures
2.4.1. Chemometric Experimentation Using UV Spectrophotometry
2.4.2. Chromatographic Procedure
2.4.3. In Vitro Dissolution Study
2.4.4. Pharmaceutical Dosage Forms Analysis Procedure
3. Results and Discussion
3.1. Chemometric Models
3.1.1. Wavelength and Spectral Zone Selection
3.1.2. Calibration Matrix Construction
3.1.3. Model Validation and Evaluation
3.2. Chromatographic Validation
3.3. Method Application and In Vitro Dissolution Study
3.4. Statistical Comparison and Application in the Pharmaceutical Formulation
3.5. Comparative Evaluation of the Developed Analytical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Machhi, J.; Herskovitz, J.; Senan, A.M.; Dutta, D.; Nath, B.; Oleynikov, M.D.; Blomberg, W.R.; Meigs, D.D.; Hasan, M.; Patel, M.; et al. The Natural History, Pathobiology, and Clinical Manifestations of SARS-CoV-2 Infections. J. Neuroimmune Pharmacol. 2020, 15, 359–386. [Google Scholar] [CrossRef] [PubMed]
- Scavone, C.; Brusco, S.; Bertini, M.; Sportiello, L.; Rafaniello, C.; Zoccoli, A.; Berrino, L.; Racagni, G.; Rossi, F.; Capuano, A. Current pharmacological treatments for COVID-19: What’s next? Br. J. Pharmacol. 2020, 177, 4813–4824. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Kumar Arora, M.; Asdaq, S.M.B.; Khan, S.A.; Alaqel, S.I.; Alshammari, M.K.; Alshehri, M.M.; Alshrari, A.S.; Mateq Ali, A.; Al-Shammeri, A.M. Discovery, development, and patent trends on molnupiravir: A prospective oral treatment for COVID-19. Molecules 2021, 26, 5795. [Google Scholar] [CrossRef] [PubMed]
- Doerfler, W. Adenoviral Vector DNA- and SARS-CoV-2 mRNA-Based Covid-19 Vaccines: Possible Integration into the Human Genome—Are Adenoviral Genes Expressed in Vector-based Vaccines? Virus Res. 2021, 302, 198466. [Google Scholar] [CrossRef]
- Aldén, M.; Olofsson Falla, F.; Yang, D.; Barghouth, M.; Luan, C.; Rasmussen, M.; De Marinis, Y. Intracellular Reverse Transcription of Pfizer BioNTech COVID-19 mRNA Vaccine BNT162b2 In Vitro in Human Liver Cell Line. Curr. Issues Mol. Biol. 2022, 44, 1115–1126. [Google Scholar] [CrossRef]
- Ibrahim, A.E.; Deeb, S.E.; Abdelhalim, E.M.; Al-Harrasi, A.; Sayed, R.A. Green Stability Indicating Organic Solvent-Free HPLC Determination of Remdesivir in Substances and Pharmaceutical Dosage Forms. Separations 2021, 8, 243. [Google Scholar] [CrossRef]
- Mikhail, I.E.; Elmansi, H.; Belal, F.; Ehab Ibrahim, A. Green micellar solvent-free HPLC and spectrofluorimetric determination of favipiravir as one of COVID-19 antiviral regimens. Microchem. J. 2021, 165, 106189. [Google Scholar] [CrossRef]
- Ivashchenko, A.A.; Dmitriev, K.A.; Vostokova, N.V.; Azarova, V.N.; Blinow, A.A.; Egorova, A.N.; Gordeev, I.G.; Ilin, A.P.; Karapetian, R.N.; Kravchenko, D.V.; et al. AVIFAVIR for Treatment of Patients With Moderate Coronavirus Disease 2019 (COVID-19): Interim Results of a Phase II/III Multicenter Randomized Clinical Trial. Clin. Infect. Dis. 2020, 73, 531–534. [Google Scholar] [CrossRef]
- Cai, Q.; Yang, M.; Liu, D.; Chen, J.; Shu, D.; Xia, J.; Liao, X.; Gu, Y.; Cai, Q.; Yang, Y. Experimental treatment with favipiravir for COVID-19: An open-label control study. Engineering 2020, 6, 1192–1198. [Google Scholar] [CrossRef]
