A New Xanthone Glycoside from Mangifera indica L.: Physicochemical Properties and In Vitro Anti-Skin Aging Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Elucidation of the Isolated Compound
2.2. In Silico Pharmacokinetics Prediction of the Isolated Compound
2.3. Assessment of Anti-Skin Aging Properties
2.3.1. Determination of Anti-Collagenase and Anti-Elastase Activities
2.3.2. Determination of Anti-Hyaluronidase and Antityrosinase Activities
3. Material and Methods
3.1. Plant Material
3.2. Extraction and Chromatographic Isolation
3.3. Nuclear Magnetic Resonance (NMR) Spectrometer
3.4. Mass Spectrometry
3.5. In-Silico Pharmacokinetics Prediction
3.6. Assessment of Anti-Skin Aging Properties
3.6.1. Determination of Anti-Collagenase Activity
3.6.2. Determination of Anti-Elastase Activity
- ΔRFU = a change in relative fluorescence units
- EC = enzyme control
3.6.3. Determination of Anti-Tyrosinase Activity
3.6.4. Determination of Anti-Hyaluronidase Activity
3.7. Statistical Analysis
4. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Pardo-Andreu, G.L.; Philip, S.J.; Riaño, A.; Sánchez, C.; Viada, C.; Núñez-Sellés, A.J.; Delgado, R. Mangifera indica l. (vimang) protection against serum oxidative stress in elderly humans. Arch. Med. Res. 2006, 37, 158–164. [Google Scholar] [CrossRef]
- El-Nashar, H.A.S.; El-Din, M.I.G.; Hritcu, L.; Eldahshan, O.A. Insights on the inhibitory power of flavonoids on tyrosinase activity: A survey from 2016 to 2021. Molecules 2021, 26, 7546. [Google Scholar] [CrossRef]
- Sen, S.; Chakraborty, R.; Sridhar, C.; Reddy, Y.; De, B. Free radicals, antioxidants, diseases and phytomedicines: Current status and future prospect. Int. J. Pharm. Sci. Rev. Res. 2010, 3, 91–100. [Google Scholar]
- Hybertson, B.M.; Gao, B.; Bose, S.K.; McCord, J.M. Oxidative stress in health and disease: The therapeutic potential of nrf2 activation. Mol. Asp. Med. 2011, 32, 234–246. [Google Scholar] [CrossRef]
- Sivamani, R.K.; Jagdeo, J.R.; Elsner, P.; Maibach, H.I. Cosmeceuticals and Active Cosmetics; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Barel, A.O.; Paye, M.; Maibach, H.I. Handbook of Cosmetic Science and Technology; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Schmitt, M.; Magid, A.A.; Hubert, J.; Etique, N.; Duca, L.; Voutquenne-Nazabadioko, L. Bio-guided isolation of new phenolic compounds from hippocrepis emerus flowers and investigation of their antioxidant, tyrosinase and elastase inhibitory activities. Phytochem. Lett. 2020, 35, 28–36. [Google Scholar] [CrossRef]
- Draelos, Z.; Dover, J. Kosmeceutyki [Cosmeceutics]; Elsevier Urban & Partner: Wrocław, Poland, 2011. [Google Scholar]
- El-Nashar, H.A.; Mostafa, N.M.; Eldahshan, O.A.; Singab, A.N.B. A new antidiabetic and anti-inflammatory biflavonoid from Schinus polygama (cav.) cabrera leaves. Nat. Prod. Res. 2022, 36, 1182–1190. [Google Scholar] [CrossRef]
- Stangeland, T.; Remberg, S.F.; Lye, K.A. Total antioxidant activity in 35 ugandan fruits and vegetables. Food Chem. 2009, 113, 85–91. [Google Scholar] [CrossRef]
- Contreras-Calderón, J.; Calderón-Jaimes, L.; Guerra-Hernández, E.; García-Villanova, B. Antioxidant capacity, phenolic content and vitamin c in pulp, peel and seed from 24 exotic fruits from colombia. Food Res. Int. 2011, 44, 2047–2053. [Google Scholar] [CrossRef]
- Yang, E.-S.; Hong, R.-H.; Kang, S.-M. The effects of genistein on the proliferation and type i pn collagen synthesis in aged normal human fibroblasts. Microbiol. Biotechnol. Lett. 2007, 35, 316–324. [Google Scholar]
