Environmentally Friendly g-C3N4/Sepiolite Fiber for Enhanced Degradation of Dye under Visible Light
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Samples Preparation
2.2.1. Pretreatment of SS
2.2.2. g-C3N4/SS Synthesis
2.3. Characterization
2.4. Photocatalytic Degradation of Methylene Blue
2.5. Trapping Experiments of Active Species
3. Results and Discussion
3.1. Structure and Morphology Analysis
3.2. Photocatalytic Degradation
3.2.1. Effect of CN Loading
3.2.2. Effect of Catalyst Dosage
3.2.3. Effect of Initial Dye Concentration
3.2.4. UV–Vis Spectra of the Residual Dyes
3.3. Reusability of CN/SS
3.4. Investigation of Reactive Species and Photocatalytic Degradation Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Missau, J.; Bertuol, D.A.; Tanabe, E.H. Highly efficient adsorbent for removal of Crystal Violet Dye from Aqueous Solution by CaAl/LDH supported on Biochar. Appl. Clay Sci. 2021, 214, 106297. [Google Scholar] [CrossRef]
- Panic, V.; Velickovic, S. Removal of model cationic dye by adsorption onto poly (methacrylic acid)/zeolite hydrogel composites: Kinetics, equilibrium study and image analysis. Sep. Purif. Technol. 2014, 122, 384–394. [Google Scholar] [CrossRef]
- Kiernan, J.A. Dyes and other colorants in microtechnique and biomedical research. Color. Technol. 2006, 122, 1–21. [Google Scholar] [CrossRef]
- Shahbazkhany, S.; Salehi, M.; Mousavi-Kamazani, M.; Salarvand, Z. Zn0.94Mn0.06O for adsorption and photo-degradation of methyl orange dye under visible irradiation: Kinetics and isotherms study. Environ. Res. 2022, 203, 111833. [Google Scholar] [CrossRef]
- Oloo, C.M.; Onyari, J.M.; Wanyonyi, W.C.; Wabomba, J.N.; Muinde, V.M. Adsorptive removal of hazardous crystal violet dye form aqueous solution using Rhizophora mucronata stem-barks: Equilibrium and kinetics studies. Environ. Chem. Ecotoxicol. 2020, 2, 64–72. [Google Scholar] [CrossRef]
- El-Sewify, I.M.; Radwan, A.; Shahat, A.; El-Shahat, M.F.; Khalil, M.M.H. Superior adsorption and removal of aquaculture and bio-staining dye from industrial wastewater using microporous nanocubic Zn-MOFs. Microporous Mesoporous Mater. 2022, 329, 111506. [Google Scholar] [CrossRef]
- Batool, A.; Valiyaveettil, S. Chemical transformation of soya waste into stable adsorbent for enhanced removal of methylene blue and neutral red from water. J. Environ. Chem. Eng. 2021, 9, 104902. [Google Scholar] [CrossRef]
- Hoseinzadeh, H.; Bakhtiari, M.; Seifpanahi-Shabani, K.; Oveisi, M.; Hayati, B.; Rabeie, B.; Ghaheh, F.S.; Salmani, R.; Ullah, H.; Mahmoodi, N.M. Synthesis of the metal-organic framework—Copper oxide nanocomposite and LED visible light organic contaminants (dye and pharmaceutical) destruction ability in the water. Mater. Sci. Eng. B 2021, 274, 115495. [Google Scholar] [CrossRef]
- Mahmoodi, N.M. Binary catalyst system dye degradation using photocatalysis. Fibers Polym. 2014, 15, 273–280. [Google Scholar] [CrossRef]
- Li, S.; Chen, X.; Cheng, Z.; Luo, S.; Nguyen, T.T.; Guo, M.; Gao, X. Promoting effect of cellulose-based carbon dots at different concentrations on multifunctional photocatalytic degradation of dyes by ZnO. Opt. Mater. 2021, 121, 111591. [Google Scholar] [CrossRef]