- Doi, Y.; Hibino, M.; Hase, R.; Yamamoto, M.; Kasamatsu, Y.; Hirose, M.; Mutoh, Y.; Homma, Y.; Terada, M.; Ogawa, T.; et al. A Prospective, Randomized, Open-Label Trial of Early versus Late Favipiravir Therapy in Hospitalized Patients with COVID-19. Antimicrob. Agents Chemother. 2020, 64, e01897–e01920. [Google Scholar] [CrossRef]
- Painter, G.R.; Natchus, M.G.; Cohen, O.; Holman, W.; Painter, W.P. Developing a direct acting, orally available antiviral agent in a pandemic: The evolution of molnupiravir as a potential treatment for COVID-19. Curr. Opin. Virol. 2021, 50, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.H.T.; Guedj, J.; Anglaret, X.; Laouénan, C.; Madelain, V.; Taburet, A.-M.; Baize, S.; Sissoko, D.; Pastorino, B.; Rodallec, A. Favipiravir pharmacokinetics in Ebola-Infected patients of the JIKI trial reveals concentrations lower than targeted. PLoS Negl. Trop. Dis. 2017, 11, e0005389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.K.; Singh, A.; Singh, R.; Misra, A. An updated practical guideline on use of molnupiravir and comparison with agents having emergency use authorization for treatment of COVID-19. Diabetes Metab. Syndr. 2022, 16, 102396. [Google Scholar] [CrossRef] [PubMed]
- Toots, M.; Yoon, J.-J.; Hart, M.; Natchus, M.G.; Painter, G.R.; Plemper, R.K. Quantitative efficacy paradigms of the influenza clinical drug candidate EIDD-2801 in the ferret model. Transl. Res. 2020, 218, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Singh, A.; Singh, R.; Misra, A. Molnupiravir in COVID-19: A systematic review of literature. Diabetes Metab. Syndr. 2021, 15, 102329. [Google Scholar] [CrossRef] [PubMed]
- Abdelnabi, R.; Foo, C.S.; Kaptein, S.J.F.; Zhang, X.; Do, T.N.D.; Langendries, L.; Vangeel, L.; Breuer, J.; Pang, J.; Williams, R.; et al. The combined treatment of Molnupiravir and Favipiravir results in a potentiation of antiviral efficacy in a SARS-CoV-2 hamster infection model. EBioMedicine 2021, 72, 103595. [Google Scholar] [CrossRef] [PubMed]
- Madelain, V.; Guedj, J.; Nguyen, T.H.T.; Jacquot, F.; Oestereich, L.; Kadota, T.; Yamada, K.; Taburet, A.-M.; de Lamballerie, X.; Raoul, H. Favipiravir pharmacokinetics in nonhuman primates and insights for future efficacy studies of hemorrhagic fever viruses. Antimicrob. Agents Chemother. 2017, 61, e01305–e01316. [Google Scholar] [CrossRef] [Green Version]
- Gowen, B.B.; Smee, D.F.; Wong, M.-H.; Hall, J.O.; Jung, K.-H.; Bailey, K.W.; Stevens, J.R.; Furuta, Y.; Morrey, J.D. Treatment of late stage disease in a model of arenaviral hemorrhagic fever: T-705 efficacy and reduced toxicity suggests an alternative to ribavirin. PLoS ONE 2008, 3, e3725. [Google Scholar] [CrossRef]
- Smee, D.F.; Hurst, B.L.; Egawa, H.; Takahashi, K.; Kadota, T.; Furuta, Y. Intracellular metabolism of favipiravir (T-705) in uninfected and influenza A (H5N1) virus-infected cells. J. Antimicrob. Chemother. 2009, 64, 741–746. [Google Scholar] [CrossRef]
- Gowen, B.B.; Sefing, E.J.; Westover, J.B.; Smee, D.F.; Hagloch, J.; Furuta, Y.; Hall, J.O. Alterations in favipiravir (T-705) pharmacokinetics and biodistribution in a hamster model of viral hemorrhagic fever. Antivir. Res. 2015, 121, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Bulduk, İ. HPLC-UV method for quantification of favipiravir in pharmaceutical formulations. Acta Chromatogr. 2020, 33, 209–215. [Google Scholar] [CrossRef]
