Intermolecular Halogen Bond Detected in Racemic and Optically Pure N-C Axially Chiral 3-(2-Halophenyl)quinazoline-4-thione Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystallization and Structure of 2
2.2. Supramolecular Association of 2a
2.3. Supramolecular Association of 2b
2.4. Crystal Packing of 2a and 2b
2.5. Crystal Structures of 3-(2-Fluorophenyl)-2-methylquinazoline-4-thione (2c)
3. Materials and Methods
3.1. General Information
3.2. Racemic and Optically Pure 3-(2-Halophenyl)-2-methylquinazoline-4-thiones 2a–c
3.3. X-ray Single Crystal Structural Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Da, B.-C.; Tan, B. Application for Axially Chiral Ligands. In Axially Chiral Compounds: Asymmetric Synthesis and Applications Part II; Tan, B., Ed.; Wiley-Vch: Hoboken, NJ, USA, 2021; pp. 245–274. [Google Scholar] [CrossRef]
- Akiyama, T. Application for Axially Chiral Organocatalyst. In Axially Chiral Compounds: Asymmetric Synthesis and Applications Part II; Tan, B., Ed.; Wiley-Vch: Hoboken, NJ, USA, 2021; pp. 275–296. [Google Scholar] [CrossRef]
- Keller, P.A.; Butler, N.M.; McCosker, P.M. Axially Chiral Natural Products and Bioactive Compounds. In Atropisomerism and Axially Chirality; Lassaletta, J.M., Ed.; World Scientific: Singapore, 2019; pp. 611–656. [Google Scholar] [CrossRef]
- Wang, Y.-B.; Xiang, S.-H.; Tan, B. Application in Drugs and Materials. In Axially Chiral Compounds: Asymmetric Synthesis and Applications Part II; Tan, B., Ed.; Wiley-Vch: Hoboken, NJ, USA, 2021; pp. 297–315. [Google Scholar] [CrossRef]
- Bringmann, G.; Mortimer, A.J.P.; Keller, P.A.; Gresser, M.J.; Garner, J.; Breuning, M. Atroposelective Synthesis of Axially Chiral Biaryl Compounds. Angew. Chem. Int. Ed. 2005, 44, 5384–5427. [Google Scholar] [CrossRef] [PubMed]
- Loxq, P.; Manoury, E.; Poli, R.; Deydier, E.; Labande, A. Synthesis of Axially Chiral Biaryl Compounds by Asymmetric Catalytic Reactions with Transition Metals. Coord. Chem. Rev. 2016, 308, 131–190. [Google Scholar] [CrossRef]
- Alkorta, I.; Elguero, J.; Roussel, C.; Vanthuyne, N.; Piras, P. Atropisomerism and Axial Chirality in Heteroaromatic Compounds. Adv. Heterocycl. Chem. 2012, 105, 1–188. [Google Scholar] [CrossRef]
- Kitagawa, O.; Takahashi, M.; Yoshikawa, M.; Taguchi, T. Efficient Synthesis of Optically Active Atropisomeric Anilides through Catalytic Asymmetric N-Arylation Reaction. J. Am. Chem. Soc. 2005, 127, 3676–3677. [Google Scholar] [CrossRef]
- Ototake, N.; Morimoto, Y.; Mokuya, A.; Fukaya, H.; Shida, Y.; Kitagawa, O. Catalytic Enantioselective Synthesis of Atropisomeric Indoles Having an N-C Chiral Axis. Chem. Eur. J. 2010, 16, 6752–6755. [Google Scholar] [CrossRef]
- Takahashi, I.; Suzuki, Y.; Kitagawa, O. Asymmetric Synthesis of Atropisomeric Compounds with an N-C Chiral Axis. Org. Prep. Proc. Int. 2014, 46, 1–23. [Google Scholar] [CrossRef]
