Recent Advances in the Antiproliferative and Proapoptotic Activity of Various Plant Extracts and Constituents against Murine Malignant Melanoma
Abstract
:1. Introduction
1.1. Incidence and Epidemiology
1.2. Current Treatment Options in Malignant Melanoma
2. Plant-Derived Drugs: A Historical Perspective
3. Sources and Methodology
4. Bioactive Compounds Tested on B16F10 Murine Melanoma Cells—In Vitro
4.1. Polyphenols
4.2. Flavonoids
4.3. Anthocyanins
4.4. Alkaloids
4.5. Polysaccharides
4.6. Terpenes
4.7. Essential Oils
5. Bioactive Natural Compounds Tested In Vivo Models
5.1. Polyphenols
5.2. Alkaloids
5.3. Terpenes
5.4. Multiple Bioactive Compounds
6. Bioactive Compounds Tested Both In Vitro and In Vivo
6.1. Polyphenols
6.2. Flavonoids
6.3. Alkaloids
6.4. Terpenes
6.5. Multiple Bioactive Compounds
6.6. Carotenoids
6.7. Peptides
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; International Natural Product Sciences Taskforce; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta 2013, 1830, 3670–3695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinembiri, T.N.; Du Plessis, L.H.; Gerber, M.; Hamman, J.H.; Du Plessis, J. Review of natural compounds for potential skin cancer treatment. Molecules 2014, 19, 11679–11721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinjo, J.; Nakano, D.; Fujioka, T.; Okabe, H. Screening of promising chemotherapeutic candidates from plants extracts. J. Nat. Med. 2016, 70, 335–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skin Cancer Facts & Statistics. Available online: https://www.skincancer.org/skin-cancer-information/skin-cancer-facts/ (accessed on 10 February 2022).
- Key Statistics for Melanoma Skin Cancer. Available online: https://www.cancer.org/cancer/melanoma-skin-cancer/about/key-statistics.html (accessed on 18 January 2022).
- Nishiya, A.T.; Massoco, C.O.; Felizzola, C.R.; Perlmann, E.; Batschinski, K.; Tedardi, M.V.; Garcia, J.S.; Mendonça, P.P.; Teixeira, T.F.; Dagli, M.L.Z. Comparative Aspects of Canine Melanoma. Vet. Sci. 2016, 3, 7. [Google Scholar] [CrossRef]
- Danciu, C.; Soica, C.; Antal, D.; Alexa, E.; Pavel, I.Z.; Ghiulai, R.; Ardelean, F.; Babuta, R.M.; Popescu, A.; Dehelean, C.A. Natural compounds in the chemoprevention of malignant melanoma. Anti-Cancer Agents Med. Chem. 2018, 18, 631–644. [Google Scholar] [CrossRef]
- Narayanan, D.L.; Saladi, R.N.; Fox, J.L. Review: Ultraviolet radiation and skin cancer. Int. J. Dermatol. 2010, 49, 978–986. [Google Scholar] [CrossRef]
- Gastaldello, G.; Cazeloto, A.; Ferreira, J.; Rodrigues, D.; Bastos, J.; Campo, V.; Zoccal, K.; Tefé-Silva, C. Green Propolis Compounds (Baccharin and p-Coumaric Acid) Show Beneficial Effects in Mice for Melanoma Induced by B16f10. Medicines 2021, 8, 20. [Google Scholar] [CrossRef]
- Gao, C.; Yan, X.; Wang, B.; Yu, L.; Han, J.; Li, D.; Zheng, Q. Jolkinolide B induces apoptosis and inhibits tumor growth in mouse melanoma B16F10 cells by altering glycolysis. Sci. Rep. 2016, 6, 36114. [Google Scholar] [CrossRef] [Green Version]
- Santhanam, R.K.; Ahmad, S.; Abas, F.; Ismail, I.S.; Rukayadi, Y.; Akhtar, M.T.; Shaari, K. Bioactive constituents of Zanthoxylum rhetsa bark and its cytotoxic potential against B16-F10 melanoma cancer and normal human dermal fibroblast (HDF) cell lines. Molecules 2016, 21, 652. [Google Scholar] [CrossRef] [Green Version]
- Jahanban-Esfahlan, A.; Modaeinama, S.; Abasi, M.; Abbasi, M.M.; Jahanban-Esfahlan, R. Anti proliferative properties of Melissa ofcinalis in diferent human cancer cells. Asian Pacifc J. Cancer Prev. 2015, 16, 5703–5707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, C.-C.; Chang, Y.-H.; Chang, C.-C.; Cheng, Y.-M.; Ou, Y.-C.; Chien, C.-C.C.; Hsu, Y.-C. Induction of Apoptosis in Endometrial Cancer (Ishikawa) Cells by Pogostemon cablin Aqueous Extract (PCAE). Int. J. Mol. Sci. 2015, 16, 12424–12435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, B.; Liu, L.; Zhao, Y.; Xiu, L.-J.; Sun, D.-Z.; Liu, X.; Lu, Y.; Shi, J.; Zhang, Y.-C.; Li, Y.-J.; et al. Xiaotan Sanjie decoction attenuates tumor angiogenesis by manipulating Notch-1-regulated proliferation of gastric cancer stem-like cells. World J. Gastroenterol. 2014, 20, 13105–13118. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.-M.; Park, J.-S.; Lee, J.; Hong, J.T.; Bang, O.-S.; Kim, N.S. Anti-angiogenic potential of an ethanol extract of Annona atemoya seeds in vitro and in vivo. BMC Complement. Altern. Med. 2014, 14, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adaramoye, O.; Adedara, I.; Popoola, B.; Farombi, E. Extract of Xylopia aethiopica (Annonaceae) protects against gammaradiation induced testicular damage in Wistar rats. J. Basic Clin. Physiol. Pharmacol. 2010, 21, 295–313. [Google Scholar] [CrossRef]
- Adaramoye, O.A.; Okiti, O.O.; Farombi, E.O. Dried fruit extract from Xylopia aethiopica (Annonaceae) protects Wistar albino rats from adverse efects of whole body radiation. Exp. Toxicol. Pathol. 2011, 63, 635–643. [Google Scholar] [CrossRef]
- Diaconeasa, Z.; Știrbu, I.; Xiao, J.; Leopold, N.; Ayvaz, Z.; Danciu, C.; Ayvaz, H.; Stǎnilǎ, A.; Nistor, M.; Socaciu, C. Anthocyanins, Vibrant Color Pigments, and Their Role in Skin Cancer Prevention. Biomedicines 2020, 8, 336. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [Green Version]
- Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in Cancer Treatment: From Preclinical Studies to Clinical Practice. Front. Pharmacol. 2019, 10, 1614. [Google Scholar] [CrossRef] [Green Version]
- Li, P.-H.; Chiu, Y.-P.; Shih, C.-C.; Wen, Z.-H.; Ibeto, L.K.; Huang, S.-H.; Chiu, C.-C.; Ma, D.-L.; Leung, C.-H.; Chang, Y.-N.; et al. Biofunctional activities of Equisetum ramosissimum extract: Protective effects against oxidation, melanoma, and melanogenesis. Oxidative Med. Cell. Longev. 2016, 2016, 1–9. [Google Scholar]