- Shakil, M.; Inayat, U.; Khalid, N.R.; Tanveer, M.; Gillani, S.S.A.; Tariq, N.H.; Shah, A.; Mahmood, A.; Dahshan, A. Enhanced structural, optical, and photocatalytic activities of Cd-Co doped Zn ferrites for degrading methyl orange dye under irradiation by visible light. J. Phys. Chem. Solids 2022, 161, 110419. [Google Scholar] [CrossRef]
- Ali, G.; Zaidi, S.J.A.; Basit, M.A.; Park, T.J. Synergetic performance of systematically designed g-C3N4/rGO/SnO2 nanocomposite for photodegradation of Rhodamine-B dye. Appl. Surf. Sci. 2021, 570, 151140. [Google Scholar] [CrossRef]
- Chen, W.; He, Z.; Huang, G.; Wu, C.; Chen, W.; Li, X. Direct Z-scheme 2D/2D MnIn2S4/g-C3N4 architectures with highly efficient photocatalytic activities towards treatment of pharmaceutical wastewater and hydrogen evolution. Chem. Eng. J. 2019, 359, 244–253. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, X.; Liu, Y.; Ma, Y.; Li, T.; Lin, Y.; Xie, T.; Dong, S. Photo-Fenton degradation of emerging pollutants over Fe-POM nanoparticle/porous and ultrathin g-C3N4 nanosheet with rich nitrogen defect: Degradation mechanism, pathways, and products toxicity assessment. Appl. Catal. B Environ. 2020, 278, 119349. [Google Scholar] [CrossRef]
- Caudillo-Flores, U.; Muñoz-Batista, M.J.; Luque, R.; Fernández-García, M.; Kubacka, A. g-C3N4/TiO2 composite catalysts for the photo-oxidation of toluene: Chemical and charge handling effects. Chem. Eng. J. 2019, 378, 122228. [Google Scholar] [CrossRef]
- Palanivel, B.; Perumal, S.D.M.; Maiyalagan, T.; Jayarman, V.; Ayyappan, C.; Alagiri, M. Rational design of ZnFe2O4/g-C3N4 nanocomposite for enhanced photo- Fenton reaction and supercapacitor performance. Appl. Surf. Sci. 2019, 498, 143807. [Google Scholar] [CrossRef]
- Ba, G.; Liang, Z.; Li, H.; Du, N.; Liu, J.; Hou, W. Simultaneous formation of mesopores and homojunctions in graphite carbon nitride with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2019, 253, 359–368. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, K.; Guo, T.; Li, J.; Wu, X.; Zhang, G. Construction of 2D/2D Bi2Se3/g-C3N4 nanocomposite with high interfacial charge separation and photo-heat conversion efficiency for selective photocatalytic CO2 reduction. Appl. Catal. B Environ. 2020, 277, 119232. [Google Scholar] [CrossRef]
- Li, J.; Yan, P.; Li, K.; You, J.; Wang, H.; Cui, W.; Cen, W.; Chu, Y.; Dong, F. Cu supported on polymeric carbon nitride for selective CO2 reduction into CH4: A combined kinetics and thermodynamics investigation. J. Mater. Chem. A 2019, 7, 17014–17021. [Google Scholar] [CrossRef]
- Hu, X.; Sun, Z.; Song, J.; Zhang, G.; Li, C.; Zheng, S. Synthesis of novel ternary heterogeneous BiOCl/TiO2/sepiolite composite with enhanced visible-light-induced photocatalytic activity towards tetracycline. J. Colloid Interf. Sci. 2019, 533, 238–250. [Google Scholar] [CrossRef]
- Zhou, F.; Yan, C.; Liang, T.; Sun, Q.; Wang, H. Photocatalytic degradation of Orange G using sepiolite-TiO2 nanocomposites: Optimization of physicochemical parameters and kinetics studies. Chem. Eng. Sci. 2018, 183, 231–239. [Google Scholar] [CrossRef]
- Chen, Y.; Wen, L.; Chen, J.; Luo, H.; Liu, J. In situ growth of g-C3N4 on clay minerals of kaolinite, sepiolite, and talc for enhanced solar photocatalytic energy conversion. Appl. Clay Sci. 2022, 216, 106337. [Google Scholar] [CrossRef]