- Kitagawa, O. Chiral Pd-Catalyzed Enantioselective Syntheses of Various N-C Axially Chiral Compounds and Their Synthetic Application. Acc. Chem. Res. 2021, 54, 719–730. [Google Scholar] [CrossRef]
- Wu, W.-J.; Liao, G.; Shi, B.-F. Stereoselective construction of atropisomerers feauring a C-N chiral axis. Green Syn. Catal. 2022, in press. [Google Scholar] [CrossRef]
- Grishina, V.M. Relation between chemical structure and action in a series of halosubstituted 4-quinolinones. Tr. Perm. Farm. Inst. 1967, 2, 9–11. [Google Scholar]
- Koe, B.K.; Minor, K.W.; Kondratas, E.; Lebel, L.A.; Koch, S.W. Enhancement of benzodiazepine binding by methaqualone and related quinazolinones. Drug Dev. Res. 1986, 7, 255–268. [Google Scholar] [CrossRef]
- Hirai, M.; Terada, S.; Yoshida, H.; Ebine, K.; Hirata, T.; Kitagawa, O. Catalytic Enantioselective Synthesis of N-C Axially Chiral Mebroqualone and Its Derivatives through Reductive Asymmetric Desymmetrization. Org. Lett. 2016, 18, 5700–5703. [Google Scholar] [CrossRef] [PubMed]
- Imai, T.; Niijima, E.; Terada, S.; Wzorek, A.; Soloshonok, V.A.; Hori, A.; Kitagawa, O. Chirality-dependent halogen bond in axially chiral quinazolin-4-one derivatives bearing ortho-halophenyl group. CrystEngComm 2019, 21, 3385–3389. [Google Scholar] [CrossRef]
- Metrangolo, P.; Neukirch, H.; Pilati, T.; Resnati, G. Halogen Bonding Based Recognition Processes: A World Parallel to Hydrogen Bonding. Acc. Chem. Res. 2005, 38, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Parisini, E.; Metrangolo, P.; Pilati, T.; Resnati, G.; Terraneo, G. Halogen bonding in halocarbon–protein complexes: A structural survey. Chem. Soc. Rev. 2011, 40, 2267–2278. [Google Scholar] [CrossRef] [PubMed]
- Erdélyi, M. Halogen bonding in solution. Chem. Soc. Rev. 2012, 41, 3547–3557. [Google Scholar] [CrossRef]
- Beale, T.M.; Chudzinski, M.G.; Sarwar, M.G.; Taylor, M.S. Halogen bonding in solution: Thermodynamics and applications. Chem. Soc. Rev. 2013, 42, 1667–1680. [Google Scholar] [CrossRef]
- Gilday, L.C.; Robinson, S.W.; Barendt, T.A.; Langton, M.J.; Mullaney, B.R.; Beer, P.D. Halogen Bonding in Supramolecular Chemistry. Chem. Rev. 2015, 115, 7118–7195. [Google Scholar] [CrossRef]
- Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The Halogen Bond. Chem. Rev. 2016, 116, 2478–2601. [Google Scholar] [CrossRef] [Green Version]
- Bulfield, D.; Huber, S.M. Halogen Bonding in Organic Synthesis and Organocatalysis. Chem. Eur. J. 2016, 22, 14434–14450. [Google Scholar] [CrossRef]
- Mendez, L.; Henriquez, G.; Sirimulla, S.; Narayan, M. Looking Back, Looking Forward at Halogen Bonding in Drug Discovery. Molecules 2017, 22, 1397. [Google Scholar] [CrossRef]
- Farina, A.; Meille, S.V.; Messina, M.T.; Metrangolo, P.; Resnati, G.; Vecchio, G. Resolution of Racemic 1,2-Dibromohexafluoropropane through Halogen-Bonded Supramolecular Helices. Angew. Chem. Int. Ed. 1999, 38, 2433–2436. [Google Scholar] [CrossRef]