- Zucca, P.; Argiolas, A.; Nieddu, M.; Pintus, M.; Rosa, A.; Sanna, F.; Sollai, F.; Steri, D.; Rescigno, A. Biological activities and nutraceutical potentials of water extracts from different parts of Cynomorium coccineum L. (Maltese Mushroom). Pol. J. Food Nutr. Sci. 2016, 66, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Chao, E.; Tian, J.; Fan, L.; Zhang, T. Drying methods influence the physicochemical and functional properties of seed-used pumpkin. Food Chem. 2021, 369, 130937. [Google Scholar] [CrossRef] [PubMed]
- Gismondi, A.; Canuti, L.; Impei, S.; Di Marco, G.; Kenzo, M.; Colizzi, V.; Canini, A. Antioxidant extracts of African medicinal plants induce cell cycle arrest and differentiation in B16F10 melanoma cells. Int. J. Oncol. 2013, 43, 956–964. [Google Scholar] [CrossRef] [PubMed]
- Hanganu, D.; Niculae, M.; Ielciu, I.; Olah, N.-K.; Munteanu, M.; Burtescu, R.; Ștefan, R.; Olar, L.; Pall, E.; Andrei, S.; et al. Chemical Profile, Cytotoxic Activity and Oxidative Stress Reduction of Different Syringa vulgaris L. Extracts. Molecules 2021, 26, 3104. [Google Scholar] [CrossRef] [PubMed]
- Prieto, K.; Lozano, M.P.; Urueña, C.; Alméciga-Díaz, C.J.; Fiorentino, S.; Barreto, A. The delay in cell death caused by the induction of autophagy by P2Et extract is essential for the generation of immunogenic signals in melanoma cells. Apoptosis 2020, 25, 875–888. [Google Scholar] [CrossRef]
- Gokce, M.; Guler, E.M.A. hierchuntica extract exacerbates genotoxic, cytotoxic, apoptotic and oxidant effects in B16F10 melanoma cells. Toxicon 2021, 198, 73–79. [Google Scholar] [CrossRef]
- Yoo, T.-K.; Kim, J.-S.; Hyun, T.K. Polyphenolic Composition and Anti-Melanoma Activity of White Forsythia (Abeliophyllum distichum Nakai) Organ Extracts. Plants 2020, 9, 757. [Google Scholar] [CrossRef]
- Huang, H.-C.; Wang, S.-S.; Tsai, T.-C.; Ko, W.-P.; Chang, T.-M. Phoenix dactylifera L. Seed Extract Exhibits Antioxidant Effects and Attenuates Melanogenesis in B16F10 Murine Melanoma Cells by Downregulating PKA Signaling. Antioxidants 2020, 9, 1270. [Google Scholar] [CrossRef]
- Nanni, V.; Di Marco, G.; Sacchetti, G.; Canini, A.; Gismondi, A. Oregano phytocomplex induces programmed cell death in melanoma lines via mitochondria and DNA damage. Foods 2020, 9, 1486. [Google Scholar] [CrossRef]
- Dória, G.A.A.; Santos, A.R.; Bittencourt, L.S.; Bortolin, R.C.; Menezes, P.P.; Vasconcelos, B.S.; Souza, R.O.; Fonseca, M.J.V.; Santos, A.D.C.; Saravanan, S.; et al. Redox-active profile characterization of Remirea maritima extracts and its cytotoxic effect in mouse fibroblasts (L929) and melanoma (B16F10) cells. Molecules 2015, 20, 11699–11718. [Google Scholar] [CrossRef] [Green Version]
- Nanni, V.; Canuti, L.; Gismondi, A.; Canini, A. Hydroalcoholic extract of Spartium junceum L. flowers inhibits growth and melanogenesis in B16-F10 cells by inducing senescence. Phytomedicine 2018, 46, 1–10. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira Melo, M.N.; Oliveira, A.P.; Wiecikowski, A.F.; Carvalho, R.S.; de Lima Castro, J.; Oliveira, F.A.G.; Pereira, H.M.G.; Veiga, V.F.; Capella, M.M.A.; Rocha, L.; et al. Phenolic compounds from Viscum album tinctures enhanced antitumor activity in melanoma murine cancer cells. Saudi Pharm. J. 2018, 3, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Ju, H.J.; Kim, K.C.; Kim, H.; Kim, J.-S.; Hyun, T.K. Variability of polyphenolic compounds and biological activities among Perilla frutescens var. crispa genotypes. Horticulturae 2021, 7, 404. [Google Scholar] [CrossRef]
- Dana, N.; Javanmard, S.H.; Rafiee, L. Antiangiogenic and antiproliferative effects of black pomegranate peel extract on melanoma cell line. Res. Pharm. Sci. 2015, 10, 117–124. [Google Scholar] [PubMed]
- Hong, C.-O.; Lee, H.A.; Rhee, C.H.; Choung, S.-Y.; Lee, K.-W. Separation of the antioxidant compound quercitrin from Lindera obtusiloba Blume and its antimelanogenic effect on B16F10 melanoma cells. Biosci. Biotechnol. Biochem. 2013, 77, 58–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaabane, F.; Pinon, A.; Simon, A.; Ghedira, K.; Chekir-Ghedira, L. Phytochemical potential of Daphne gnidium in inhibiting growth of melanoma cells and enhancing melanogenesis of B16-F0 melanoma. Cell Biochem. Funct. 2013, 31, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Rugină, D.; Hanganu, D.; Diaconeasa, Z.; Tăbăran, F.; Coman, C.; Leopold, L.; Bunea, A.; Pintea, A. Antiproliferative and apoptotic potential of cyanidin-based anthocyanins on melanoma cells. Int. J. Mol. Sci. 2017, 18, 949. [Google Scholar] [CrossRef] [Green Version]
- Wang, E.; Liu, Y.; Xu, C.; Liu, J. Antiproliferative and proapoptotic activities of anthocyanin and anthocyanidin extracts from blueberry fruits on B16-F10 melanoma cells. Food Nutr. Res. 2017, 61, 1325308. [Google Scholar] [CrossRef] [Green Version]
- Bunea, A.; Rugină, D.; Sconţa, Z.; Pop, R.M.; Pintea, A.; Socaciu, C.; Tăbăran, F.; Grootaert, C.; Struijs, K.; VanCamp, J. Anthocyanin determination in blueberry extracts from various cultivars and their antiproliferative and apoptotic properties in B16-F10 metastatic murine melanoma cells. Phytochemistry 2013, 95, 436–444. [Google Scholar] [CrossRef]
- Diaconeasa, Z.; Leopold, L.; Rugină, D.; Ayvaz, H.; Socaciu, C. Antiproliferative and antioxidant properties of anthocyanin rich extracts from blueberry and blackcurrant juice. Int. J. Mol. Sci. 2015, 16, 2352–2365. [Google Scholar] [CrossRef] [Green Version]
- Fofaria, N.M.; Kim, S.-H.; Srivastava, S.K. Piperine causes G1 phase cell cycle arrest and apoptosis in melanoma cells through checkpoint kinase-1 activation. PLoS ONE 2014, 9, e94298. [Google Scholar] [CrossRef] [PubMed]
