Electrochemical Determination of Nanoparticle Size: Combined Theoretical and Experimental Study for Matrixless Silver Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Matrixless AgNPs
2.3. Voltammetric and Chronoamperometric Characterization of AgNPs Systems
2.4. DLS and TEM–EDS Characterization of AgNP Systems
2.5. Theoretical Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Varner, K.E.; El-Badawy, A.; Feldhake, D.; Venkatapathy, R. State of the Science Literature Review: Everything Nanosilver and More. In Report Prepared for U.S. Environmental Protection Agency; EPA: Washington, DC, USA, 2010. [Google Scholar]
- Guo, J.; Mu, X.; Song, S.; Ren, Y.; Wang, K.; Lu, Z. Preparation of Ag0 Nanoparticles by EDM Method as Catalysts for Oxygen Reduction. Metals 2021, 11, 1491. [Google Scholar] [CrossRef]
- Dhanya, S.; Saumya, V.; Rao, T.P. Synthesis of silver nanoclusters, characterization and application to trace level sensing of nitrate in aqueous media. Electrochim. Acta 2013, 102, 299–305. [Google Scholar] [CrossRef]
- Singh, P.; Pandit, S.; Mokkapati, V.R.S.S.; Garg, A.; Ravikumar, V.; Mijakovic, I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci. 2018, 19, 1979. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Rizwana, H.; Alwhibi, M.S.; Al-Judaie, R.A.; Aldehaish, H.A.; Alsaggabi, N.S. Sunlight-Mediated Green Synthesis of Silver Nanoparticles Using the Berries of Ribes rubrum (Red Currants): Characterisation and Evaluation of Their Antifungal and Antibacterial Activities. Molecules 2022, 27, 2186. [Google Scholar] [CrossRef]
- Rizwana, H.; Bokahri, N.A.; Alkhattaf, F.S.; Albasher, G.; Aldehaish, H.A. Antifungal, Antibacterial, and Cytotoxic Activities of Silver Nanoparticles Synthesized from Aqueous Extracts of Mace-Arils of Myristica fragrans. Molecules 2021, 26, 7709. [Google Scholar] [CrossRef]
- Huq, A.; Akter, S. Biosynthesis, Characterization and Antibacterial Application of Novel Silver Nanoparticles against Drug Resistant Pathogenic Klebsiella pneumoniae and Salmonella Enteritidis. Molecules 2021, 26, 5996. [Google Scholar] [CrossRef]
- Qamer, S.; Romli, M.H.; Che-Hamzah, F.; Misni, N.; Joseph, N.M.S.; AL.-Haj, N.A.; Amin-Nordin, S. Systematic Review on Biosynthesis of Silver Nanoparticles and Antibacterial Activities: Application and Theoretical Perspectives. Molecules 2021, 26, 5057. [Google Scholar] [CrossRef]
- Nejatzadeh-Barandozi, F.; Darvishzadeh, F.; Aminkhani, A. Effect of nano silver and silver nitrate on seed yield of (Ocimum basilicum L.). Org. Med. Chem. Lett. 2014, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Nair, R.; Varghese, S.H.; Nair, B.G.; Maekawa, T.; Yoshida, Y.; Kumar, D.S. Nanoparticulate material delivery to plants. Plant Science 2010, 179, 154–163. [Google Scholar] [CrossRef]
- Yang, Y.; Matsubara, S.; Xiong, L.; Hayakawa, T.; Nogami, M. Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties. J. Phys. Chem. C 2007, 111, 9095–9104. [Google Scholar] [CrossRef]
- Lu, W.; Liao, F.; Luo, Y.; Chang, G.; Sun, X. Hydrothermal synthesis of well-stable silver nanoparticles and their application for enzymeless hydrogen peroxide detection. Electrochim. Acta 2011, 56, 2295–2298. [Google Scholar] [CrossRef]
- Polte, J.; Tuaev, X.; Wuithschick, M.; Fischer, A.; Thuenemann, A.F.; Rademann, K.; Kraehnert, R.; Emmerling, F. Formation mechanism of colloidal silver nanoparticles: Analogies and differences to the growth of gold nanoparticles. ACS Nano 2012, 6, 5791–5802. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Wang, F.; Liu, Y.; Pang, F.; Zhang, X. Green synthesis of silver nanoparticles on nitrogen-doped graphene for hydrogen peroxide detection. Electrochim. Acta 2014, 146, 646–653. [Google Scholar] [CrossRef]