- Bahadır Acıkara, Ö.; Ilhan, M.; Kurtul, E.; Šmejkal, K.; Küpeli Akkol, E. Inhibitory activity of podospermum canum and its active components on collagenase, elastase and hyaluronidase enzymes. Bioorganic Chem. 2019, 93, 103330. [Google Scholar] [CrossRef]
- Youn, J.-S.; Shin, S.-Y.; Wu, Y.; Hwang, J.-Y.; Cho, J.-H.; Ha, Y.-G.; Kim, J.-K.; Park, M.-J.; Lee, S.-H.; Kim, T.-H. Antioxidant and anti-wrinkling effects of aruncus dioicus var. Kamtschaticus extract. Korean J. Food Preserv. 2012, 19, 393–399. [Google Scholar] [CrossRef] [Green Version]
- Kanlayavattanakul, M.; Lourith, N. Skin hyperpigmentation treatment using herbs: A review of clinical evidences. J. Cosmet. Laser Ther. 2018, 20, 123–131. [Google Scholar] [CrossRef]
- Xu, G.H.; Ryoo, I.J.; Kim, Y.H.; Choo, S.J.; Yoo, I.D. Free radical scavenging and antielastase activities of flavonoids from the fruits of thuja orientalis. Arch. Pharmacal Res. 2009, 32, 275–282. [Google Scholar] [CrossRef]
- Shah, K.; Patel, M.; Patel, R.; Parmar, P. Mangifera indica (mango). Pharmacogn. Rev. 2010, 4, 42. [Google Scholar] [CrossRef]
- Quintana, S.E.; Salas, S.; García-Zapateiro, L.A. Bioactive compounds of mango (Mangifera indica): A review of extraction technologies and chemical constituents. J. Sci. Food Agric. 2021, 101, 6186–6192. [Google Scholar] [CrossRef]
- Muchiri, D.R.; Mahungu, S.M.; Gituanja, S.N. Studies on mango (Mangifera indica, L.) kernel fat of some kenyan varieties in meru. J. Am. Oil Chem. Soc. 2012, 89, 1567–1575. [Google Scholar] [CrossRef]
- Jahurul, M.; Zaidul, I.; Ghafoor, K.; Al-Juhaimi, F.Y.; Nyam, K.-L.; Norulaini, N.; Sahena, F.; Omar, A.M. Mango (Mangifera indica L.) by-products and their valuable components: A review. Food Chem. 2015, 183, 173–180. [Google Scholar] [CrossRef]
- Ali, B.A.; Alfa, A.A.; Tijani, K.B.; Idris, E.T.; Unoyiza, U.S.; Junaidu, Y. Nutritional health benefits and bioactive compounds of Mangifera indica L (mango) leaves methanolic extracts. Asian Plant Res. J. 2020, 6, 41–51. [Google Scholar] [CrossRef]
- Sultana, B.; Hussain, Z.; Asif, M.; Munir, A. Investigation on the antioxidant activity of leaves, peels, stems bark, and kernel of mango (Mangifera indica L.). J. Food Sci. 2012, 77, C849–C852. [Google Scholar] [CrossRef]
- de Beer, D.; Jerz, G.; Joubert, E.; Wray, V.; Winterhalter, P. Isolation of isomangiferin from honeybush (Cyclopia subternata) using high-speed counter-current chromatography and high-performance liquid chromatography. J. Chromatogr. A 2009, 1216, 4282–4289. [Google Scholar] [CrossRef]
- Talamond, P.; Mondolot, L.; Gargadennec, A.; de Kochko, A.; Hamon, S.; Fruchier, A.; Campa, C. First report on mangiferin (c-glucosyl-xanthone) isolated from leaves of a wild coffee plant, coffea pseudozanguebariae (rubiaceae). Acta Bot. Gall. 2008, 155, 513–519. [Google Scholar] [CrossRef] [Green Version]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Cheng, T.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X.; Li, Y.; Wang, R.; Lai, L. Computation of octanol-water partition coefficients by guiding an additive model with knowledge. J. Chem. Inf. Modeling 2007, 47, 2140–2148. [Google Scholar] [CrossRef]
- Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 2000, 43, 3714–3717. [Google Scholar] [CrossRef]
- Ali, J.; Camilleri, P.; Brown, M.B.; Hutt, A.J.; Kirton, S.B. Revisiting the general solubility equation: In silico prediction of aqueous solubility incorporating the effect of topographical polar surface area. J. Chem. Inf. Modeling 2012, 52, 420–428. [Google Scholar] [CrossRef]
- Delaney, J.S. Esol: Estimating aqueous solubility directly from molecular structure. J. Chem. Inf. Comput. Sci. 2004, 44, 1000–1005. [Google Scholar] [CrossRef]
