MicroRNA-134-5p and the Extent of Arterial Occlusive Disease Are Associated with Risk of Future Adverse Cardiac and Cerebral Events in Diabetic Patients Undergoing Carotid Artery Stenting for Symptomatic Carotid Artery Disease
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Biochemical Tests and miRs Extraction
4.3. Carotid Artery Stenting Procedure
4.4. Follow-Up and Reporting of MACCE
4.5. Statistical Analysis
5. Conclusions
6. Study Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Gartner, H.V.; Eigentler, T.K. Pathogenesis of diabetic macro- and microangiopathy. Clin. Nephrol. 2008, 70, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Han, B.; Zhang, H.; Ji, G.; Zhang, L.; Singh, B.K. Association of Lower Extremity Vascular Disease, Coronary Artery, and Carotid Artery Atherosclerosis in Patients with Type 2 Diabetes Mellitus. Comput. Math Methods Med. 2021, 2021, 6268856. [Google Scholar] [CrossRef] [PubMed]
- Einarson, T.R.; Acs, A.; Ludwig, C.; Panton, U.H. Prevalence of cardiovascular disease in type 2 diabetes: A systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc. Diabetol. 2018, 17, 83. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Green, J.B.; Dunning, A.; Lokhnygina, Y.; Al-Khatib, S.M.; Lopes, R.D.; Buse, J.B.; Lachin, J.M.; Van de Werf, F.; Armstrong, P.W.; et al. Causes of Death in a Contemporary Cohort of Patients with Type 2 Diabetes and Atherosclerotic Cardiovascular Disease: Insights From the TECOS Trial. Diabetes Care 2017, 40, 1763–1770. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, J.; Guerra, C.L.; Fernandez-Moreno, M.D.C.; Sierra, C. Diabetes and stroke prevention: A review. Stroke Res. Treat. 2012, 2012, 673187. [Google Scholar] [CrossRef] [PubMed]
- Young, J.B.; Gauthier-Loiselle, M.; Bailey, R.A.; Manceur, A.M.; Lefebvre, P.; Greenberg, M.; Lafeuille, M.-H.; Duh, M.S.; Bookhart, B.; Wysham, C.H. Development of predictive risk models for major adverse cardiovascular events among patients with type 2 diabetes mellitus using health insurance claims data. Cardiovasc. Diabetol. 2018, 17, 118. [Google Scholar] [CrossRef]
- Baluja, A.; Rodríguez-Mañero, M.; Cordero, A.; Kreidieh, B.; Iglesias-Alvarez, D.; García-Acuña, J.M.; Martínez-Gómez, A.; Agra-Bermejo, R.; Alvarez-Rodríguez, L.; Abou-Jokh, C.; et al. Prediction of major adverse cardiac, cerebrovascular events in patients with diabetes after acute coronary syndrome. Diabetes Vasc. Dis. Res. 2020, 17, 1479164119892137. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liu, Y.; Wang, Z.; Hou, H.; Lin, Y.; Jiang, Y. MicroRNA: Not Far from Clinical Application in Ischemic Stroke. ISRN Stroke 2013, 2013, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kadir, R.R.A.; Alwjwaj, M.; Bayraktutan, U. MicroRNA: An Emerging Predictive, Diagnostic, Prognostic and Therapeutic Strategy in Ischaemic Stroke. Cell. Mol. Neurobiol. 2020, 1–19. [Google Scholar] [CrossRef]
- Sheikhbahaei, S.; Manizheh, D.; Mohammad, S.; Hasan, T.M.; Saman, N.; Laleh, R.; Mahsa, M.; Sanaz, A.K.; Shaghayegh, H.J. Can MiR-503 be used as a marker in diabetic patients with ischemic stroke? BMC Endocr. Disord. 2019, 19, 42. [Google Scholar] [CrossRef]