- Wikiera, A.; Grabacka, M.; Byczyński, Ł.; Stodolak, B.; Mika, M. Enzymatically Extracted Apple Pectin Possesses Antioxidant and Antitumor Activity. Molecules 2021, 26, 1434. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.R.; Lee, J.S.; Kim, Y.R.; Song, I.G.; Hong, E.K. Polysaccharide from Inonotus obliquus inhibits migration and invasion in B16-F10 cells by suppressing MMP-2 and MMP-9 via downregulation of NF-κB signaling pathway. Oncol. Rep. 2014, 31, 2447–2453. [Google Scholar] [CrossRef] [Green Version]
- Yamahara, M.; Sugimura, K.; Kumagai, A.; Fuchino, H.; Kuroi, A.; Kagawa, M.; Itoh, Y.; Kawahara, H.; Nagaoka, Y.; Iida, O.; et al. Callicarpa longissima extract, carnosol-rich, potently inhibits melanogenesis in B16F10 melanoma cells. J. Nat. Med. 2015, 70, 28–35. [Google Scholar] [CrossRef]
- Prasedya, E.S.; Ardiana, N.; Padmi, H.; Ilhami, B.T.K.; Martyasari, N.W.R.; Sunarwidhi, A.L.; Nikmatullah, A.; Widyastuti, S.; Sunarpi, H.; Frediansyah, A. The The Antiproliferative and Apoptosis-Inducing Effects of the Red Macroalgae Gelidium latifolium Extract against Melanoma Cells. Molecules 2021, 26, 6568. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, K.; Pérez-Jiménez, A.; García-Salguero, L.; Lupiáñez, J.A.; Rufino-Palomares, E. Unveiling the Differential Antioxidant Activity of Maslinic Acid in Murine Melanoma Cells and in Rat Embryonic Healthy Cells Following Treatment with Hydrogen Peroxide. Molecules 2020, 25, 4020. [Google Scholar] [CrossRef]
- Baharara, J.; Amini, E.; Nikdel, N.; Salek-Abdollahi, F. The cytotoxicity of dacarbazine potentiated by sea cucumber saponin in resistant B16F10 melanoma cells through apoptosis induction. Avicenna J. Med. Biotechnol. 2016, 8, 112–119. [Google Scholar] [PubMed]
- AY, N.V.; Kh, A.; V, E.; O, B. Anti-Cancer Effect Of Plantago Depressa Ethanolic Extract In B16f10 Skin Cancer Cells. Mong. J. Agric. Sci. 2017, 21, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Vaseghi, G.; Naderi, J.; Dana, N.; Javanmard, S.; Amooheidari, A.; Yahay, M. Effects of standardized Cannabis sativa extract and ionizing radiation in melanoma cells in vitro. J. Cancer Res. Ther. 2018, 16, 1495–1499. [Google Scholar] [CrossRef]
- Bou, D.D.; Lago, J.H.G.; Figueiredo, C.R.; Matsuo, A.L.; Guadagnin, R.C.; Soares, M.G.; Sartorelli, P. Chemical Composition and Cytotoxicity Evaluation of Essential Oil from Leaves of Casearia Sylvestris, Its Main Compound α-Zingiberene and Derivatives. Molecules 2013, 18, 9477–9487. [Google Scholar] [CrossRef] [Green Version]
- Mustapha, N.; Bzéouich, I.M.; Ghedira, K.; Hennebelle, T.; Chekir-Ghedira, L. Compounds isolated from the aerial part of Crataegus azarolus inhibit growth of B16F10 melanoma cells and exert a potent inhibition of the melanin synthesis. Biomed. Pharmacother. 2015, 69, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Martínez, H.C.; Gomez-Flores, R.; Tamez-Guerra, P.; Quintanilla-Licea, R.; Mario, A.S.E.; Enriqueta, M.-C.; Tamez-Guerra, R.; Rodríguez-Padilla, C. Antitumor activity of Pachycereus marginatus (DC.) Britton Rose extracts against murine lymphoma L5178Y-R and skin melanoma B16F10 cells. J. Med. Plants Res. 2016, 10, 635–639. [Google Scholar]
- Chaabane, F.; Mustapha, N.; Mokdad-Bzeouich, I.; Sassi, A.; Kilani-Jaziri, S.; Franca, M.-G.D.; Michalet, S.; Fathallah, M.; Krifa, M.; Ghedira, K.; et al. In vitro and in vivo anti-melanoma effects of Daphne gnidium aqueous extract via activation of the immune system. Tumor Biol. 2016, 37, 6511–6517. [Google Scholar] [CrossRef] [PubMed]
- Zoccal, K.F.; Garcia, N.P.; Ireno, L.C.; De Castro, M.P.; Reis, M.D.S.; Gardinassi, L.G.; Faccioli, L.H.; Tefé-Silva, C. Antitumoral effect of lobelia inflata in an experimental mouse model of melanoma. Biomed. J. Sci. Tech. Res. 2020, 25, 18856–18864. [Google Scholar] [CrossRef]
- Strüh, C.M.; Jäger, S.; Kersten, A.; Schempp, C.M.; Scheffler, A.; Martin, S.F. Triterpenoids amplify anti-tumoral effects of mistletoe extracts on murine B16. f10 melanoma in vivo. PLoS ONE 2013, 8, e62168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, S. In vivo antitumor potential of extracts from different parts of Bauhinia variegata linn. Against b16f10 melanoma tumour model in c57bl/6 mice. Appl. Cancer Res. 2017, 37, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei, H.; Naseri, G.; Rezaee, R.; Mohammadi, M.; Banikazemi, Z.; Mirzaei, H.R.; Salehi, H.; Peyvandi, M.; Pawelek, J.M.; Sahebkar, A. Curcumin: A new candidate for melanoma therapy? Int. J. Cancer 2016, 139, 1683–1695. [Google Scholar] [CrossRef]
- Almeida, A.A.; Lima, G.D.D.A.; Simão, M.V.R.C.; Moreira, G.A.; Siqueira, R.P.; Zanatta, A.C.; Vilegas, W.; Neves, M.; Bressan, G.C.; Leite, J.P.V. Screening of plants from the Brazilian Atlantic Forest led to the identification of Athenaea velutina (Solanaceae) as a novel source of antimetastatic agents. Int. J. Exp. Pathol. 2020, 101, 106–121. [Google Scholar] [CrossRef]
- Rajasekar, S.; Park, D.J.; Park, C.; Park, S.; Park, Y.H.; Kim, S.T.; Choi, Y.H.; Choi, Y.W. In vitro and in vivo anticancer effects of Lithospermum erythrorhizon extract on B16F10 murine melanoma. J. Ethnopharmacol. 2012, 144, 335–345. [Google Scholar] [CrossRef]
- Yun, J.; Kim, B.G.; Kang, J.S.; Park, S.-K.; Lee, K.; Hyun, D.-H.; Kim, H.M.; In, M.-J.; Kim, D.C. Lipid-soluble ginseng extract inhibits invasion and metastasis of B16F10 melanoma cells. J. Med. Food 2015, 18, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Mustapha, N.; Mokdad-Bzéouich, I.; Maatouk, M.; Ghedira, K.; Hennebelle, T.; Chekir-Ghedira, L. Antitumoral, antioxidant, and antimelanogenesis potencies of Hawthorn, a potential natural agent in the treatment of melanoma. Melanoma Res. 2016, 26, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, F.; Jahanban-Esfahlan, R.; Seidi, K.; Jabbari, M.; Behzadi, R.; Pilehvar-Soltanahmadi, Y.; Zarghami, N. Effects of nano-encapsulated curcumin-chrysin on telomerase, MMPs and TIMPs gene expression in mouse B16F10 melanoma tumour model. Artif. Cells Nanomed. Biotechnol. 2018, 46, 75–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, E.O.; Lee, H.; Hwangbo, H.; Kwon, D.H.; Kim, M.Y.; Ji, S.Y.; Hong, S.H.; Kim, G.; Park, C.; Hwang, H.; et al. Citrus unshiu peel suppress the metastatic potential of murine melanoma B16F10 cells in vitro and in vivo. Phytotherapy Res. 2019, 33, 3228–3241. [Google Scholar] [CrossRef] [PubMed]