- Marzouk, H.M.; Rezk, M.R.; Gouda, A.S.; Abdel-Megied, A.M. A Novel Stability-Indicating HPLC-DAD Method for Determination of Favipiravir, a Potential Antiviral Drug for COVID-19 Treatment; Application to Degradation Kinetic Studies and In-Vitro Dissolution Profiling. Microchem. J. 2021, 172, 106917. [Google Scholar] [CrossRef] [PubMed]
- Megahed, S.M.; Habib, A.A.; Hammad, S.F.; Kamal, A.H. Experimental design approach for development of spectrofluorimetric method for determination of favipiravir; a potential therapeutic agent against COVID-19 virus: Application to spiked human plasma. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2020, 249, 119241. [Google Scholar] [CrossRef] [PubMed]
- Amara, A.; Penchala, S.D.; Else, L.; Hale, C.; FitzGerald, R.; Walker, L.; Lyons, R.; Fletcher, T.; Khoo, S. The development and validation of a novel LC-MS/MS method for the simultaneous quantification of Molnupiravir and its metabolite ß-d-N4-hydroxycytidine in human plasma and saliva. J. Pharm. Biomed. Anal. 2021, 206, 114356. [Google Scholar] [CrossRef] [PubMed]
- Parsons, T.L.; Kryszak, L.A.; Marzinke, M.A. Development and validation of assays for the quantification of β-d-N4-hydroxycytidine in human plasma and β-D-N4-hydroxycytidine-triphosphate in peripheral blood mononuclear cell lysates. J. Chromatogr. B 2021, 1182, 122921. [Google Scholar] [CrossRef]
- Asmari, M.; Wang, X.; Casado, N.; Piponski, M.; Kovalenko, S.; Logoyda, L.; Hanafi, R.S.; El Deeb, S. Chiral Monolithic Silica-Based HPLC Columns for Enantiomeric Separation and Determination: Functionalization of Chiral Selector and Recognition of Selector-Selectand Interaction. Molecules 2021, 26, 5241. [Google Scholar] [CrossRef]
- Ibrahim, A.E.; Elmaaty, A.A.; El-Sayed, H.M. Determination of six drugs used for treatment of common cold by micellar liquid chromatography. Anal. Bioanal. Chem. 2021, 413, 5051–5065. [Google Scholar] [CrossRef]
- United States Pharmacopoeia USP 43- NF 38; National Formulary: Rockville, MD, USA, 2019.
- FDA. Guidance for Industry: Dissolution Testing of Immediate Release Solid Oral Dosage Forms; US Department of Health and Human Services, FDA: Rockville, MD, USA, 1997.
- Peeters, K.; De Maesschalck, R.; Bohets, H.; Vanhoutte, K.; Nagels, L. In situ dissolution testing using potentiometric sensors. Eur. J. Pharm. Sci. 2008, 34, 243–249. [Google Scholar] [CrossRef]
- Brereton, R.G. Multilevel multifactor designs for multivariatecalibration. Analyst 1997, 122, 1521–1529. [Google Scholar] [CrossRef]
- Kramer, R. Chemometric Techniques for Quantitative Analysis; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Sasaki, K.; Kawata, S.; Minami, S. Optimal wavelength selection for quantitative analysis. Appl. Spectrosc. 1986, 40, 185–190. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Guidance for Industry- Q2 (R1) Validation of Analytical Procedures: Text and Methodology; U.S. Department of Health and Human Services Center for Drug Evaluation and Research, and Center for Biologics Evaluation and Research: Rockville, MD, USA, 2005.