- Ritchie, T.J.; Ertl, P.; Lewis, R. The graphical representation of adme-related molecule properties for medicinal chemists. Drug Discov. Today 2011, 16, 65–72. [Google Scholar] [CrossRef]
- Lovering, F.; Bikker, J.; Humblet, C. Escape from flatland: Increasing saturation as an approach to improving clinical success. J. Med. Chem. 2009, 52, 6752–6756. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. Swissadme: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Daina, A.; Zoete, V. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di, L. The role of drug metabolizing enzymes in clearance. Expert Opin. Drug Metab. Toxicol. 2014, 10, 379–393. [Google Scholar] [CrossRef] [PubMed]
- Potts, R.O.; Guy, R.H. Predicting skin permeability. Pharm. Res. 1992, 9, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Montanari, F.; Ecker, G.F. Prediction of drug-abc-transporter interaction—Recent advances and future challenges. Adv. Drug Deliv. Rev. 2015, 86, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Martin, Y.C. A bioavailability score. J. Med. Chem. 2005, 48, 3164–3170. [Google Scholar] [CrossRef]
- Sapin, A.B.; Alaon, M.K.N.; Tambalo, F.M.Z.; Perez, R.H.; Gaylon, A. Evaluation of the bioactivities of natural phenolics from mango (Mangifera indica Linn) leaves for cosmetic industry applications. Philipp. J. Sci. 2021, 150, 397–406. [Google Scholar]
- Zillich, O.V.; Schweiggert-Weisz, U.; Eisner, P.; Kerscher, M. Polyphenols as active ingredients for cosmetic products. Int. J. Cosmet. Sci. 2015, 37, 455–464. [Google Scholar] [CrossRef]
- Sultana, N.; Lee, N.H. Antielastase and free radical scavenging activities of compounds from the stems of cornus kousa. Phytother. Res. 2007, 21, 1171–1176. [Google Scholar] [CrossRef]
- Ochocka, R.; Hering, A.; Stefanowicz-Hajduk, J.; Cal, K.; Barańska, H. The effect of mangiferin on skin: Penetration, permeation and inhibition of ecm enzymes. PLoS ONE 2017, 12, e0181542. [Google Scholar]
- Lee, K.K.; Cho, J.J.; Park, E.J.; Choi, J.D. Anti-elastase and anti-hyaluronidase of phenolic substance from areca catechu as a new anti-ageing agent. Int. J. Cosmet. Sci. 2001, 23, 341–346. [Google Scholar] [CrossRef]
- Mio, K.; Stern, R. Inhibitors of the hyaluronidases. Matrix Biol. J. Int. Soc. Matrix Biol. 2002, 21, 31–37. [Google Scholar] [CrossRef]
- McCook, J.P.; Dorogi, P.L.; Vasily, D.B.; Cefalo, D.R. In vitro inhibition of hyaluronidase by sodium copper chlorophyllin complex and chlorophyllin analogs. Clin. Cosmet. Investig. Dermatol. 2015, 8, 443–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masaki, H. Role of antioxidants in the skin: Anti-aging effects. J. Dermatol. Sci. 2010, 58, 85–90. [Google Scholar] [CrossRef]
- Poomanee, W.; Khunkitti, W.; Chaiyana, W.; Intasai, N.; Lin, W.C.; Lue, S.C.; Leelapornpisid, P. Multifunctional biological properties and phytochemical constituents of Mangifera indica l. Seed kernel extract for preventing skin aging. Toxicol. Res. 2021, 37, 459–472. [Google Scholar] [CrossRef]
- Ebanks, J.P.; Wickett, R.R.; Boissy, R.E. Mechanisms regulating skin pigmentation: The rise and fall of complexion coloration. Int. J. Mol. Sci. 2009, 10, 4066–4087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, A.R.; Dong, H.H.; Yu, Y.Y.; Shu, Q.L.; Zheng, L.X.; Yu, X.Y.; Cao, S.W. The antityrosinase and antioxidant activities of flavonoids dominated by the number and location of phenolic hydroxyl groups. Chin. Med. 2018, 13, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelis, A.; Mavros, P.; Nikolaou, P.E.; Mitakou, S.; Halabalaki, M.; Skaltsounis, L. Phytochemical analysis of olive flowers’ hydroalcoholic extract and in vitro evaluation of tyrosinase, elastase and collagenase inhibition activity. Fitoterapia 2020, 143, 104602. [Google Scholar] [CrossRef]