- Hwangbo, H.; Choi, E.O.; Kim, M.Y.; Kwon, D.H.; Ji, S.Y.; Lee, H.; Hong, S.H.; Kim, G.-Y.; Hwang, H.J.; Hong, S.H.; et al. Suppression of tumor growth and metastasis by ethanol extract of Angelica dahurica Radix in murine melanoma B16F10 cells. Biosci. Trends 2020, 14, 23–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, S.-W.; Xiao, S.-Y.; Wang, J.; Hou, W.; Wang, Y.-P. Inhibitory effects of ginsenoside Ro on the growth of B16F10 melanoma via its metabolites. Molecules 2019, 24, 2985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, H.-W.; Huang, X.-F.; Yang, T.-P.; Chang, K.-F.; Yeh, L.-W.; Hsieh, M.-C.; Weng, J.-C.; Tsai, N.-M. Juniperus communis suppresses melanoma tumorigenesis by inhibiting tumor growth and inducing apoptosis. Am. J. Chin. Med. 2019, 47, 1171–1191. [Google Scholar] [CrossRef]
- Shebaby, W.; Elias, A.; Mroueh, M.; Nehme, B.; El Jalbout, N.D.; Iskandar, R.; Daher, J.C.; Zgheib, M.; Ibrahim, P.; Dwairi, V.; et al. Himachalol induces apoptosis in B16-F10 murine melanoma cells and protects against skin carcinogenesis. J. Ethnopharmacol. 2020, 253, 112545. [Google Scholar] [CrossRef]
- Pop, T.D.; Diaconeasa, Z. Recent advances in phenolic metabolites and skin cancer. Int. J. Mol. Sci. 2021, 22, 9707. [Google Scholar] [CrossRef]
- Uscanga-Palomeque, A.C.; Zapata-Benavides, P.; Saavedra-Alonso, S.; Zamora-Ávila, D.E.; Franco-Molina, M.A.; Arellano-Rodríguez, M.; Manilla-Muñoz, E.; Martínez-Torres, A.C.; Trejo-Ávila, L.M.; Rodríguez-Padilla, C. Inhibitory effect of Cuphea aequipetala extracts on murine B16F10 melanoma in vitro and in vivo. BioMed Res. Int. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Su, Y.; Gao, Y.; Luo, C.; Yin, L.; Zhao, Y.; Chen, H.; Xu, A. Ginkgo biloba exocarp extract inhibits the metastasis of B16-F10 melanoma involving PI3K/akt/NF-κB/MMP-9 signaling pathway. Evid. Based Complementary Altern. Med. 2018, 2018. [Google Scholar] [CrossRef]
- Figueiredo, C.R.; Matsuo, A.L.; Pereira, F.V.; Rabaca, A.N.; Farias, C.F.; Girola, N.; Massaoka, M.H.; Azevedo, R.A.; Scutti, J.A.; Arruda, D.C.; et al. Pyrostegia venusta heptane extract containing saturated aliphatic hydrocarbons induces apoptosis on B16F10-Nex2 melanoma cells and displays antitumor activity in vivo. Pharmacogn. Mag. 2014, 10, S363–S376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.R.; Hosokawa, M.; Miyashita, K. Fucoxanthin: A marine carotenoid exerting anti-cancer effects by affecting multiple mechanisms. Mar. Drugs 2013, 11, 5130–5147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.N.; Ahn, G.; Heo, S.J.; Kang, S.M.; Kang, M.C.; Yang, H.M.; Kim, D.; Roh, S.W.; Kim, S.K.; Jeon, B.T.; et al. Inhibition of tumor growth in vitro and in vivo by fucoxanthin against melanoma B16F10 cells. Environ. Toxicol. Pharmacol. 2013, 35, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Amaral, V.S.G.D.; Santos, S.A.C.S.; De Andrade, P.C.; Nowatzki, J.; Júnior, N.S.; De Medeiros, L.N.; Gitirana, L.B.; Pascutti, P.G.; Almeida, V.H.; Monteiro, R.Q.; et al. Pisum sativum Defensin 1 Eradicates Mouse Metastatic Lung Nodules from B16F10 Melanoma Cells. Int. J. Mol. Sci. 2020, 21, 2662. [Google Scholar] [CrossRef] [Green Version]
- Briguglio, G.; Costa, C.; Pollicino, M.; Giambò, F.; Catania, S.; Fenga, C. Polyphenols in cancer prevention: New insights (Review). Int. J. Funct. Nutr. 2020, 1, 1. [Google Scholar] [CrossRef]
- Amararathna, M.; Johnston, M.R.; Rupasinghe, H.P.V. Plant Polyphenols as Chemopreventive Agents for Lung Cancer. Int. J. Mol. Sci. 2016, 17, 1352. [Google Scholar] [CrossRef] [Green Version]
- Christensen, K.Y.; Naidu, A.; Parent, M.; Pintos, J.; Abrahamowicz, M.; Siemiatycki, J.; Koushik, A. The risk of lung cancer related to dietary intake of flavonoids. Nutr. Cancer 2012, 64, 964–974. [Google Scholar] [CrossRef] [Green Version]
- Fantini, M.; Benvenuto, M.; Masuelli, L.; Frajese, G.V.; Tresoldi, I.; Modesti, A.; Bei, R. In Vitro and in Vivo Antitumoral Effects of Combinations of Polyphenols, or Polyphenols and Anticancer Drugs: Perspectives on Cancer Treatment. Int. J. Mol. Sci. 2015, 16, 9236–9282. [Google Scholar] [CrossRef] [Green Version]
- Philips, N.; Richardson, R.; Siomyk, H.; Bynum, D.; Gonzalez, S. “Skin cancer, polyphenols, and oxidative stress” or Counteraction of oxidative stress, inflammation, signal transduction pathways, and extracellular matrix remodeling that mediate skin carcinogenesis by polyphenols. In Cancer; Academic Press: London, UK, 2021; pp. 439–450. [Google Scholar]
- Sajadimajd, S.; Bahramsoltani, R.; Iranpanah, A.; Patra, J.K.; Das, G.; Gouda, S.; Rahimi, R.; Rezaeiamiri, E.; Cao, H.; Giampieri, F.; et al. Advances on natural polyphenols as anticancer agents for skin cancer. Pharmacol. Res. 2020, 151, 104584. [Google Scholar] [CrossRef]
- Hoensch, H.P.; Oertel, R. The value of flavonoids for the human nutrition: Short review and perspectives. Clin. Nutr. Exp. 2015, 3, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Domaszewska-Szostek, A.; Puzianowska-Kuźnicka, M.; Kuryłowicz, A. Flavonoids in Skin Senescence Prevention and Treatment. Int. J. Mol. Sci. 2021, 22, 6814. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, B.; Gulati, M.; Gupta, R.; Singh, S.K.; Gupta, M.; Nabi, A.; Chawla, P.A. A review on plant flavonoids as potential anticancer agents. Curr. Org. Chem. 2021, 25, 737–747. [Google Scholar] [CrossRef]