- Bertoluci, M.C.; Rocha, V.Z. Cardiovascular risk assessment in patients with diabetes. Diabetol. Metab. Syndr. 2017, 9, 25. [Google Scholar] [CrossRef] [Green Version]
- Gacoń, J.; Badacz, R.; Stępień, E.; Karch, I.; Enguita, F.J.; Żmudka, K.; Przewłocki, T.; Kabłak-Ziembicka, A. Diagnostic and prognostic micro-RNAs in ischaemic stroke due to carotid artery stenosis and in acute coronary syndrome: A four-year prospective study. Kardiol. Pol. 2018, 76, 362–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, R.; Liu, H.; Liu, C.; Xu, Y.; Liu, C. Expression and short-term prognostic value of miR-126 and miR-182 in patients with acute stroke. Exp. Ther. Med. 2020, 19, 527–534. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-M.; Jung, K.-H.; Chu, K.; Lee, S.-T.; Ban, J.; Moon, J.; Kim, M.; Lee, S.K.; Roh, J.-K. Atherosclerosis-Related Circulating MicroRNAs as a Predictor of Stroke Recurrence. Transl. Stroke Res. 2015, 6, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.C.C.; Hess, C.N.; Hiatt, W.R.; Goldfine, A.B. Clinical Update: Cardiovascular Disease in Diabetes Mellitus Atherosclerotic Cardiovascular Disease and Heart Failure in Type 2 Diabetes Mellitus—Mechanisms, Management, and Clinical Considerations. Circulation 2016, 133, 2459–2502. [Google Scholar] [CrossRef] [PubMed]
- Ballotari, P.; Ranieri, S.C.; Luberto, F.; Caroli, S.; Greci, M.; Rossi, P.G.; Manicardi, V. Sex Differences in Cardiovascular Mortality in Diabetics and Nondiabetic Subjects: A Population-Based Study (Italy). Int. J. Endocrinol. 2015, 2015, 914057. [Google Scholar] [CrossRef] [PubMed]
- Sardu, C.; Modugno, P.; Castellano, G.; Scisciola, L.; Barbieri, M.; Petrella, L.; Fanelli, M.; Macchia, G.; Caradonna, E.; Massetti, M.; et al. Atherosclerotic Plaque Fissuration and Clinical Outcomes in Pre-Diabetics vs. Normoglycemics Patients Affected by Asymptomatic Significant Carotid Artery Stenosis at 2 Years of Follow-Up: Role of microRNAs Modulation: The ATIMIR Study. Biomedicines. 2021, 9, 401. [Google Scholar] [CrossRef] [PubMed]
- Maitrias, P.; Meuth, V.M.-L.; Massy, Z.A.; M’Baya-Moutoula, E.; Reix, T.; Caus, T.; Metzinger, L. MicroRNA deregulation in symptomatic carotid plaque. J. Vasc. Surg. 2015, 62, 1245–1250. [Google Scholar] [CrossRef] [Green Version]
- Ambros, V. The functions of animal microRNAs. Nature 2004, 431, 350–355. [Google Scholar] [CrossRef]
- Brevetti, G.; Piscione, F.; Cirillo, P.; Galasso, G.; Schiano, V.; Barbato, E.; Scopacasa, F.; Chiariello, M. In concomitant coronary and peripheral arterial disease, inflammation of the affected limbs predicts coronary artery endothelial dysfunction. Atherosclerosis 2008, 201, 440–446. [Google Scholar] [CrossRef]
- Sorrentino, S.; Iaconetti, C.; De Rosa, S.; Polimeni, A.; Sabatino, J.; Gareri, C.; Passafaro, F.; Mancuso, T.; Tammè, L.; Mignogna, C.; et al. Hindlimb ischemia impairs endotelial recovery and increases neointimal proliferation in the carotid artery. Sci. Rep. 2018, 8, 761. [Google Scholar] [CrossRef] [PubMed]
