Systematic Screening of Chemical Constituents in the Traditional Chinese Medicine Arnebiae Radix by UHPLC-Q-Exactive Orbitrap Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of the UHPLC-Q-Exactive Orbitrap MS Condition
2.2. Establishment of Diagnostic Fragment Ions (DFIs)
2.3. Characterization of the Chemical Constituents in Arnebiae Radix
2.3.1. Identification of Shikonins
Type I Shikonins
Type II Shikonins
Type III Shikonins
Type IV Shikonins
Type V Shikonins
Shikonofurans
Dimeric Shikonin
2.3.2. Identification of Phenolic Acids
2.3.3. Identification of Flavonoids
2.3.4. Identification of Amino Acids
2.3.5. Others
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Sample and Standard Preparation
3.3. Instruments and Conditions
3.4. Data Processing and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zhan, Z.L.; Hu, J.; Liu, T.; Kang, L.P.; Nan, T.G.; Guo, L.P. Advances in studies on chemical compositions and pharmacological activities of Arnebiae Radix. China J. Chin. Mater. Med. 2015, 40, 4127–4135. [Google Scholar]
- Zhang, J.; Li, J.; Zhang, P.; Huang, Y.Y. Herbal Textual Analysis of Medicinal Plant Arnebia. J. Anhui Agric. Sci. 2019, 47, 199–202. [Google Scholar]
- Andujar, I.; Rios, J.L.; Giner, R.M.; Recio, M.C. Pharmacological properties of shikonin—A review of literature since 2002. Planta Med. 2013, 79, 1685–1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wada, N.; Kawano, Y.; Fujiwara, S.; Kikukawa, Y.; Okuno, Y.; Tasaki, M.; Ueda, M.; Ando, Y.; Yoshinaga, K.; Ri, M. Shikonin, dually functions as a proteasome inhibitor and a necroptosis inducer in multiple myeloma cells. Int. J. Oncol. 2015, 46, 963–972. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Jung, K.M.; Bae, I.H.; Cho, S.; Seo, D.B.; Lee, S.J.; Park, Y.H.; Lim, K.M. Anti-inflammatory and barrier protecting effect of Lithospermum erythrorhizon extracts in chronic oxazolone-induced murine atopic dermatitis. J. Dermatol. Sci. 2009, 56, 64–66. [Google Scholar] [CrossRef]
- Ashkani-Esfahani, S.; Imanieh, M.H.; Khoshneviszadeh, M.; Meshksar, A.; Noorafshan, A.; Geramizadeh, B.; Ebrahimi, S.; Handjani, F.; Tanideh, N. The healing effect of arnebia euchroma in second degree burn wounds in rat as an animal model. Iran. Red Crescent Med. J. 2012, 14, 70–74. [Google Scholar]
- Kaith, B.S.; Kaith, N.S.; Chauhan, N.S. Anti-inflammatory effect of Arnebia euchroma root extracts in rats. J. Ethnopharmacol. 1996, 55, 77–80. [Google Scholar] [CrossRef]
- Li, H.; Lim, E.; Ang, G.; Lim, Z.Q.; Cai, M.H.; Loh, J.A.; Ng, C.; Seetoh, P.; Tian, E.; Goh, L.B. Qualitative and quantitative analysis of Arnebiae Radix and Dictamni Cortex and efficacy study of herbal extracts on allergic contact dermatitis using 3D human reconstructed epidermis. Chin. Herb. Med. 2021, 13, 556–564. [Google Scholar] [CrossRef]
- Guo, X.P.; Zhang, X.Y.; Zhang, S.D. Clinical trial on the effects of shikonin mixture on later stage lung cancer. Chin. J. Mod. Dev. Tradit. Med. 1991, 11, 580+598–599. [Google Scholar]
- Rajasekar, S.; Park, D.J.; Park, C.; Park, S.; Park, Y.H.; Kim, S.T.; Choi, Y.H.; Choi, Y.W. In vitro and in vivo anticancer effects of Lithospermum erythrorhizon extract on B16F10 murine melanoma. J. Ethnopharmacol. 2012, 144, 335–345. [Google Scholar] [CrossRef]
- Chen, X.; Yang, L.; Oppenheim, J.J.; Howard, M.Z. Cellular pharmacology studies of shikonin derivatives. Phytother. Res. 2002, 16, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.C.; Syu, W.J.; Li, S.Y.; Lin, C.H.; Lee, G.H.; Sun, C.M. Antimicrobial activities of naphthazarins from Arnebia euchroma. J. Nat. Prod. 2002, 65, 1857–1862. [Google Scholar] [CrossRef] [PubMed]
- Asghari, F.; Ghanbari, H.; Moghimi, H.; Takzaree, N.; Nekounam, H.; Faridi-Majidi, R. Study on the Chemistry Identification and Assessment of Antioxidant and Antibacterial Activity of the Biologically Active Constituents from the Roots of Arnebia Euchroma for Promising Application in Nanomedicine and Pharmaceutical. Biointerface Res. Appl. Chem. 2021, 12, 3735–3751. [Google Scholar] [CrossRef]