- Xu, X.; Chen, W.; Zong, S.; Ren, X.; Liu, D. Atrazine degradation using Fe3O4-sepiolite catalyzed persulfate: Reactivity, mechanism and stability. J. Hazard. Mater. 2019, 377, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Ji, Z.; Wang, J.; Zhang, J. Solvothermal synthesized Ag-decorated TiO2/sepiolite composite with enhanced UV-vis and visible light photocatalytic activity. Microporous Mesoporous Mat. 2018, 266, 268–275. [Google Scholar] [CrossRef]
- Gui, W.; Zhou, X.; Wang, Y.; Yang, Z.; Yang, C.; Luo, W.; Zhou, W.; Jing, L. The effective strategies of preparing black F-TiIII-codoping TiO2 anchored characterization and visible light photocatalytic activity. Appl. Clay Sci. 2021, 209, 106116. [Google Scholar] [CrossRef]
- Chuaicham, C.; Pawar, R.R.; Karthikeyan, S.; Ohtani, B.; Sasaki, K. Fabrication and characterization of ternary sepiolite/g-C3N4/Pd composites for improvement of photocatalytic degradation of ciprofloxacin under visible light irradiation. J. Colloid Interf. Sci. 2020, 577, 397–405. [Google Scholar] [CrossRef]
- Zhou, F.; Yan, C.; Wang, H.; Zhou, S.; Komarneni, S. Sepiolite-TiO2 nanocomposites for photocatalysis: Synthesis by microwave hydrothermal treatment versus calcination. Appl. Clay Sci. 2017, 146, 246–253. [Google Scholar] [CrossRef]
- Liu, R.; Wang, J.; Zhang, J.; Xie, S.; Wang, X.; Ji, Z. Honeycomb-like micro-mesoporous structure TiO2/sepiolite composite for combined chemisorption and photocatalytic elimination of formaldehyde. Microporous Mesoporous Mat. 2017, 248, 234–245. [Google Scholar] [CrossRef]
- Bautista, F.M.; Campelo, J.M.; Luna, D.; Luque, J.; Marinas, J.M. Vanadium oxides supported on TiO2-Sepiolite and Sepiolite: Preparation, structural and acid characterization and catalytic behaviour in selective oxidation of toluene. Appl. Catal. A Gen. 2007, 325, 336–344. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Lu, Y.; Song, Z.; Wang, C.; Li, D.; Tang, X.; Zhou, X. Surface hydroxylation of TiO2/g-C3N4 photocatalyst for photo-Fenton degradation of tetracycline. Ceram. Int. 2022, 48, 1306–1313. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, X.; Yu, J.; He, P.; Chen, T.; Zhang, L.; Wang, K.; Hua, X.; Zhu, P. Core@Shell Structured Coal Fly Ash Magnetospheres@C/g-C3N4 for Degradation of Rh B via Photo-Fenton catalysis. J. Alloys Compd. 2022, 908, 164441. [Google Scholar] [CrossRef]
- Cao, Z.; Jia, Y.; Wang, Q.; Cheng, H. High-efficiency photo-Fenton Fe/g-C3N4/kaolinite catalyst for tetracycline hydrochloride degradation. Appl. Clay Sci. 2021, 212, 106213. [Google Scholar] [CrossRef]
- Liu, D.; Li, C.; Ni, T.; Gao, R.; Ge, J.; Zhang, F.; Wu, W.; Li, J.; Zhao, Q. 3D interconnected porous g-C3N4 hybridized with Fe2O3 quantum dots for enhanced photo-Fenton performance. Appl. Surf. Sci. 2021, 555, 149677. [Google Scholar] [CrossRef]
- Yalcin, H.; Bozkaya, O. Ultramafic-rock-hosted vein sepiolite occurrences in the Ankara ophiolitic melange, central anatolia, Turkey. Clay. Clay Miner. 2004, 52, 227–239. [Google Scholar] [CrossRef]
- Li, D.; Huang, X.; Hao, F.; Lv, Y.; Chen, H.; Wu, S.; Xiong, W.; Liu, P.; Luo, H. Preparation of organic-inorganic composites with high antibacterial activity based on sepiolite, chitosan and zinc: The study of the active antibacterial sites of chitosan-zinc oxide structure. Appl. Clay Sci. 2021, 216, 106325. [Google Scholar] [CrossRef]