- Badacz, R.; Przewłocki, T.; Gacoń, J.; Stępień, E.; Enguita, F.J.; Karch, I.; Żmudka, K.; Kabłak-Ziembicka, A. Circulating miRNA levels differ with respect to carotid plaque characteristics and symptom occurrence in patients with carotid artery stenosis and provide information on future cardiovascular events. Postepy Kardiol Interwencyjnej 2018, 14, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Dégano, I.R.; Camps-Vilaró, A.; Subirana, I.; García-Mateo, N.; Cidad, P.; Muñoz-Aguayo, D.; Puigdecanet, E.; Nonell, L.; Vila, J.; Crepaldi, F.M.; et al. Association of Circulating microRNAs with Coronary Artery Disease and Usefulness for Reclassification of Healthy Individuals: The REGICOR Study. J. Clin. Med. 2020, 9, 1402. [Google Scholar] [CrossRef] [PubMed]
- Kong, G.; Hao, X.; Xing, C. Increased plasma miR-16 is associated with poor prognosis for acute myocardial infarction. Int. J. Clin. Exp. Med. 2019, 12, 4070–4075. [Google Scholar]
- Badacz, R.; Kleczyński, P.; Legutko, J.; Żmudka, K.; Gacoń, J.; Przewłocki, T.; Kabłak-Ziembicka, A. Expression of miR-1-3p, miR-16-5p and miR-122-5p as Possible Risk Factors of Secondary Cardiovascular Events. Biomedicines 2021, 9, 1055. [Google Scholar] [CrossRef]
- Schratt, G.M.; Tuebing, F.; Nigh, E.A.; Kane, C.G.; Sabatini, M.E.; Kiebler, M.; Greenberg, M.E. A brain-specific microRNA regulates dendritic spine development. Nature 2006, 439, 283–289. [Google Scholar] [CrossRef]
- Huang, W.; Liu, X.; Cao, J.; Meng, F.; Li, M.; Chen, B.; Zhang, J. MiR-134 regulates ischemia/reperfusion injury-induced neuronal cell death by regulating CREB signaling. J. Mol. Neurosci. 2015, 55, 821–829. [Google Scholar] [CrossRef]
- Chi, W.; Meng, F.; Li, Y.; Li, P.; Wang, G.; Cheng, H.; Han, S.; Li, J. Impact of microRNA-134 on neural cell survival against ischemic injury in primary cultured neuronal cells and mouse brain with ischemic stroke by targeting HSPA12B. Brain Res. 2014, 1592, 22–33. [Google Scholar] [CrossRef]
- Lan, G.; Xie, W.; Li, L.; Zhang, M.; Liu, D.; Tan, Y.-L.; Cheng, H.-P.; Gong, D.; Huang, C.; Zheng, X.-L.; et al. MicroRNA-134 actives lipoprotein lipase-mediated lipid accumulation and inflammatory response by targeting angiopoietin-like 4 in THP-1 macrophages. Biochem. Biophys. Res. Commun. 2016, 472, 410–417. [Google Scholar] [CrossRef]
- Pirola, L.; Ferraz, J.C. Role of pro- and anti-inflammatory phenomena in the physiopathology of type 2 diabetes and obesity. World J. Biol. Chem. 2017, 8, 120–128. [Google Scholar] [CrossRef]
- Qian, X.; Tan, J.; Liu, L.; Chen, S.; You, N.; Yong, H.; Pan, M.; You, Q.; Ding, D.; Lu, Y. MicroRNA-134-5p promotes high glucose-induced podocyte apoptosis by targeting bcl-2. Am. J. Transl. Res. 2018, 10, 989–997. [Google Scholar] [PubMed]
- Kosmas, C.E.; Silverio, D.; Tsomidou, C.; Salcedo, M.D.; Montan, P.D.; Guzman, E. The Impact of Insulin Resistance and Chronic Kidney Disease on Inflammation and Cardiovascular Disease. Clin. Med. Insights: Endocrinol. Diabetes 2018, 11, 1179551418792257. [Google Scholar] [CrossRef]