- Michailidis, D.; Angelis, A.; Aligiannis, N.; Mitakou, S.; Skaltsounis, L. Recovery of sesamin, sesamolin, and minor lignans from sesame oil using solid support-free liquid-liquid extraction and chromatography techniques and evaluation of their enzymatic inhibition properties. Front. Pharmacol. 2019, 10, 723. [Google Scholar] [CrossRef]
- Prommaban, A.; Sriyab, S.; Marsup, P.; Neimkhum, W.; Sirithunyalug, J.; Anuchapreeda, S.; To-Anun, C.; Chaiyana, W. Comparison of chemical profiles, antioxidation, inhibition of skin extracellular matrix degradation, and anti-tyrosinase activity between mycelium and fruiting body of Cordyceps militaris and Isaria tenuipes. Pharm. Biol. 2022, 60, 225–234. [Google Scholar] [CrossRef]
Position | δH (ppm), Multiplicity and J (Hz) | δC (ppm) | HMBC (H → C) |
---|---|---|---|
1 | - | 1158.95 | - |
2 | 5.96, s, 1H | 95.35 | C-4, 4b, 3 |
3 | - | 158.58 | - |
4 | - | 104.13 | - |
4a | - | 157.23 | - |
4b | - | 107.45 | - |
5 | - | 157.87 | - |
6 | - | 161.87 | - |
7 | 6.79, d, J = 8.24 Hz, 1H | 114.80 | C6, 8 |
8 | 7.57, d, J = 8.59 Hz, 1H | 131.98 | C6, 8a, 9 |
8a | - | 131.22 | - |
8b | - | 158.58 | - |
9 | - | 195.14 | - |
1’ | 4.60, d, J = 7.0, 1H | 75.13 | C-3, 4 |
2’ | 3.21, m, 1H | 70.12 | - |
3’ | 3.21, m, 1H | 78.79 | - |
4’ | 3.59, m, 1H | 72.34 | - |
5’ | 3.21, m, 1H | 81.54 | - |
6’ | 3.62, dd, 1Ha 3.50, dd,1Hb | 60.97 | - |
Physicochemical Properties | |||
---|---|---|---|
Molecular weight | 422.34 g/mol (≤500) [26] | No. rotatable bonds (not more than 9 rotatable bonds) | 2 |
No. heavy atoms | 30 | No. H-bond acceptors | 11 (H-bond acceptor ≤ 10) [26] |
No. arom. heavy atoms | 14 | No. H-bond donors | 8 (H-bond donors ≤ 5) [26] |
Saturation: fraction of carbons in the sp3 hybridization | 0.32(not less than 0.25) [32] | Topological polar surface area TPSA | 201.28 Å2 (between 20 and 130 Å2) [29] |
Lipophilicity: XLOGP3 [30] | −0.37 | Solubility | |
(desirable between −0.7 and +5.0) | log S (Ali) [29] | −3.39 | |
log S (ESOL) [30] | −2.44 | ||
Pharmacokinetic properties | |||
GIT absorption [34] | Low | BBB permeation [34] | No |
P-glycoprotein substrate [37] | No | Cytochromes P450 1A2, 2C19, 2C9, 2D6. 3A4 inhibitor [35] | No |
Skin permeation (log KP) [36] | −9.14 cm/s | Bioavailability score [38] | 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Nashar, H.A.S.; El-labbad, E.M.; Al-Azzawi, M.A.; Ashmawy, N.S. A New Xanthone Glycoside from Mangifera indica L.: Physicochemical Properties and In Vitro Anti-Skin Aging Activities. Molecules 2022, 27, 2609. https://doi.org/10.3390/molecules27092609
El-Nashar HAS, El-labbad EM, Al-Azzawi MA, Ashmawy NS. A New Xanthone Glycoside from Mangifera indica L.: Physicochemical Properties and In Vitro Anti-Skin Aging Activities. Molecules. 2022; 27(9):2609. https://doi.org/10.3390/molecules27092609
Chicago/Turabian StyleEl-Nashar, Heba A. S., Eman M. El-labbad, Mahmood A. Al-Azzawi, and Naglaa S. Ashmawy. 2022. "A New Xanthone Glycoside from Mangifera indica L.: Physicochemical Properties and In Vitro Anti-Skin Aging Activities" Molecules 27, no. 9: 2609. https://doi.org/10.3390/molecules27092609
APA StyleEl-Nashar, H. A. S., El-labbad, E. M., Al-Azzawi, M. A., & Ashmawy, N. S. (2022). A New Xanthone Glycoside from Mangifera indica L.: Physicochemical Properties and In Vitro Anti-Skin Aging Activities. Molecules, 27(9), 2609. https://doi.org/10.3390/molecules27092609