- Deng, W.; Zhang, D.; Zheng, X.; Ye, X.; Niu, X.; Lin, Z.; Fu, M.; Zhou, S. Adsorption recovery of phosphate from waste streams by Ca/Mg biochar synthesis from marble waste, calcium-rich sepiolite and bagasse. J. Clean. Prod. 2021, 288, 125638. [Google Scholar] [CrossRef]
- Ma, Y.; Wu, X.; Zhang, G. Core-shell Ag@Pt nanoparticles supported on sepiolite nanofifibers for the catalytic reduction of nitrophenols in water: Enhanced catalytic performance and DFT study. Appl. Catal. B Environ. 2017, 205, 262–270. [Google Scholar] [CrossRef]
- Liu, H.; Chen, W.; Liu, C.; Liu, Y.; Dong, C. Magnetic mesoporous clay adsorbent: Preparation, characterization and adsorption capacity for atrazine. Microporous Mesoporous Mater. 2014, 194, 72–78. [Google Scholar] [CrossRef]
- Li, Y.; Tian, G.; Gong, L.; Chen, B.; Kong, L.; Liang, J. Evaluation of natural sepiolite clay as adsorbents for aflatoxin B1: A comparative study. J. Environ. Chem. Eng. 2020, 8, 104052. [Google Scholar] [CrossRef]
- Walczyk, A.; Michalik, A.; Napruszewska, B.; Kryściak-Czerwenka, J.; Karcz, R.; Duraczynska, D.; Socha, R.; Olejniczak, Z.; Gaweł, A.; Klimek, A.; et al. New insight into the phase transformation of sepiolite upon alkali activation: Impact on composition, structure, texture, and catalytic/sorptive properties. Appl. Clay Sci. 2020, 195, 105740. [Google Scholar] [CrossRef]
- Baldermann, A.; Mavromatis, V.; Frick, P.M.; Dietzel, M. Effect of aqueous Si/Mg ratio and pH on the nucleation and growth of sepiolite at 25 °C. Geochim. Cosmochim. Acta 2018, 227, 211–226. [Google Scholar] [CrossRef]
- Xu, Z.; Jiang, H.; Yu, Y.; Xu, J.; Liang, J.; Zhou, L.; Hu, F. Activation and β-FeOOH modification of sepiolite in one-step hydrothermal reaction and its simulated solar light catalytic reduction of Cr(VI). Appl. Clay Sci. 2017, 135, 547–553. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhang, Y.; Lv, F.; Chu, P.K.; Ye, Z.; Zhou, F. Cuprous oxide created on sepiolite: Preparation, characterization, and photocatalytic activity in treatment of red water from 2,4,6-trinitrotoluene manufacturing. J. Hazard. Mater. 2012, 217–218, 11–18. [Google Scholar] [CrossRef]
- Li, D.; Gao, X.; Huang, X.; Liu, P.; Xiong, W.; Wu, S.; Hao, F.; Luo, H. Preparation of organic-inorganic chitosan@silver/sepiolite composites with high synergistic antibacterial activity and stability. Carbohydr. Polym. 2020, 249, 116858. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, D.; Zhang, G. Photocatalytic degradation of organic contaminants by TiO2/sepiolite composites prepared at low temperature. Chem. Eng. J. 2011, 173, 1–10. [Google Scholar] [CrossRef]
- Wang, P.; Qi, C.; Hao, L.; Wen, P.; Xu, X. Sepiolite/Cu2O/Cu photocatalyst: Preparation and high performance for degradation of organic dye. J. Mater. Sci. Technol. 2018, 35, 285–291. [Google Scholar] [CrossRef]
- Sun, Y.; Yuan, X.; Wang, Y.; Zhang, W.; Li, Y.; Zhang, Z.; Su, J.; Zhang, J.; Hu, S. CeO2 quantum dots anchored g-C3N4: Synthesis, characterization and photocatalytic performance. Appl. Surf. Sci. 2022, 576, 151901. [Google Scholar] [CrossRef]