- Wang, K.-J.; Zhao, X.; Liu, Y.-Z.; Zeng, Q.-T.; Mao, X.-B.; Li, S.-N.; Zhang, M.; Jiang, C.; Zhou, Y.; Qian, C.; et al. Circulating MiR-19b-3p, MiR-134-5p and MiR-186-5p are Promising Novel Biomarkers for Early Diagnosis of Acute Myocardial Infarction. Cell. Physiol. Biochem. 2016, 38, 1015–1029. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Ling, S.; Sun, W.; Liu, T.; Li, Y.; Zhong, G.; Zhao, D.; Zhang, P.; Song, J.; Jin, X.; et al. Circulating microRNAs correlated with the level of coronary artery calcification in symptomatic patients. Sci. Rep. 2015, 5, 16099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pielok, A.; Marycz, K. Non-Coding RNAs as Potential Novel Biomarkers for Early Diagnosis of Hepatic Insulin Resistance. Int. J. Mol. Sci. 2020, 21, 4182. [Google Scholar] [CrossRef]
- Pereira-Da-Silva, T.; Napoleão, P.; Costa, M.; Gabriel, A.; Selas, M.; Silva, F.; Enguita, F.; Ferreira, R.; Carmo, M. Cigarette Smoking, miR-27b Downregulation, and Peripheral Artery Disease: Insights into the Mechanisms of Smoking Toxicity. J. Clin. Med. 2021, 10, 890. [Google Scholar] [CrossRef]
- Badacz, R.; Kabłak-Ziembicka, A.; Rosławiecka, A.; Rzeźnik, D.; Baran, J.; Trystuła, M.; Legutko, J.; Przewłocki, T. The Maintained Glycemic Target Goal and Renal Function Are Associated with Cardiovascular and Renal Outcomes in Diabetic Patients Following Stent-Supported Angioplasty for Renovascular Atherosclerotic Disease. J. Pers. Med. 2022, 12, 537. [Google Scholar] [CrossRef]
- Przewłocki, T.; Kablak-Ziembicka, A.; Kozanecki, A.; Rzeźnik, D.; Pieniazek, P.; Musiałek, P.; Piskorz, A.; Sokołowski, A.; Rosławiecka, A.; Tracz, W. Polyvascular extracoronary atherosclerotic disease in patients with coronary artery disease. Kardiologia Polska 2009, 67, 978–984. [Google Scholar]
- Leon, B.M.; Maddox, T.M. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J. Diabetes 2015, 6, 1246–1258. [Google Scholar] [CrossRef]
- Hernández, C.; Candell-Riera, J.; Ciudin, A.; Francisco, G.; Aguadé-Bruix, S.; Simó, R. Prevalence and risk factors accounting for true silent myocardial ischemia: A pilot case-control study comparing type 2 diabetic with non-diabetic control subjects. Cardiovasc. Diabetol. 2011, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Abraham, T.M.; Pencina, K.M.; Pencina, M.J.; Fox, C.S. Trends in Diabetes Incidence: The Framingham Heart Study. Diabetes Care 2014, 38, 482–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conroy, R.M.; Pyörälä, K.; Fitzgerald, A.P.; Sans, S.; Menotti, A.; De Backer, G.; De Bacquer, D.; Ducimetière, P.; Jousilahti, P.; Keil, U.; et al. SCORE project group. Estimation of ten-year risk of fatal cardiovascular disease in Europe: The SCORE project. Eur. Heart J. 2003, 24, 987–1003. [Google Scholar] [CrossRef]