- Bouzaiene, N.N.; Chaabane, F.; Sassi, A.; Chekir-Ghedira, L.; Ghedira, K. Effect of apigenin-7-glucoside, genkwanin and naringenin on tyrosinase activity and melanin synthesis in B16F10 melanoma cells. Life Sci. 2016, 144, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Dana, N.; Javanmard, S.H.; Fazilati, M.; Pilehvarian, A.A. Anti-Angiogenic effects of pomegranate Peel extract (Punica Granatum L.) on human umbilical vein endothelial cells. J. Isfahan Med. Sch. 2012, 30, 195. [Google Scholar]
- Gonçalves, A.C.; Nunes, A.R.; Falcão, A.; Alves, G.; Silva, L.R. Dietary Effects of Anthocyanins in Human Health: A Comprehensive Review. Pharmaceuticals 2021, 14, 690. [Google Scholar] [CrossRef] [PubMed]
- Majhi, S. Discovery, Development, and Design of Anthocyanins-Inspired Anticancer Agents-A Comprehensive Review. Anti-Cancer Agents Med. Chem. 2021, 21, 1. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhou, H.; Song, L.; Yang, Z.; Qiu, M.; Wang, J.; Shi, S. Anthocyanins: Promising Natural Products with Diverse Pharmacological Activities. Molecules 2021, 26, 3807. [Google Scholar] [CrossRef]
- Jiang, Q.-W.; Chen, M.-W.; Cheng, K.; Yu, P.-Z.; Wei, X.; Shi, Z. Therapeutic potential of steroidal alkaloids in cancer and other diseases. Med. Res. Rev. 2015, 36, 119–143. [Google Scholar] [CrossRef]
- Jiao, R.; Liu, Y.; Gao, H.; Xiao, J.; So, K.F. The anti-oxidant and antitumor properties of plant polysaccharides. Am. J. Chin. Med. 2016, 44, 463–488. [Google Scholar] [CrossRef]
- Cox-Georgian, D.; Ramadoss, N.; Dona, C.; Basu, C. Therapeutic and Medicinal Uses of Terpenes. In Medicinal Plants; Joshee, N., Dhekney, S., Parajuli, P., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Saleem, M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett. 2009, 285, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Blowman, K.; Magalhães, M.; Lemos, M.F.L.; Cabral, C.; Pires, I.M. Anticancer Properties of Essential Oils and Other Natural Products. Evid. Based Complement. Altern. Med. 2018, 2018, 3149362. [Google Scholar] [CrossRef] [PubMed]
- Bayala, B.; Bassole, I.H.N.; Scifo, R.; Gnoula, C.; Morel, L.; Lobaccaro, J.M.A.; Simpore, J. Anticancer activity of essential oils and their chemical components—A review. Am. J. Cancer Res. 2014, 4, 591–607. [Google Scholar]
- Gautam, N.; Mantha, A.K.; Mittal, S. Essential oils and their constituents as anticancer agents: A mechanistic view. BioMed Res. Int. 2014, 2014, 154106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, B.; Al-Wabel, N.A.; Shams, S.; Ahamad, A.; Alam Khan, S.; Anwar, F. Essential oils used in aromatherapy: A systemic review. Asian Pac. J. Trop. Biomed. 2015, 5, 601–611. [Google Scholar] [CrossRef] [Green Version]
- Russo, A.; Formisano, C.; Rigano, D.; Senatore, F.; Delfine, S.; Cardile, V.; Rosselli, S.; Bruno, M. Chemical composition and anticancer activity of essential oils of Mediterranean sage (Salvia officinalis L.) grown in different environmental conditions. Food Chem. Toxicol. 2013, 55, 42–47. [Google Scholar] [CrossRef]
- De Oliveira, P.F.; Alves, J.M.; Damasceno, J.L.; Oliveira, R.A.M.; Dias, H.J.; Crotti, A.E.M.; Tavares, D.C. Cytotoxicity screening of essential oils in cancer cell lines. Rev. Bras. Farmacogn. 2015, 25, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Milanez, P.R.; da Silva, F.M.R.; Scussel, R.; de Melo, M.E.; Martins, A.B.; Machado-De-Ávila, R.A.; Barlow, J.W.; Feuser, P.E.; Rigo, F.K.; Amaral, P.D.A. Cannabis Extracts and Their Cytotoxic Effects on Human Erythrocytes, Fibroblasts, and Murine Melanoma. Rev. Bras. Farmacogn. 2021, 31, 750–761. [Google Scholar] [CrossRef]
- Park, H.R.; Lee, H.S.; Cho, S.Y.; Kim, Y.S.; Shin, K.S. Antimetastatic effect of polysaccharide isolated from Colocasia esculenta is exerted through immunostimulation. Int. J. Mol. Med. 2013, 31, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Alqathama, A.; Prieto, J.M. Natural products with therapeutic potential in melanoma metastasis. Nat. Prod. Rep. 2015, 32, 1170–1182. [Google Scholar] [CrossRef]
- Mollazade, M.; Nejati-Koshki, K.; Akbarzadeh, A.; Zarghami, N.; Nasiri, M.; Jahanban-Esfahlan, R.; Alibakhshi, A. PAMAM dendrimers augment inhibitory effects of curcumin on cancer cell proliferation: Possible inhibition of telomerase. Asian Pac. J. Cancer Prev. 2013, 14, 6925–6928. [Google Scholar] [CrossRef] [Green Version]
- Badrzadeh, F.; Akbarzadeh, A.; Zarghami, N.; Yamchi, M.R.; Zeighamian, V.; Tabatabae, F.S.; Taheri, M.; Kafil, H.S. Comparison between effects of free curcumin and curcumin loaded NIPAAm-MAA nanoparticles on telomerase and PinX1 gene expression in lung cancer cells. Asian Pac. J. Cancer Prev. 2014, 15, 8931–8936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pourhassan, M.; Zarghami, N.; Rahmati, M.; Alibakhshi, A.; Ranjbari, J.; Mohammad, P.; Nosratollah, Z.; Abbas, A.; Javad, R. The inhibitory effect of Curcuma longa extract on telomerase activity in A549 lung cancer cell line. Afr. J. Biotechnol. 2010, 9, 912–919. [Google Scholar] [CrossRef]
- Taheri, M.; Mirakabad, F.S.T.; Izadi, M.; Zeighamian, V.; Badrzadeh, F.; Salehi, R.; Zarghami, N.; Darabi, M.; Akbarzadeh, A.; Rahmati, M. The comparison between effects of free curcumin and curcumin loaded PLGA-PEG on telomerase and TRF1 expressions in calu-6 lung cancer cell line. Int. J. Biosci. 2014, 4, 134–145. [Google Scholar]
- Zeighamian, V.; Darabi, M.; Akbarzadeh, A.; Rahmati-Yamchi, M.; Zarghami, N.; Badrzadeh, F.; Salehi, R.; Mirakabad, F.S.T.; Taheri-Anganeh, M. PNIPAAm-MAA nanoparticles as delivery vehicles for curcumin against MCF-7 breast cancer cells. Artif. Cells Nanomed. Biotechnol. 2014, 44, 735–742. [Google Scholar] [CrossRef]
- Sassi, A.; Maatouk, M.; El Gueder, D.; Bzéouich, I.M.; Hatira, S.A.-B.; Jemni-Yacoub, S.; Ghedira, K.; Chekir-Ghedira, L. Chrysin, a natural and biologically active flavonoid suppresses tumor growth of mouse B16F10 melanoma cells: In vitro and In vivo study. Chem. Interact. 2018, 283, 10–19. [Google Scholar] [CrossRef]