- Płotka-Wasylka, J. A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta 2018, 181, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef] [PubMed]
- Elmansi, H.; Ibrahim, A.E.; Mikhail, I.E.; Belal, F. Green and sensitive spectrofluorimetric determination of Remdesivir, an FDA approved SARS-CoV-2 candidate antiviral; application in pharmaceutical dosage forms and spiked human plasma. Anal. Methods 2021, 13, 2596–2602. [Google Scholar] [CrossRef] [PubMed]
Sample No. | FAV (μg mL−1) | MLP (μg mL−1) | Sample No. | FAV (μg mL−1) | MLP (μg mL−1) |
---|---|---|---|---|---|
1 | 14 | 14 | 14 * | 14 | 22 |
2 | 14 | 6 | 15 | 22 | 22 |
3 | 6 | 6 | 16 | 22 | 6 |
4 * | 6 | 22 | 17 | 6 | 18 |
5 | 22 | 10 | 18 * | 18 | 6 |
6 | 10 | 22 | 19 | 6 | 14 |
7 * | 22 | 14 | 20 * | 14 | 18 |
8 | 14 | 10 | 21 | 18 | 18 |
9 | 10 | 10 | 22* | 18 | 10 |
10 * | 10 | 18 | 23 | 10 | 6 |
11 * | 18 | 22 | 24 | 6 | 10 |
12 * | 22 | 18 | 25 | 10 | 14 |
13 * | 18 | 14 | 26 | 14 | 18 |
27 | 18 | 6 |
Parameter | FAV | MLP |
---|---|---|
Population size | 36 | 36 |
Maximum generations | 34 | 34 |
Mutation rate | 0.005 | 0.005 |
The number of variables in a window (window width) | 2 | 2 |
Percent of population the same at convergence | 100 | 100 |
Percent of wavelengths used at initiation | 50 | 50 |
Crossover type | Double | Double |
Maximum number of latent variables | 2 | 2 |
Cross-validation | Random | Random |
Number of subsets to divide data into for cross-validation | 4 | 4 |
Mix No. | Actual Conc. (μg mL−1) | FAV | Actual Conc. (μg mL−1) | MLP | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CLS | PCR | PLS-1 | GA–PLS-1 | CLS | PCR | PLS-1 | GA–PLS-1 | |||
4 | 6 | 99.23 | 99.37 | 99.37 | 99.07 | 22 | 98.49 | 98.46 | 98.46 | 98.58 |
7 | 22 | 98.32 | 98.29 | 98.29 | 98.57 | 14 | 98.94 | 98.96 | 98.96 | 98.44 |
10 | 10 | 100.05 | 100.09 | 100.09 | 99.93 | 18 | 97.74 | 97.72 | 97.72 | 97.86 |
11 | 18 | 99.72 | 99.73 | 99.72 | 99.80 | 22 | 98.73 | 98.71 | 98.72 | 98.34 |
12 | 22 | 98.70 | 98.69 | 98.69 | 98.85 | 18 | 98.87 | 98.88 | 98.88 | 98.36 |
13 | 18 | 98.16 | 98.14 | 98.14 | 98.43 | 14 | 99.85 | 99.85 | 99.85 | 99.36 |
14 | 14 | 100.05 | 100.08 | 100.08 | 100.19 | 22 | 97.79 | 97.77 | 97.77 | 97.37 |
18 | 18 | 99.15 | 99.12 | 99.12 | 99.44 | 6 | 99.17 | 99.25 | 99.25 | 98.67 |
20 | 14 | 99.13 | 99.15 | 99.14 | 99.13 | 18 | 98.01 | 98.00 | 98.00 | 97.91 |
Mean | 99.17 | 99.18 | 99.18 | 99.27 | 98.62 | 98.62 | 98.62 | 98.26 | ||
SD | 0.69 | 0.71 | 0.71 | 0.61 | 0.69 | 0.71 | 0.71 | 0.57 | ||
RSD | 0.70 | 0.72 | 0.72 | 0.62 | 0.70 | 0.72 | 0.72 | 0.58 | ||
RMSEP | 0.193 | 0.195 | 0.195 | 0.165 | 0.280 | 0.283 | 0.283 | 0.217 |
Parameter | CLS | PCR | PLS-1 | GA–PLS-1 | ||||
---|---|---|---|---|---|---|---|---|
FAV | MLP | FAV | MLP | FAV | MLP | FAV | MLP | |
Wavelength | 210–350 nm | |||||||
Linear range | 6.0–22.0 μg mL−1 | |||||||
RMSEC | 0.150 | 0.124 | 0.150 | 0.124 | 0.146 | 0.120 | 0.127 | 0.117 |
LV number | - | - | 2 | 2 | 2 | 2 | 2 | 2 |
Accuracy (%recovery *) | 99.45 | 100.44 | 99.46 | 100.45 | 99.46 | 100.45 | 99.67 | 100.66 |
RSD (%) | 1.58 | 1.42 | 1.58 | 1.42 | 1.58 | 1.40 | 1.40 | 1.39 |
Parameter | FAV | MLP |
---|---|---|
Rt (min) ± RSD | 1.87 ± 1.23 | 3.24 ± 0.78 |
Resolution | ------ | 7.0 |
Selectivity (α) | ------ | 3.45 |