- Chait, A.; den Hartigh, L.J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front. Cardiovasc. Med. 2020, 7, 22. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, S.J.; Watts, G.F. Endothelial dysfunction in diabetes: Pathogenesis, significance, and treatment. Rev. Diabet. Stud. 2013, 10, 133–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torella, D.; Iaconetti, C.; Tarallo, R.; Marino, F.; Giurato, G.; Veneziano, C.; Aquila, I.; Scalise, M.; Mancuso, T.; Cianflone, E.; et al. miRNA Regulation of the Hyperproliferative Phenotype of Vascular Smooth Muscle Cells in Diabetes. Diabetes 2018, 67, 2554–2568. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Wang, H.; Liang, J.; Li, Y.; Li, X. MicroRNA-503-5p improves carotid artery stenosis by inhibiting the proliferation of vascular smooth muscle cells. Exp. Ther. Med. 2020, 20, 85. [Google Scholar] [CrossRef]
- Aboyans, V.; Bartelink, M.L.; Baumgartner, I.; Clément, D.; Collet, J.P.; Cremonesi, A.; de Carlo, M.; Erbel, R.; European Stroke Organisation; ESC Committee for Practice Guidelines. ESC Guidelines on the diagnosis and treatment of peripheral artery diseases: Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries: The Task Force on the Diagnosis and Treatment of Peripheral Artery Diseases of the European Society of Cardiology (ESC). Eur. Heart J. 2011, 32, 2851–2906. [Google Scholar]
- Aboyans, V.; Ricco, J.B.; Bartelink, M.E.L.; Björck, M.; Brodmann, M.; Cohnert, T.; Collet, J.P.; Czerny, M.; De Carlo, M.; Debus, S.; et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteriesEndorsed by: The European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur. Heart J. 2018, 39, 763–816. [Google Scholar]
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef] [Green Version]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [PubMed]
- Pieniazek, P.; Musialek, P.; Kablak-Ziembicka, A.; Tekieli, L.; Motyl, R.; Przewlocki, T.; Moczulski, Z.; Pasowicz, M.; Sokolowski, A.; Lesniak-Sobelga, A.; et al. Carotid artery stenting with patient- and lesion-tailored selection of the neuroprotection system and stent type: Early and 5-year results from a prospective academic registry of 535 consecutive procedures (TARGET-CAS). J. Endovasc. Ther. 2008, 15, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Musialek, P.; Pieniazek, P.; Tracz, W.; Tekieli, L.; Przewlocki, T.; Kablak-Ziembicka, A.; Motyl, R.; Moczulski, Z.; Stepniewski, J.; Trystula, M.; et al. Safety of embolic protection device-assisted and unprotected intravascular ultrasound in evaluating carotid artery atherosclerotic lesions. Med Sci. Monit. 2012, 18, MT7–MT18. [Google Scholar] [CrossRef] [PubMed]
Parameter | All n = 101 | Diabetic n = 37 | Non-Diabetic n = 64 | p-Value |
---|---|---|---|---|
Demographic data | ||||
Age, (median; IQR) | 69; 62–76 | 71; 63–78 | 67.5; 61.5–74 | 0.159 |
Male gender, n (%) | 63 (62.3%) | 21 (56.8%) | 42 (65.6%) | 0.375 |
Hypertension, n (%) | 96 (95.0%) | 35 (94.5%) | 61 (95.3%) | 0.872 |
Hypercholesterolemia, n (%) | 87 (86.1%) | 34 (91.8%) | 53 (82.8%) | 0.203 |
Smoking habit, n (%) | 62 (61.3%) | 19 (51.3%) | 43 (67.2%) | 0.115 |
Coronary artery disease, n (%) * | 54 (53.4%) | 23 (62.2%) | 31 (48.4%) | 0.182 |