- Huang, H.; Xiao, K.; Tian, N.; Dong, F.; Zhang, T.; Du, X.; Zhang, Y. Template-free precursor-surface-etching route to porous, thin g-C3N4 nanosheets for enhancing photocatalytic reduction and oxidation activity. J. Mater. Chem. A 2017, 5, 17452–17463. [Google Scholar] [CrossRef]
- Fan, E.; Hu, F.; Miao, W.; Xu, H.; Shao, G.; Liu, W.; Li, M.; Wang, H.; Lu, H.; Zhang, R. Preparation of g-C3N4/vermiculite composite with improved visible light photocatalytic activity. Appl. Clay Sci. 2020, 197, 105789. [Google Scholar] [CrossRef]
- Tran, L.; Wu, P.; Zhu, Y.; Yang, L.; Zhu, N. Highly enhanced adsorption for the removal of Hg(II) from aqueous solution by Mercaptoethylamine/Mercaptopropyltrimethoxysilane functionalized vermiculites. J. Colloid Interface Sci. 2015, 445, 348–356. [Google Scholar] [CrossRef]
- Xiao, G.; Xu, S.; Li, P.; Su, H. Visible-light-driven activity and synergistic mechanism of TiO2@g-C3N4 heterostructured photocatalysts fabricated through a facile and green procedure for various toxic pollutants removal. Nanotechnology 2018, 29, 315601. [Google Scholar] [CrossRef] [PubMed]
- Hao, R.; Wang, G.; Tang, H.; Sun, L.; Xu, C.; Han, D. Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Appl. Catal. B 2016, 187, 47–58. [Google Scholar] [CrossRef]
- Chuaicham, C.; Pawar, R.; Sasaki, K. Dye-sensitized Photocatalyst of Sepiolite for Organic Dye Degradation. Catalysts 2019, 9, 235. [Google Scholar] [CrossRef] [Green Version]
- Abdollahi, B.; Farshnama, S.; Asl, E.A.; Najafidoust, A.; Sarani, M. Cu(BDC) metal–organic framework (MOF)-based Ag2CrO4 heterostructure with enhanced solar-light degradation of organic dyes. Inorg. Chem. Commun. 2022, 138, 109236. [Google Scholar] [CrossRef]
- Li, D.; Zuo, S.; Xu, H.; Zan, J.; Sun, L.; Han, D.; Liao, W.; Zhang, B.; Xia, D. Synthesis of a g-C3N4-Cu2O heterojunction with enhanced visible light photocatalytic activity by PEG. J. Colloid Interface Sci. 2018, 531, 28–36. [Google Scholar] [CrossRef]
- Liu, K.; Gong, H.; Zhou, J. Study on the surface electrical properties of sepiolite. Multipurp. Util. Miner. Resour. 2004, 5, 15–20. [Google Scholar]
- Sun, Z.; Yao, G.; Zhang, X.; Zheng, S.; Frost, R.L. Enhanced visible-light photocatalytic activity of kaolinite/g-C3N4 composite synthesized via mechanochemical treatment. Appl. Clay Sci. 2016, 129, 7–14. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Wang, L.; Lu, S.; Wang, Z.; Chen, M.; Liang, W.; Lin, X.; Lin, X. Environmentally Friendly g-C3N4/Sepiolite Fiber for Enhanced Degradation of Dye under Visible Light. Molecules 2022, 27, 2464. https://doi.org/10.3390/molecules27082464
Sun J, Wang L, Lu S, Wang Z, Chen M, Liang W, Lin X, Lin X. Environmentally Friendly g-C3N4/Sepiolite Fiber for Enhanced Degradation of Dye under Visible Light. Molecules. 2022; 27(8):2464. https://doi.org/10.3390/molecules27082464
Chicago/Turabian StyleSun, Jiayue, Lianying Wang, Simei Lu, Zhuoyuan Wang, Menglin Chen, Weixia Liang, Xiu Lin, and Xiangfeng Lin. 2022. "Environmentally Friendly g-C3N4/Sepiolite Fiber for Enhanced Degradation of Dye under Visible Light" Molecules 27, no. 8: 2464. https://doi.org/10.3390/molecules27082464
APA StyleSun, J., Wang, L., Lu, S., Wang, Z., Chen, M., Liang, W., Lin, X., & Lin, X. (2022). Environmentally Friendly g-C3N4/Sepiolite Fiber for Enhanced Degradation of Dye under Visible Light. Molecules, 27(8), 2464. https://doi.org/10.3390/molecules27082464