- Zhang, H.; Hao, C.; Wang, Y.; Ji, S.; Zhang, X.; Zhang, W.; Zhao, Q.; Sun, J.; Hao, J. Sohlh2 inhibits human ovarian cancer cell invasion and metastasis by transcriptional inactivation of MMP9. Mol. Carcinog. 2016, 55, 1127–1137. [Google Scholar] [CrossRef]
- Alaseem, A.; Alhazzani, K.; Dondapati, P.; Alobid, S.; Bishayee, A.; Rathinavelu, A. Matrix Metalloproteinases: A challenging paradigm of cancer management. Semin. Cancer Biol. 2019, 56, 100–115. [Google Scholar] [CrossRef]
- Chung, T.-W.; Choi, H.-J.; Lee, J.-Y.; Jeong, H.-S.; Kim, C.-H.; Joo, M.; Choi, J.-Y.; Han, C.-W.; Kim, S.-Y.; Choi, J.-S.; et al. Marine algal fucoxanthin inhibits the metastatic potential of cancer cells. Biochem. Biophys. Res. Commun. 2013, 439, 580–585. [Google Scholar] [CrossRef]
No. | Plant Name | Common Name | Part Used | Type of Extract | Most Important Bioactive Components | Dose Concentration | Mechanism | Reference |
---|---|---|---|---|---|---|---|---|
Bioactive Compounds Tested In Vitro | ||||||||
Polyphenols | ||||||||
1. | Equisetum ramosissimum | Branched scouringrush | Whole plant | Ethyl acetate, dichloromethane, n-hexane, methanol, and water extracts | Polyphenols | 5, 50, 100, and 200 μg/mL | activation of caspase-3 and -9; tyrosinase suppression; MITF, Trp-1, and Trp-2 regulation | [22] |
2. | Cynomorium coccineum L. | Maltese Mushroom | Whole plant | Aqueous extract | cyanidin 3-O-glucoside; gallic acid | 25 to 500 μg/mL | anti-tyrosinase activity; | [23] |
3. | Cucurbita maxima Duch | Autumn squash, marrow, pumpkin, turban gourd, buttercup squash | Hull-less pumpkin (HLP) and hull pumpkin (HP) | Ethanolic extracts | Coumaric acid | HLP polyphenols extract (10, 20, 40, 60, 80, 100, 200, 400, 600, 800, or 1000 μg/mL) | ↓ tyrosinase; ↓ intracellular melanin | [24] |
4. | Moringa oleifera Lam., Eremomastax speciosa (Hochst.) Cufod and Aframomum melegueta K. Schum | Horseradish tree; Yoruba; Grains of Paradise | Leaves and seeds | Aqueous extracts | Not mentioned | 2 mg/mL | ↑ G2/M phase; arrest of the cell cycle in G1 phase; ↑ p53; ↑ p21WAF1/Cip1; | [25] |
5. | Syringa vulgaris L. | Common lilac | Flowers, leaves, bark and fruit | Ethanolic extracts | Acteoside and echinacoside; ligstroside, syringalactone A, oleuropein-aglycone. | leaves (11.34–56.7 µmol GAE/mL), fruit (6.66–33.2 µmol GAE/mL), bark (9.875–49.37 µmol GAE/mL) and flowers (11.69–58.475 µmol GAE/mL) | Antioxidant and cytotoxic activity | [26] |
6. | Caesalpinia spinosa | Spiny Holdback, Tara | Whole plant | Ethanolic extract | P2Et | 72.1 μg/mL | ↑ cell death; inducing of autophagy | [27] |
7. | Anastatica hierchuntica | Rose of Jericho | Root and leaves | Methanolic extract | kaempferol, luteolin, quercetin | 200–1000 μg/mL | ↓ mitochondrial membrane potential; ↓ GSH; ↓ ROS; | [28] |
8. | Abeliophyllum distichum Nakai | White forsythia | Leaves | Methanolic extract | acteoside, eutigoside B, isoacteoside, rutin, cornoside, hirsutrin, chlorogenic acid, caffeic acid, gentisic acid, ferulic acid, and quercetin | 50–200 µg/mL | ↑ ROS in cancer cells; ↑ caspase −3 and −9; ↓ Bax/Bcl-2 ratio; activation of MEK 1/2 and ERK 1/2 | [29] |
9. | Phoenix dactylifera L. | Date palm | Seeds | Aqueous extract | Ferulic acid | 0.245 and 0.49 (mg/mL) | ↓ ROS; ↓ melanogenesis signal proteins: p-p38, p-JNK, p-ERK, and p-CREB; | [30] |
10. | Origanum vulgare L. | Oregano | Whole plant | Hydroalcoholic extract | Chrysin, quercetin-3-O-arabinoside, rutin | 10 mg/mL | mitochondria and DNA damage; ↑ the number of cells in G2/M phase; ↓ expression of CCNB1 and CDK1 genes; | [31] |
11. | Remirea maritima | Beachstar | Whole plant | Hydroalcoholic extract | Vitexin, isovitexin and luteolin | 0.1–100 μg/mL | hydroxyl radicals scavenging; | [32] |
12. | Spartium junceum L. | Spanish broom, weaver’s broom | Flowers | Aquaeous extracts and Hydroalcoholic extract | Multiple polyphenols | 2, 4, 6, 8, 10 HFE mg/mL | ↓ cell proliferation | [33] |
13. | Viscum album | Mistletoe | Whole plant | Ethanolic extract | caffeic acid, chlorogenic acid, sakuranetin, isosakuranetin, syringenin 4-O-glucoside, syringenin 4-O-apiosylglucoside, alangilignoside C and ligalbumoside A | 1 to 5% v/v | DNA fragmentation; ↑ Sub G0 population; ↑ S and G2/M populations; | [34] |
Flavonoids | ||||||||
14. | Perilla frutescens var. crispa | Purple shiso, Chinese basil and purple perilla. | Leaves | Ethanolic extract | Apigenin and sinensetin | 25 µg/mL Pfc 5 | ↓ tyrosinase activity; ↓ LPS-induced pro-inflammatory genes | [35] |
15. | Punica granatum | Pomegranate | Peel | Ethanolic extract | Kaempferol, luteolin, quercetin and proanthocyanidin, complex polysaccharides. hydrolyzable tannins (ellagitannin, punicalagin, punicalin and pedunculagin). | 10–450 µg/mL | ↓ cell proliferation and angiogenesis; ↓ VEGF gene; | [36] |
16. | Lindera obtusiloba | Blunt-Lobed Spicebush | Leaves | Methanolic extract | Quercitrin and afzelin | 100–1000 µg/mL | ↓ tyrosinase activity; ↓ melanin synthesis; ↓ MITF and tyrosinase proteins; activation of MAP kinase pathway | [37] |
17. | Daphne gnidium | Flax-leaved daphne | Leaves | Aqueous extract | Daphnetin and luteolin-7-glucoside | 70 μM of luteolin-7- glucoside and daphnetin | activation of caspase 3; inducing sub-G1 cell cycle arrest; | [38] |
Anthocyanins | ||||||||
18. | Sambucus nigra | Elderberry | Fruits | Aqueous extract | Cy-3-O-samb; Cy-3-O-samb-5-gluc; Cy-3,5-digluc; Cy-hexoside-pentoside; Cy-3-O-gluc | 250 µg/mL | ↑ LDH; detachment, rounding up, shrinkage, and blebbing of membrane and apoptotic bodies; | [39] |
19. | Vaccinium uliginosum L. | Low-bush blueberryes | Fruits | Hydroalcoholic extract | Anthocyanins and anthocyanidins | 12.5–800 μg/mL (IC50 = 134.1 and 206.7 μg/mL) | Blockage of cell cycle procession at the G0/G1 phase; down-regulation of cyclin D1 expression; ↓ caspase-3 and p53; | [40] |