Lower extremities arterial disease, n (%) * | 28 (27.7%) | 11 (29.7%) | 17 (26.6%) | 0.731 |
Prior myocardial infarction, n (%) | 20 (19.8%) | 8 (21.6%) | 12 (18.7%) | 0.727 |
Renal artery stenosis, n (%) * | 7 (6.9%) | 2 (5.4%) | 5 (7.8%) | 0.646 |
Laboratory results (serum) | ||||
Serum creatinine, μmol/L, (median; IQR) | 82; 70–100 | 85; 71–101 | 81; 68.5–99 | 0.361 |
C-Reactive Protein, g/L, (median; IQR) | 2.59; 1.99–250 | 3.15; 1.83–6.29 | 2.21; 1.27–4.45 | 0.146 |
Fibrinogen, g/L, (median; IQR) | 3.51; 3.01–4.30 | 3.78; 3.33–4.62 | 3.40; 3.00–4.00 | 0.062 |
LDL-cholesterol, mmol/L, (median; IQR) | 2.65; 1.99–3.04 | 2.59; 1.94–3.46 | 2.56; 2.03–2.95 | 0.292 |
microRNA | ||||
miR-1-3p, A.U., (median; IQR) | 0.17; 0.08–0.32 | 0.15; 0.08–0.24 | 0.19; 0.08–0.38 | 0.227 |
miR-122-5p, A.U., (median; IQR) | 48.05; 19.43–250.4 | 40.95; 12.72–142.4 | 52.82; 28.63–310.4 | 0.146 |
miR-124-3p, A.U., (median; IQR) | 0.23; 0.09–0.63 | 0.24; 0.09–0.57 | 0.22; 0.08–0.66 | 0.625 |
miR-133a-3p, A.U., (median; IQR) | 0.87; 0.63–1.22 | 0.85; 0.62–1.26 | 0.87; 0.63–1.15 | 0.805 |
miR-133b, A.U., (median; IQR) | 1.87; 1.19–2.53 | 1.87; 1.15–2.60 | 1.69; 1.24–2.47 | 0.766 |
miR-134-5p, A.U., (median; IQR) | 0.82; 0.33–2.80 | 0.90; 0.43–3.17 | 0.73; 0.29–1.87 | 0.357 |
miR-16-5p, A.U., (median; IQR) | 94.57; 37.57–263.7 | 45.32; 14.60–71.19 | 122.78; 64.96–543 | <0.001 |
miR-208b-3p, A.U., (median; IQR) | 0.005; 0.002–0.022 | 0.005; 0.002–0.018 | 0.005; 0.002–0.02 | 0.978 |
miR-34a-5p, A.U., (median; IQR) | 0.72; 0.31–1.06 | 0.76; 0.48–1.11 | 0.63; 0.28–1.04 | 0.145 |
miR-375, A.U., (median; IQR) | 3.53; 1.62–10.21 | 3.11; 1.49–6.71 | 4.48; 1.69–21.15 | 0.226 |
miR-499-5p, A.U., (median; IQR) | 0.02; 0.01–0.04 | 0.02; 0.01–0.07 | 0.02; 0.01–0.04 | 0.605 |
Prognostic Factors | Diabetic Patients | Non-Diabetic Patients | ||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
microRNA | ||||
miR-1-3p | 3.93 (0.57–27.06) | 0.164 | 3.72 (1.21–11.5) | 0.022 |
miR-122-5p | 1.01 (0.99–1.02) | 0.678 | 1.00 (0.99–1.01) | 0.412 |
miR-124-3p | 0.81 (0.40–1.64) | 0.568 | 1.34 (0.76–2.38) | 0.305 |
miR-133a-3p | 2.13 (0.88–5.11) | 0.089 | 0.89 (0.60–1.32) | 0.573 |
miR-133b | 0.87 (0.53–1.42) | 0.581 | 0.98 (0.80–1.20) | 0.862 |
miR-134-5p | 1.04 (1.01–1.07) | 0.020 | 1.05 (0.98–1.13) | 0.140 |
miR-16-5p | 1.01 (1.00–1.02) | 0.048 | 1.0006 (1.0001–1.001) | 0.019 |
miR-208b-3p | 4.42 (0.87–22.25) | 0.071 | 2.77 (0.84–9.15) | 0.095 |
miR-34a-5p | 0.41 (0.15–1.07) | 0.070 | 1.04 (0.80–1.36) | 0.749 |
miR-375 | 1.02 (0.98–1.06) | 0.325 | 1.01 (0.99–1.02) | 0.856 |
miR-499-5p | 4.84 (1.07–21.89) | 0.040 | 0.36 (0.02–11.13) | 0.566 |
Demographic data | ||||
Age | 1.02 (0.96–1.08) | 0.457 | 1.02 (0.97–1.06) | 0.375 |
Male gender | 0.57 (0.19–1.69) | 0.317 | 0.84 (0.36–1.97) | 0.700 |
Hypertension | n.a. | n.a. | 0.32 (0.09–1.08) | 0.067 |
Hiperlipidemia | 1.56 (0.20–11.89) | 0.667 | 1.07 (0.37–3.13) | 0.897 |
Smoking habit | 1.12 (0.41–3.13) | 0.817 | 1.69 (0.31–2.53) | 0.369 |
CAD | 1.38 (0.46–4.08) | 0.558 | 0.97 (0.44–2.14) | 0.956 |