- Lindsay, V.N.G.; Charette, A.B. Design and Synthesis of Chiral Heteroleptic Rhodium(II) Carboxylate Catalysts: Experimental Investigation of Halogen Bond Rigidification Effects in Asymmetric Cyclopropanation. ACS Catal. 2012, 2, 1221–1225. [Google Scholar] [CrossRef]
- Nakatsuji, H.; Sawamura, Y.; Sakakura, A.; Ishihara, K. Cooperative Activation with Chiral Nucleophilic Catalysts and N-Haloimides: Enantioselective Iodolactonization of 4-Arylmethyl-4-pentenoic Acids. Angew.Chem. Int. Ed. 2014, 53, 6974–6977. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Ida, Y.; Hisaki, I.; Tsuzuki, S.; Tohnai, N.; Coquerel, G.; Sato, H.; Miyata, M. Construction of Chiral Polar Crystals from Achiral Molecules by Stacking Control of Hydrogen-Bonded Layers Using Type II Halogen Bonds. Cryst. Growth Des. 2016, 16, 1626–1635. [Google Scholar] [CrossRef]
- Lim, J.Y.C.; Marques, I.; Félix, V.; Beer, P.D. Enantioselective Anion Recognition by Chiral Halogen-Bonding Rotaxanes. J. Am. Chem. Soc. 2017, 139, 12228–12239. [Google Scholar] [CrossRef]
- Kuwano, S.; Suzuki, T.; Hosaka, Y.; Arai, T. A chiral organic base catalyst with halogen-bonding-donor functionality: Asymmetric Mannich reactions of malononitrile with N-Boc aldimines and ketimines. Chem. Commun. 2018, 54, 3847–3850. [Google Scholar] [CrossRef]
- Tokunaga, E.; Yamamoto, T.; Ito, E.; Shibata, N. Understanding the Thalidomide Chirality in Biological Processed by the Self-dispoportionation of Enantiomers. Sci. Rep. 2018, 8, 17131. [Google Scholar] [CrossRef]
- Jantová, S.; Greif, G.; Spirková, K.; Stankovský, S.; Oravcová, M. Antibacterial effects of trisubstituted quinazoline derivatives. Folia Microbiol. 2000, 45, 133–1337. [Google Scholar] [CrossRef]
- Kubicová, L.; Sustr, M.; Král’ová, K.; Chobot, V.; Vytlacilová, J.; Jahodár, L.; Vourela, P.; Machácek, M.; Kaustová, J. Synthesis and Biological Evaluation of Quinazoline-4-thiones. Molecules 2003, 8, 756–769. [Google Scholar] [CrossRef]
- El-Azab, A.S.; Eltahir, K.E.H. Design and synthesis of novel 7-aminoquinazoline derivatives: Antitumor and anticonvulsant activities. Bioorg. Med. Chem. Lett. 2012, 22, 1879–1885. [Google Scholar] [CrossRef]
- Niijima, E.; Imai, T.; Suzuki, H.; Fujimoto, Y.; Kitagawa, O. Thionation of Optically Pure N-C Axially Chiral Quinazolin-4-one Derivatives with Lawesson’s Reagent. J. Org. Chem. 2021, 86, 709–715. [Google Scholar] [CrossRef]
- Jay, J.I.; Padgett, C.W.; Walsh, R.D.B.; Hanks, T.W.; Pennington, W.T. Noncovalent Interactions in 2-Mercapto-1-methylimidazole Complexes with Organic Iodides. Cryst. Growth Des. 2001, 1, 501–507. [Google Scholar] [CrossRef]
- Arman, H.D.; Gieseking, R.L.; Hanks, T.W.; Pennington, W.T. Complementary halogen and hydrogen bonding: Sulfuriodine interactions and thioamide ribbons. Chem. Commun. 2010, 46, 1854–1856. [Google Scholar] [CrossRef] [PubMed]
- Le Questel, J.Y.; Laurence, C.; Graton, J. Halogen-bond interactions: A crystallographic basicity scale towards iodoorganic compounds. CrystEngComm 2013, 15, 3212. [Google Scholar] [CrossRef]