20. | Vaccinium spp. | Blueberry | Fruits | Methanolic extract | Delphinidin glycosides, cyanidin glycosides, petunidin glycosides | 200–750 μg/mL | ↑ LDH, cell detachment, rounding up and shrinkage, | [41] |
21. | Vaccinum spp., Ribes nigrum | Blueberry and blackcurrants | Fruit juice | Methanolic extract | delphinidin-3-O-glucoside, delphinidin-3-O-rutinoside, cyanidin-3-O-glucoside, cyanidin-3-O-rutinoside | 0–500 μg/mL (blueberry); 0–350 μg/mL (blackcurrants) | Antiproliferative effect | [42] |
Alkaloids | ||||||||
22. | Piper nigrum, Piper longum | Black and long pepper | Fruits | Not Mentioned | Piperine | Not Mentioned | G1 Phase Cell Cycle Arrest; ↑ ROS in tumor cells | [43] |
Polysaccharides | ||||||||
23. | Malus domestica Borkh | Apple pomace | Dried apple pomace | Enzymatic preparations | Pectin | 1 mg/mL | ↓ adhesion, proliferation and cell invasion; | [44] |
24. | Inonotus obliquus | Chaga | Fruits | Aqueous extracts | Polysaccharide | 1–1000 μg/mL | ↓ MMP-2 and MMP-9; ↓ NF-κB signaling pathway; ↓ migration ability | [45] |
Terpenes | ||||||||
25. | Callicarpa longissimi | Beautyberry | Leaves | Ethanolic extract | Carnosol and carnosic acid | 10 μg/mL | ↓ MITF gene expression | [46] |
26. | Gelidium latifolium | Red Macroalgae, Tengusa, makusa, genso. | Whole plant | Ethanolic extract | Brassicolene | 100–200 µg/mL | ↓ Bcl2; ↑ p53, Bax, and Bak expression | [47] |
27. | Olea europeae L. | Common olive | Olive pomace | Not mentioned | Maslinic acid | 0 to 212 µM | ↓ ROS; | [48] |
28. | Holothuria leucospilata | Black sea cucumber, black tarzan | Body wall | Ethanolic extract | Saponin | (0, 4, 8, 12, 16, 20 μg/mL) and dacarbazine (0, 1200, 1400, 1600, 1800, 2000 μg/mL) | ↑cells in sub-G1 peak; activation of caspse-3 and caspase-9; | [49] |
29. | Plantago depressa Wild | Plantains or fleaworts | Whole plant | Ethanolic extract | Aucubin and iridoid glycoside | 0.6, 1.2, 2.5 and 5 µg/mL | Apoptosis with cell morphology changes | [50] |
30. | Cannabis sativa | Hemp, grass, hashish, | Flowers and leaves | CO2 and standardized based on 4% cannabidiol | Cannabidiol | 25, 12.5, and 6.25 µg/mL | ↓cell viability | [51] |
Essential Oils | ||||||||
31. | Casearia sylvestris | Wild sage | Leaves | Essential oil | α-zingiberene | 10 mg/mL | cytotoxic activity | [52] |
Multiple classes of compounds | ||||||||
32. | Zanthoxylum rhetsa | Indian prickly ash | Bark | Methanolic extract | Yangambin and kobusin, columbamine and lupeol | 500, 250, 125, 62.5, 31.25, 15.625, 7.81 µg/mL | Cytotoxicity | [11] |
33. | Crataegus azarolus | Azarole, azerole, and Mediterranean medlar. | Leaves | Ethyl acetate extract | Ursolic acid and vitexin-2′’-O-rhamnoside | 400 µg/mL | ↓ cell proliferation | [53] |
34. | Pachycereus marginatus (DC.) Britton & Rose | Organ-pipe cactus | Stem | Hexane, chloroform, methanol, and aqueous methanol extracts | Not mentioned | 0.03 to 500 µg/mL | Cytotoxicity | [54] |
Bioactive Compounds Tested in In Vivo Models | ||||||||
Polyphenols | ||||||||
35. | Baccharis dracunculifolia | Green propolis | Whole plant | Hydroalcoholic extract | Baccharin and p-coumaric acid | 500 μg/kg | ↓ cell mitosis; ↓ angiogenesis; | [9] |
Flavonoids | ||||||||
36. | Daphne gnidium | Flax-leaved daphne | Leaves | Aqueous extract | Daphnetin and luteolin-7-glucoside | 200 mg/kg for 21 days | ↓ tumor growth; restoration of the proliferation of splenic lymphocytes; | [55] |
Alkaloids | ||||||||
37. | Lobelia inflata | Indian tobacco | Bark | Ethanolic extracts | Alkaloids | 300 mg/kg, orally administered, for 30 days | ↓ tumor growth; ↓ IL-1, IL-6 and TNF-α | [56] |
Terpenes | ||||||||
38. | Viscum album L. | Misteltoe | Whole plant | Aqueous extract | oleanolic acid | 12 µg/kg ML-I | ↓ angiogenesis; ↑ caspase-3; | [57] |
Multiple Compounds | ||||||||
39. | Bauhinia variegata linn. | Orchid tree | leaves, stem bark and floral buds | Hydro-methanolic extract | alkaloids, flavonoids, tannins, terpenoids and glycosides | 500 and 750 mg/kg | ↓ tumor volume; ↑ GSH; | [58] |
Bioactive Compounds Tested Both In Vitro and in In Vivo Models | ||||||||
Polyphenols | ||||||||
40. | Curcuma longa L. | Turmeric | Rhizomes | Not mentioned | Curcumin | 1.10–270 µM | Modulation of BCl2, MAPKS, p21 and some microRNAs; NF-jB, IKKmodulation | [59] |
41. | Athenaea velutina | Athena Sendtn. | Leaves | Organic solvent mixture (dichloromethane/methanol, 1:1) and distilled water | quinic acid, and its caffeic acid derivatives—caffeoylquinic acid and dicaffeoylquinic acid; kaempferol-3-O-rutinoside and quercetin-3-O-rutinoside. | 1.562–200 μg/mL; | ↓ migration, adhesion, invasion and cell colony formation | [60] |
100 mg/kg bw, daily, for 21 days | ||||||||
42. | Lithospermum erythrorhizon | Purple gromwell; red gromwell | Roots | Hexane extract | Shikonin; Deoxyshikonin; b-Hydroxyisovalerylshikonin; Acetylshikonin and Isobutyrylshikonin | 0, 0.5, 1, 2, 3 and 4 µg/mL | activation of caspase 3; inducing sub-G1 cell cycle arrest; ↓ Bcl-2 | [61] |
10 mg/kg/day, 21 days | ||||||||
43. | Panax ginseng | Gingseng | Whole plant | Ethanolic extract | Polyacetylenes and polyphenolics | 0.3, 1.0, 3.0, or 10.0 µg/mL | Activation of caspase-8 and -9; inhibition of transcription of MMP-2 DNA; | [62] |
Orally administration of 300 and 1000 mg/kg in 0.2 mL of 4% ethanol solution once per day for 13 days | ||||||||
Flavonoids | ||||||||
44. | Crataegus azarolus L | Hawthorn, Zâarour | Leaves | Aqueous extract | (−)-epicatechin (EC) | 400 µg/mL (in vitro) | ↓ intracellular melanin; ↓ DCFH production; ↓ tyrosinase activity | [63] |
45. | Curcuma longa | Turmeric | Rhizome | Aqueous extract encapsulated | Curcumin and chrysin | pure Cur-Chr mixture (CurChr) (each of them 5, 10, 15, 20, 30, 40, 50 and 60 lM) and equivalent concentrations of encapsulated Chr and Cur mixture (CurChr NPs) | ↓ MMP-9, MMP-2 and TERT genes expressions; ↑ TIMP-1 and TIMP-2; ↓ tumor growth; | [64] |