LEAD | 4.41 (1.57–12.42) | 0.004 | 2.04 (0.91–4.55) | 0.081 |
Prior MI | 3.39 (1.13–10.20) | 0.029 | 1.05 (0.39–2.82) | 0.921 |
Renal artery stenosis | 5.72 (1.20–27.21) | 0.028 | 1.25 (0.49–3.15) | 0.635 |
Laboratory results | ||||
Serum creatinine | 1.02 (0.99–1.01) | 0.056 | 1.00 (0.99–1.01) | 0.646 |
C-Reactive Protein | 1.10 (1.01–1.20) | 0.025 | 0.96 (0.90–1.04) | 0.392 |
Fibrinogen | 1.25 (0.82–1.90) | 0.309 | 0.60 (0.34–1.04) | 0.070 |
LDL-cholesterol | 0.90 (0.61–1.35) | 0.617 | 1.37 (0.83–2.29) | 0.221 |
Study Group | Prognostic Factors | HR (95% CI) | p-Value |
---|---|---|---|
Patients with diabetes | miR-134-5p | 1.12 (1.05–1.21) | 0.028 |
hs-CRP | 1.14 (1.01–1.28) | 0.022 | |
prior MI | 8.56 (1.91–38.25) | 0.004 | |
LEAD | 11.98 (2.99–48.0) | <0.001 | |
RAS | 20.24 (2.44–167.5) | 0.005 | |
miR-499-5p | 0.16 (0.02–1.32) | 0.089 | |
miR-133a-3p | 2.12 (0.51–8.91) | 0.302 | |
miR-16-5p | 1.01 (0.99–1.02) | 0.410 | |
miR-208b-3p | 5.91 (0.01–7.93) | 0.314 | |
miR 34a-5p | 0.65 (0.15–2.67) | 0.552 | |
Patients diabetes-free | miR-16-5p | 1.0006 (1.0001–1.0011) | 0.016 |
hypertension | 0.27 (0.07–0.95) | 0.042 | |
miR-208b-3p | 2.82 (0.91–8.71) | 0.071 | |
miR-1-3p | 0.58 (0.06–5.22) | 0.628 | |
Fibrinogen | 0.31 (0.08–1.12) | 0.171 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badacz, R.; Przewłocki, T.; Pieniążek, P.; Rosławiecka, A.; Kleczyński, P.; Legutko, J.; Żmudka, K.; Kabłak-Ziembicka, A. MicroRNA-134-5p and the Extent of Arterial Occlusive Disease Are Associated with Risk of Future Adverse Cardiac and Cerebral Events in Diabetic Patients Undergoing Carotid Artery Stenting for Symptomatic Carotid Artery Disease. Molecules 2022, 27, 2472. https://doi.org/10.3390/molecules27082472
Badacz R, Przewłocki T, Pieniążek P, Rosławiecka A, Kleczyński P, Legutko J, Żmudka K, Kabłak-Ziembicka A. MicroRNA-134-5p and the Extent of Arterial Occlusive Disease Are Associated with Risk of Future Adverse Cardiac and Cerebral Events in Diabetic Patients Undergoing Carotid Artery Stenting for Symptomatic Carotid Artery Disease. Molecules. 2022; 27(8):2472. https://doi.org/10.3390/molecules27082472
Chicago/Turabian StyleBadacz, Rafał, Tadeusz Przewłocki, Piotr Pieniążek, Agnieszka Rosławiecka, Paweł Kleczyński, Jacek Legutko, Krzysztof Żmudka, and Anna Kabłak-Ziembicka. 2022. "MicroRNA-134-5p and the Extent of Arterial Occlusive Disease Are Associated with Risk of Future Adverse Cardiac and Cerebral Events in Diabetic Patients Undergoing Carotid Artery Stenting for Symptomatic Carotid Artery Disease" Molecules 27, no. 8: 2472. https://doi.org/10.3390/molecules27082472
APA StyleBadacz, R., Przewłocki, T., Pieniążek, P., Rosławiecka, A., Kleczyński, P., Legutko, J., Żmudka, K., & Kabłak-Ziembicka, A. (2022). MicroRNA-134-5p and the Extent of Arterial Occlusive Disease Are Associated with Risk of Future Adverse Cardiac and Cerebral Events in Diabetic Patients Undergoing Carotid Artery Stenting for Symptomatic Carotid Artery Disease. Molecules, 27(8), 2472. https://doi.org/10.3390/molecules27082472