Peak symmetry | 0.73 | 0.81 |
Theoretical plates (N) | 3350 | 4400 |
Linear range | 0.5–50.0 μg mL−1 | |
Accuracy (%recovery) * | 99.99 ± 0.82 | 99.99 ± 1.23 |
%Error | 0.284 | 0.490 |
LOD (μg.ml−1) | 0.04 | 0.02 |
LOQ (μg.ml−1) | 0.12 | 0.05 |
R2 | 0.9999 | 1.00 |
Slope | 50.9470 | 30.0777 |
Intercept | 7.3269 | −2.8984 |
Spiked QC concentration | Intra-day precision ** | |
5.0 µg mL−1 | 102.50 ± 1.83 | 99.46 ± 1.21 |
25.0 µg mL−1 | 99.54 ± 0.186 | 98.43 ± 0.07 |
50.0 µg mL−1 | 100.16 ± 0.15 | 99.96 ± 0.18 |
Inter-day precision ** | ||
5.0 µg mL−1 | 101.67 ± 1.88 | 99.97 ± 1.73 |
25.0 µg mL−1 | 99.97 ± 0.63 | 98.94 ± 0.53 |
50.0 µg mL−1 | 100.29 ± 0.44 | 99.85 ± 0.26 |
Parameter | FAV a | MLP a |
---|---|---|
pH ± 0.1 | 0.57 | 1.19 |
Brij-35 concentration ± 0.001 M | 0.69 | 0.78 |
SDS concentration ± 0.005 M | 1.05 | 0.89 |
A: Statistical Comparison among the Results Obtained by Developed Methods and the Reported Method [--] for FAV in Epifluver® Tablets | |||||||
Parameter | Reported Method [7] a | HPLC Method | CLS | PCR | PLS-1 | GA–PLS-1 | |
Mean | 100.80 | 100.17 | 99.31 | 99.12 | 99.27 | 99.12 | |
FAV | V | 2.25 | 1.34 | 1.17 | 1.16 | 1.23 | 0.85 |
N | 3 | 5 | 5 | 5 | 5 | 5 | |
Student’s t-test (t-tabulated 2.447) b | -- | 0.673 | 1.650 | 1.863 | 1.647 | 2.003 | |
F- test (F-tabulated 18.00) b | -- | 1.68 | 1.92 | 1.94 | 1.84 | 2.64 | |
B: Statistical comparison among the results obtained by the developed HPLC method and chemometric methods for MLP in Molcovir® capsules. | |||||||
Parameter | HPLC Method | CLS | PCR | PLS-1 | GA–PLS-1 | ||
MLP | Mean -- | 100.52 | 100.94 | 100.96 | 101.14 | 100.98 | |
V | 0.437 | 0.598 | 0.639 | 0.690 | 0.470 | ||
N | 5 | 5 | 5 | 5 | 5 | ||
Student’s t-test (t-tabulated 2.306) b | -- | 0.923 | 0.948 | 1.306 | 1.080 | ||
F-test (F-tabulated 15.98) b | -- | 1.37 | 1.46 | 1.58 | 1.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharaf, Y.A.; El Deeb, S.; Ibrahim, A.E.; Al-Harrasi, A.; Sayed, R.A. Two Green Micellar HPLC and Mathematically Assisted UV Spectroscopic Methods for the Simultaneous Determination of Molnupiravir and Favipiravir as a Novel Combined COVID-19 Antiviral Regimen. Molecules 2022, 27, 2330. https://doi.org/10.3390/molecules27072330
Sharaf YA, El Deeb S, Ibrahim AE, Al-Harrasi A, Sayed RA. Two Green Micellar HPLC and Mathematically Assisted UV Spectroscopic Methods for the Simultaneous Determination of Molnupiravir and Favipiravir as a Novel Combined COVID-19 Antiviral Regimen. Molecules. 2022; 27(7):2330. https://doi.org/10.3390/molecules27072330
Chicago/Turabian StyleSharaf, Yasmine Ahmed, Sami El Deeb, Adel Ehab Ibrahim, Ahmed Al-Harrasi, and Rania Adel Sayed. 2022. "Two Green Micellar HPLC and Mathematically Assisted UV Spectroscopic Methods for the Simultaneous Determination of Molnupiravir and Favipiravir as a Novel Combined COVID-19 Antiviral Regimen" Molecules 27, no. 7: 2330. https://doi.org/10.3390/molecules27072330
APA StyleSharaf, Y. A., El Deeb, S., Ibrahim, A. E., Al-Harrasi, A., & Sayed, R. A. (2022). Two Green Micellar HPLC and Mathematically Assisted UV Spectroscopic Methods for the Simultaneous Determination of Molnupiravir and Favipiravir as a Novel Combined COVID-19 Antiviral Regimen. Molecules, 27(7), 2330. https://doi.org/10.3390/molecules27072330