- Qian, X.; Li, H.T.; Zeng, W.X.; Zhou, Q. Research Progress on Chemical Constituents, Pharmacological Effects and Product Application of Gromwell Root. Chin. Wild Plant Resour. 2021, 40, 52–56+69. [Google Scholar]
- Liao, M.C.; Yao, Y.; Chen, F.; Zhang, Y.X. Studies on chemical constituents from arnebia guttata bunge. J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 2018, 37, 58–60. [Google Scholar]
- Yuan, Z.C.; Hu, B. Mass Spectrometry-Based Human Breath Analysis: Towards COVID-19 Diagnosis and Research. J. Anal. Test. 2021, 5, 287–297. [Google Scholar] [CrossRef]
- Long, N.P.; Park, S.; Anh, N.H.; Kim, S.J.; Kim, H.M.; Yoon, S.J.; Lim, J.; Kwon, S.W. Advances in Liquid Chromatography–Mass Spectrometry-Based Lipidomics: A Look Ahead. J. Anal. Test. 2020, 4, 183–197. [Google Scholar] [CrossRef]
- Satheeshkumar, N.; Shantikumar, S.; Komali, M.; Silva, B. Identification and Quantification of Aldose Reductase Inhibitory Flavonoids in Herbal Formulation and Extract of Gymnema sylvestre Using HPLC-PDA and LC-MS/MS. Chromatogr. Res. Int. 2014, 2014, 518175. [Google Scholar] [CrossRef]
- Cai, W.; Guan, Y.; Zhou, Y.; Wang, Y.; Ji, H.; Liu, Z. Detection and characterization of the metabolites of rutaecarpine in rats based on ultra-high-performance liquid chromatography with linear ion trap-Orbitrap mass spectrometer. Pharm. Biol. 2017, 55, 294–298. [Google Scholar] [CrossRef]
- Stavrianidi, A. A classification of liquid chromatography mass spectrometry techniques for evaluation of chemical composition and quality control of traditional medicines. J. Chromatogr. A 2020, 1609, 460501. [Google Scholar] [CrossRef]
- Klont, F.; Jahn, S.; Grivet, C.; König, S.; Bonner, R.; Hopfgartner, G. SWATH data independent acquisition mass spectrometry for screening of xenobiotics in biological fluids: Opportunities and challenges for data processing. Talanta 2020, 211, 120747. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Li, K.L.; Xiong, P.; Gong, K.Y.; Zhu, L.; Yang, J.B.; Wu, W.H. A systematic strategy for rapid identification of chlorogenic acids derivatives in Duhaldea nervosa using UHPLC-Q-Exactive Orbitrap mass spectrometry. Arab. J. Chem. 2020, 13, 3751–3761. [Google Scholar] [CrossRef]
- Xiong, P.; Qin, S.H.; Li, K.L.; Liu, M.J.; Zhu, L.; Peng, J.; Shi, S.L.; Tang, S.N.; Tian, A.P.; Cai, W. Identification of the tannins in traditional Chinese medicine Paeoniae Radix Alba by UHPLC-Q-Exactive Orbitrap MS. Arab. J. Chem. 2021, 14, 103398. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Y.; Chen, S.; Fu, Y. Characterization and identification of the chemical constituents in the root of Lindera reflexa Hemsl. using ultra-high performance liquid chromatography coupled with linear trap quadrupole orbitrap mass spectrometry. J. Pharm. Biomed. Anal. 2016, 126, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zheng, D.; Li, H.H.; Wang, H.; Tan, H.S.; Xu, H.X. Diagnostic filtering to screen polycyclic polyprenylated acylphloroglucinols from Garcinia oblongifolia by ultrahigh performance liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry. Anal. Chim. Acta 2016, 912, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Zhang, Q.; Li, N.; Wang, Z.J.; Lu, J.Q.; Qiao, Y.J. Diagnostic fragment-ion-based and extension strategy coupled to DFIs intensity analysis for identification of chlorogenic acids isomers in Flos Lonicerae Japonicae by HPLC-ESI-MS(n). Talanta 2013, 104, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Li, A.; Chen, C.; Ouyang, H.; Zhang, Y.; Xu, Y.; Feng, Y.; Jiang, H. Systematic identification of shikonins and shikonofurans in medicinal Zicao species using ultra-high performance liquid chromatography quadrupole time of flight tandem mass spectrometry combined with a data mining strategy. J. Chromatogr. A 2015, 1425, 158–172. [Google Scholar] [CrossRef]