- Eccles, K.S.; Morrison, R.E.; Sinha, A.S.; Maguire, A.R.; Lawrence, S.E. Investigating C=S·I Halogen Bonding for Cocrystallization with Primary Thioamides. Cryst. Growth Des. 2015, 15, 3442–3451. [Google Scholar] [CrossRef]
- Happonen, L.; Rautiainen, J.M.; Valkonen, A. Halogen Bonding between Thiocarbonyl compounds and 1,2- and 1,4-Diiodotetrafluorobenzenes. Cryst. Growth Des. 2021, 21, 3409–3419. [Google Scholar] [CrossRef]
- Wzgarda-Raj, K.; Rybarczyk-Pirek, A.J.; Wojtulewski, S.; Palusiak, M. C–Br⋯S halogen bonds in novel thiourea N-oxide cocrystal: Analysis of energetic and QTAIM parameters. Acta Cryst. 2020, C76, 170–176. [Google Scholar] [CrossRef]
- Wzgarda-Raj, K.; Palusiak, M.; Wojtulewski, S.; Rybarczyk-Pirek, A.J. The role of sulfur interactions in crystal architecture: Experimental and quantum theoretical studies on hydrogen, halogen, and chalcogen bonds in trithiocyanuric acid–pyridine N-oxide co-crystals. CrystEngComm 2021, 23, 324–334. [Google Scholar] [CrossRef]
- Andleeb, S.; Rauf, M.K.; Azam, S.S.; Badshah, A.; Sadaf, H.; Raheel, A.; Tahir, M.N.; Razac, S. A one-pot multicomponent facile synthesis of dihydropyrimidin-2(1H)-thione derivatives using triphenylgermane as a catalyst and its binding pattern validation. RSC Adv. 2016, 6, 79651–79661. [Google Scholar] [CrossRef]
- Iida, A.; Matsuoka, M.; Hasegawa, H.; Vanthuyne, N.; Farran, D.; Roussel, C.; Kitagawa, O. N-C Axially Chiral Compounds with an ortho-Fluoro Substituents and Steric Discrimination between Hydrogen and Fluorine Atoms Based on a Diastereoselective Model Reaction. J. Org. Chem. 2019, 84, 3169–3175. [Google Scholar] [CrossRef] [Green Version]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT-Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar] [CrossRef]
- Soloshonok, V.A.; Ueki, H.; Yasumoto, M.; Mekela, S.; Hirschi, J.S.; Singleton, D.A. Phenomenon of Optical Self-purification of Chiral Non-racemic Compounds. J. Am. Chem. Soc. 2007, 129, 12112–12113. [Google Scholar] [CrossRef] [PubMed]
- Alkorta, I.; Elguero, J. Self-Discrimination of Enantiomers in Hydrogen-Bonded dimers. J. Am. Chem. Soc. 2002, 124, 1488–1493. [Google Scholar] [CrossRef] [PubMed]
1a [16] | 2a | 1b [16] | 2b | |
---|---|---|---|---|
C1=O1 (or S1) | 1.223(2) | 1.659(2) | 1.232(4) | 1.6587(14) |
C1-N2 | 1.407(2) | 1.389(3) | 1.400(4) | 1.3921(19) |
N2-C8 | 1.402(2) | 1.395(3) | 1.399(4) | 1.3977(19) |
N2-C10 | 1.444(2) | 1.452(2) | 1.434(4) | 1.4465(18) |
C8-N1 | 1.292(2) | 1.293(3) | 1.297(4) | 1.292(2) |
C11-X1 | 1.9028(18) | 1.902(2) | 1.739(4) | 1.7410(15) |
C1-N2-C8 | 122.66(15) | 123.22(17) | 122.4(3) | 123.14(12) |
C1-N2-C10 | 120.76(14) | 117.57(16) | 117.2(3) | 117.71(11) |
N2-C1-C2 | 113.57(15) | 114.22(17) | 114.0(3) | 114.19(12) |
N2-C1-O1 (or S1) | 120.87(16) | 121.11(15) | 120.4(3) | 121.31(11) |
ring-A⋯ring-B | 77.29 | 86.93 | 78.33 | 87.84 |
Ref. | C=Y⋯Hal | C=Y | Y⋯Hal | C=Y⋯Hal | Y⋯Hal-C | R-C=Y⋯Hal | |
---|---|---|---|---|---|---|---|