- Epifani, M.; Giannini, C.; Tapfer, L.; Vasanelli, L. Sol-gel synthesis and characterization of Ag and Au nanoparticles in SiO2, TiO2, and ZrO2 thin films. J. Am. Ceram. Soc. 2000, 83, 2385–2393. [Google Scholar] [CrossRef]
- Todaka, Y.; McCormick, P.G.; Tsuchiya, K.; Umemoto, M. Synthesis of Fe-Cu nanoparticles by mechanochemical processing using a ball mill. Mater. Trans. 2002, 43, 667–673. [Google Scholar] [CrossRef] [Green Version]
- Amendola, V.; Meneghetti, M. Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys. Chem. Chem. Phys. 2009, 11, 3805–3821. [Google Scholar] [CrossRef]
- Montoro Bustos, A.R.; Purushotham, K.P.; Possolo, A.; Farkas, N.; Vladar, A.E.; Murphy, K.E.; Winchester, M.R. Validation of Single Particle ICP-MS for Routine Measurements of Nanoparticle Size and Number Size Distribution. Anal. Chem. 2018, 90, 14376. [Google Scholar] [CrossRef]
- Ge, Z.; Wang, Y. Estimation of Nanodiamond Surface Charge Density from Zeta Potential and Molecular Dynamics Simulations. J. Phys. Chem. B 2017, 121, 3394–3402. [Google Scholar] [CrossRef]
- Hyk, W.; Nowicka, A.; Stojek, Z. Direct Determination of Diffusion Coefficients of Substrate and Product by Chronoamperometric Techniques at Microelectrodes for Any Level of Ionic Support. Anal. Chem. 2002, 74, 149–157. [Google Scholar] [CrossRef]
- Hyk, W.; Stojek, Z. General Theory for Migrational Voltammetry. Strong Influence of Diversity in Redox Species Diffusivities on Charge Reversal Electrode Processes. Anal. Chem. 2005, 77, 6481–6486. [Google Scholar] [CrossRef] [PubMed]
- Hyk, W.; Pałys, M.; Stojek, Z. Migrational chronoamperometry of uncharged substrates. Influence of electron transfer rate. J. Electroanal. Chem. 1996, 415, 13–22. [Google Scholar] [CrossRef]
- Hyk, W.; Stojek, Z. Chronoamperometry of uncharged species under the conditions of deficiency of supporting electrolyte: Experiment vs. theory. J. Electroanal. Chem. 1997, 422, 179–184. [Google Scholar] [CrossRef]
AgNPs System | Time [h] | cfree [mol∙m−3] | Deff∙109 [m2∙s−1] | ζ [mV] | rTEM [nm] | rDLS [nm] | rNPDL [nm] | rcore [nm] |
---|---|---|---|---|---|---|---|---|
I | 3 | 0.0347 | 0.834 | −2.0 | - | - | 50.1 | - |
4 | 0.0478 | 0.967 | −2.6 | - | 103.7 | 61.5 | 18.2 | |
5 | 0.0734 | 1.043 | −5.91 | - | 127.1 | 110.3 | 74.8 | |
6 | 0.2178 * | 0.448 * | −9.96 | - | 128.7 | |||
7 | 0.1279 | 1.139 | −19.2 | - | 75.8 | 294.0 | 267.1 | |
8 | 0.1383 | 1.155 | −20.3 | ≤40 | 130.4 | 314.0 | 288.1 | |
II | 8 | 0.1445 | 1.072 | −19.0 | ≤50 | 45.0 | 195.2 | 173.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamowska, M.; Pałuba, B.; Hyk, W. Electrochemical Determination of Nanoparticle Size: Combined Theoretical and Experimental Study for Matrixless Silver Nanoparticles. Molecules 2022, 27, 2592. https://doi.org/10.3390/molecules27082592
Adamowska M, Pałuba B, Hyk W. Electrochemical Determination of Nanoparticle Size: Combined Theoretical and Experimental Study for Matrixless Silver Nanoparticles. Molecules. 2022; 27(8):2592. https://doi.org/10.3390/molecules27082592
Chicago/Turabian StyleAdamowska, Monika, Bartosz Pałuba, and Wojciech Hyk. 2022. "Electrochemical Determination of Nanoparticle Size: Combined Theoretical and Experimental Study for Matrixless Silver Nanoparticles" Molecules 27, no. 8: 2592. https://doi.org/10.3390/molecules27082592
APA StyleAdamowska, M., Pałuba, B., & Hyk, W. (2022). Electrochemical Determination of Nanoparticle Size: Combined Theoretical and Experimental Study for Matrixless Silver Nanoparticles. Molecules, 27(8), 2592. https://doi.org/10.3390/molecules27082592