pure Cur (15 mg/kg), nano-encapsulated Cur (30 mg/kg), pure Chr (15 mg/kg) and nano-encapsulated Chr (30 mg/kg) | ||||||||
46. | Citrus unshiu | Miyagawa mandarin, unshu mikan | Peel | Ethanolic extracts | Naringin and hesperidin | 0, 20, 40, 60, 80, and 100 μg/mL | ↓ mitochondrial membrane potential; ↑ LDH; ↑ ROS; ↓ migration, invasion, and colony formation | [65] |
100 μL of 100 mg/kg/day; 100 μL of 200 mg/kg/day for 21 days | ↓ LDH, ↓ lung hypertrophy, the number and expression of metastatic tumor nodules | |||||||
Alkaloids | ||||||||
47. | Angelica dahurica Radix | Chinese angelica, the garden angelica, root of the Holy Ghost | Root | Ethanolic extract | Coumarine and pyrrole 2-carbaldedhyde | 100 μL of EEAD | ↑ Bax/Bcl-2 expression ↓ MMP-2 and -9 expression | [66] |
100 mg/kg/day; 100 μL of EEAD 200 mg/kg/day | ↓ LDH | |||||||
Terpenes | ||||||||
48. | Euphorbia fischeriana Steud | Lang-Du | Root | Not mentioned | Jolkinolide B | 20, 40 and 60 μM | ↑ mRNA level of Bax ↓ mRNA levels of Bcl-2, Caspase-3 and Caspase-9 ↑ ROS | [10] |
10, 20 and 40 mg/Kg | ↓ mRNA levels of Bcl-2 and Caspase9 | |||||||
49. | Panax ginseng C.A. Meyer | Japanese ginseng | Not Mentioned | Not Mentioned | Ginsenoside Ro- Zingibroside R1, chikusetsusaponin IVa, and calenduloside E (Ro metabolites) | 0, 1, 3, 10, 30, and 100 µg/mL | Without cytotoxic effect in vitro | [67] |
25 mg/kg i.p., 15 days | ↓ tumor weight; anti-angiogenic activity | |||||||
50. | Juniperus communis | Common juniper | Not Mentioned | Distillation | α-Pinene, citronellyl acetate, and d-limonene | 0–100 μg/mL | anoikis, chromatin condensation, DNA fragmentation, and the appearance of apoptotic bodies; ↓ bcl-2 and procaspase-9; ↑ bax; ↑ Fas and FasL expression; ↓ procaspase-3 and -8; | [68] |
200 mg/kg, sc, every 2 days, for 14 days | ↓ tumor growth; ↑ survival rate | |||||||
51. | Cedrus libani | Cedar of Lebanon | Wood | Hexane extracts | Himachalol | 1, 5, 10, 15 and 25 μg/mL | ↑ sub-G1 phase ↓ S and G2/M phases ↓ Bcl-2, ↑ Bax; inhibition of MAPK/ERK and PI3K/AKT pathways; | [69] |
0.2 mL- topical administration, 0.02 mL of 7-HC, 50 mg/kg, diluted in sunflower oil—gavage administration, 0.1 mL dissolved in DMSO (10, 25, or 50 mg/kg)- ip administration | ↓ tumor volume | |||||||
Multiple Compounds | ||||||||
52. | Various plants | Various names | Various Parts of the Plants | Various types of Extract | Cyanidin (Cyanidin-3-O-glucoside), Anthocyanins enrich extract (delphinidin, cyanidin, petunidin, peonidin and malvidin), Hesperetin Apigenin, Baicalein and Baicalin, Diosmin Caffeic acid phenethyl ester (CAPE), Gallic acid, Resveratrol | Various doses | ↓ tumor growth; ↓ cell proliferation; ↓ viability; ↑ apoptosis; ↑ oxidative damage; ↓ mitochondrial membrane potential | [70] |
53. | Various Plants | Various names | Various Parts of the Plants | Various Types of Extract | Multiple Compounds | Various Doses | ↓ MMP-2 and MMP-P expressions | [8] |
54. | Cuphea aequipetala | Mexican Loosestrife | Aerial parts | methanolic and aqueous extracts | phenols, terpenes, steroids, and saponins | aqueous (0.05, 0.1, 0.2, 0.4, 0.6, 0.8 mg/mL) and methanolic extracts (0.0425, 0.085, 0.17, 0.34, 0.51, 0.68 mg/mL) | ↑ cells in G1 phase; cytoplasm shrinkage; DNA fragmentation; | [71] |
25 mg/mL, in water, for 14 days | ↓ tumor volume | |||||||
55. | 370 plants | Various Names | Various Parts of the Plants | Various Types of Extract | Multiple Compounds | Various Doses | ↓ cell proliferation | [4] |
56. | Ginkgo biloba | Maidenhair tree | Exocarp | Ethanolic extract | Proteoglycan | 5–320 µg/mL | regulation of PI3K/Akt/NF-kB/MMP-9 signaling pathway | [72] |
50–200 mg/kg | ||||||||
57. | Pyrostegia venusta | Flamevine or orange trumpetvine | Flowers | Heptane extract | Octacosane and triacontane | Not Mentioned | disruption of the mitochondrial membrane potential and ↑ ROS; activation of caspase-2, -3, -8, -9; cell cycle arrest at G2/M | [73] |
Carotenoids | ||||||||
58. | Ishige okamurae | Brown algae | Whole plant | Not Mentioned | Fucoxanthin | Not Mentioned | Modulation of Bcl-2 proteins, MAPK, NFκB, Caspases, GADD45; cell cycle arrest in the G0/G1; DNA fragmentation; ↓ MMP-9; ↓ tumor growth; | [74] |
59. | Ishige okamurae | Brown algae | Whole plant | Not Mentioned | Fucoxanthin | 50, 100, and 200 µM | induction of cell cycle arrest during the G0/G1 phase and apoptosis; ↓ Rb; ↓ cyclin D (1 and 2); ↓ CDK; ↑ p15INK4B and p27Kip; ↓ Bcl-xL; ↑ caspase-9, caspase-3, and PARP | [75] |
300 µg/100 µL/mouse adm. ip, every 5 days | ||||||||
Peptides | ||||||||
60. | Pichia pastoris | Yeast | Seeds | Water extract | Pisum sativum defensin | 0, 3.12, 6.25, 12.5, 25, or 50 µM for 24, 48, or 72 h | ↑ sub-G0/G1; DNA fragmentation; ↓ inflammatory cells; | [76] |
0.1–3 mg/kg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumitraș, D.-A.; Andrei, S. Recent Advances in the Antiproliferative and Proapoptotic Activity of Various Plant Extracts and Constituents against Murine Malignant Melanoma. Molecules 2022, 27, 2585. https://doi.org/10.3390/molecules27082585
Dumitraș D-A, Andrei S. Recent Advances in the Antiproliferative and Proapoptotic Activity of Various Plant Extracts and Constituents against Murine Malignant Melanoma. Molecules. 2022; 27(8):2585. https://doi.org/10.3390/molecules27082585
Chicago/Turabian StyleDumitraș, Daria-Antonia, and Sanda Andrei. 2022. "Recent Advances in the Antiproliferative and Proapoptotic Activity of Various Plant Extracts and Constituents against Murine Malignant Melanoma" Molecules 27, no. 8: 2585. https://doi.org/10.3390/molecules27082585
APA StyleDumitraș, D. -A., & Andrei, S. (2022). Recent Advances in the Antiproliferative and Proapoptotic Activity of Various Plant Extracts and Constituents against Murine Malignant Melanoma. Molecules, 27(8), 2585. https://doi.org/10.3390/molecules27082585