1a | [16] | C=O⋯Br | 1.223(2) | 3.145(1) | 140.7(1) | 168.10(6) | 10.5(3) |
2a | [35] | C=S⋯Br | 1.659(2) | 3.4143(6) | 126.36(7) | 172.04(6) | −19.6(2) |
(P)-2a | C=S⋯Br | 1.659(4) | 3.422(1) | 115.7(1) | 158.2(1) | 109.0(3) | |
3 | [41] | C=S⋯Br | 1.716(2) | 3.5798(5) | 126.05(6) | 168.11(5) | 99.9(1) |
4 | [42] | C=S⋯Br | 1.646(2) 1.646(2) | 3.3196(6) 3.3134(5) | 104.95(7) 97.16(6) | 178.97(6) 172.54(6) | 51.0(2) −55.9(1) |
2b | C=S⋯Cl | 1.659(1) | 3.4847(6) | 127.69(5) | 173.86(5) | 20.0(2) | |
(P)-2b | C=S⋯Cl | 1.661(3) | 3.464(1) | 115.2(1) | 156.7(1) | 112.3(2) | |
5 | [43] | C=S⋯Cl | 1.680(3) | 3.493(1) | 118.65(9) | 166.7(1) | −49.3(2) |
Rac-2a | Rac-2b | (P)-2b | Rac-2c | |
---|---|---|---|---|
Chemical formula | C15H11BrN2S | C15H11ClN2S | C15H11ClN2S | C15H11FN2S |
Formula weight | 331.23 | 286.77 | 286.77 | 270.32 |
Crystal system | orthorhombic | orthorhombic | monoclinic | monoclinic |
Space group | Pbca | Pbca | P21 | C2/c |
a [Å] | 13.9862(4) | 14.1210(16) | 8.3918(7) | 13.3633(19) |
b [Å] | 11.8103(4) | 11.5800(14) | 16.9928(15) | 14.1656(18) |
c [Å] | 16.7044(5) | 16.6932(17) | 10.0448(10) | 14.7771(18) |
β [°] | 90 | 90 | 111.646(3) | 114.812(4) |
V [Å3] | 2759.25(15) | 2729.7(5) | 1331.4(2) | 2539.1(6) |
Z | 8 | 8 | 4 | 8 |
Dc [Mg m−3] | 1.595 | 1.396 | 1.431 | 1.414 |
μ [mm−1] | 3.117 | 0.419 | 0.429 | 0.253 |
F(000) | 1328 | 1184 | 592 | 1120 |
Rint | 0.0518 | 0.0596 | 0.0459 | 0.0545 |
GOF | 1.030 | 1.054 | 1.060 | 1.124 |
R [(I) > 2σ (I)] | 0.0203 | 0.0297 | 0.0256 | 0.0352 |
wR (Fo2) | 0.0496 | 0.0840 | 0.0631 | 0.1121 |
CCDC No. | 2153821 | 2153822 | 2153823 | 2153825 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsui, R.; Niijima, E.; Imai, T.; Kobayashi, H.; Hori, A.; Sato, A.; Nakamura, Y.; Kitagawa, O. Intermolecular Halogen Bond Detected in Racemic and Optically Pure N-C Axially Chiral 3-(2-Halophenyl)quinazoline-4-thione Derivatives. Molecules 2022, 27, 2369. https://doi.org/10.3390/molecules27072369
Matsui R, Niijima E, Imai T, Kobayashi H, Hori A, Sato A, Nakamura Y, Kitagawa O. Intermolecular Halogen Bond Detected in Racemic and Optically Pure N-C Axially Chiral 3-(2-Halophenyl)quinazoline-4-thione Derivatives. Molecules. 2022; 27(7):2369. https://doi.org/10.3390/molecules27072369
Chicago/Turabian StyleMatsui, Ryosuke, Erina Niijima, Tomomi Imai, Hiroyuki Kobayashi, Akiko Hori, Azusa Sato, Yuko Nakamura, and Osamu Kitagawa. 2022. "Intermolecular Halogen Bond Detected in Racemic and Optically Pure N-C Axially Chiral 3-(2-Halophenyl)quinazoline-4-thione Derivatives" Molecules 27, no. 7: 2369. https://doi.org/10.3390/molecules27072369
APA StyleMatsui, R., Niijima, E., Imai, T., Kobayashi, H., Hori, A., Sato, A., Nakamura, Y., & Kitagawa, O. (2022). Intermolecular Halogen Bond Detected in Racemic and Optically Pure N-C Axially Chiral 3-(2-Halophenyl)quinazoline-4-thione Derivatives. Molecules, 27(7), 2369. https://doi.org/10.3390/molecules27072369