- Feng, J.; Yu, P.; Zhou, Q.; Tian, Z.; Sun, M.; Li, X.; Wang, X.; Jiang, H. An integrated data filtering and identification strategy for rapid profiling of chemical constituents, with Arnebiae Radix as an example. J. Chromatogr. A 2020, 1629, 461496. [Google Scholar] [CrossRef]
- Liao, M.; Yan, P.; Liu, X.; Du, Z.; Jia, S.; Aybek, R.; Li, A.; Kaisa, S.; Jiang, H. Spectrum-effect relationship for anti-tumor activity of shikonins and shikonofurans in medicinal Zicao by UHPLC-MS/MS and chemometric approaches. J. Chromatogr. B 2020, 1136, 121924. [Google Scholar] [CrossRef]
- Beretta, G.L.; Ribaudo, G.; Menegazzo, I.; Supino, R.; Capranico, G.; Zunino, F.; Zagotto, G. Synthesis and Evaluation of New Naphthalene and Naphthoquinone Derivatives as Anticancer Agents. Arch. Pharm. (Weinhein) 2017, 350, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.H.; Zhang, Y.X.; Liu, M.H.; Ren, Y.; Zhou, F.H. Chemical profiling of Danshen water extract by UPLC-Q-TOF-MS /MS. J. Guangdong Pharm. Univ. 2020, 36, 1–9. [Google Scholar] [CrossRef]
- Yang, N.; Yang, K.K.; Li, Y.B. UPLC-Q-TOF/MS combined with data post-processing to quickly classify and identify the components of Danshen. Lishizhen Med. Mater. Med. Res. 2019, 30, 2408–2412. [Google Scholar]
- Zheng, Y.; Jiang, Y.; Zhang, X.; Huang, L.F. Research on anti-influenza activity of Salvia miltiorrhiza based on UPLC-Q-TOF-MS and molecular docking technology. Chin. Tradit. Herb. Drugs 2021, 52, 4487–4495. [Google Scholar]
- Li, Z.Z.; Chang, X.Y.; Shi, Y. Chemical Constituents Characterization of Hexue Zhiyang Formula Based on UPLC-QE-Orbitrap-MS. Mod. Chin. Med. 2021, 23, 1542–1553. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, C.J.; Liu, L.; Wang, X.Y. UPLC-LTQ Orbitrap MS rapid characterization and analysis of multiple chemical components of Danshen. Acta Chin. Med. Pharmacol. 2018, 46, 14–21. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Jiang, Z.Z.; Yang, F.; Yu, H.J. Analysis of chemical constituents in fresh, dried and prepared Rehmanniae Radix by UPLC /ESI-Q-TOF MS. Chin. Tradit. Pat. Med. 2016, 38, 1104–1108. [Google Scholar]
- Xiong, P.; Li, K.L.; Wu, W.H.; Cai, W. Identification of Chemical Constituents in the Kadsura Coccinea Fructus Based on UHPLC- Q-Exactive Orbitrap MS. China Pharm. 2021, 30, 55–60. [Google Scholar]
- Chen, Y.; Ni, J.; Wu, Y.J. Effects of shikonin on colon cancer xenografts in nude mice based on serum metabolomics. Acta Pharm. Sin. 2020, 55, 987–994. [Google Scholar] [CrossRef]
- Cai, W.; Li, K.; Qin, S.; Xiong, P.; Peng, J.; Shi, S.; Zhang, Z. Rapid Identification and Systematic Mechanism of Flavonoids from Potentilla freyniana Bornm. Based on UHPLC-Q-Exactive Orbitrap Mass Spectrometry and Network Pharmacology. Int. J. Anal. Chem. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Liu, L.H.; Peng, J.; Shi, S.L.; Li, K.L.; Xiong, P.; Cai, W. Characterization of flavonoid constituents in stems of Lithocarpus litseifolius (Hance) Chun based on UHPLC-Q-Exactive Orbitrap MS. Curr. Anal. Chem. 2020, 16, 521–527. [Google Scholar] [CrossRef]
- Wang, S.; Sun, X.; An, S.; Sang, F.; Zhao, Y.; Yu, Z. High-Throughput Identification of Organic Compounds from Polygoni Multiflori Radix Praeparata (Zhiheshouwu) by UHPLC-Q-Exactive Orbitrap-MS. Molecules 2021, 26, 3977. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Choi, S.M.; Shreatha, R.; Jeong, G.S.; Jeong, T.C.; Lee, S. Deoxyshikonin reversibly inhibits cytochrome P450 2B6. Biopharm. Drug Dispos. 2020, 41, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Kyekyeku, J.; Adosraku, R.; Asare–Nkansah, S. LC–HRESI–MS/MS Profiling of Flavonoids from Chlorophora regia (Moraceae). Br. J. Pharm. Res. 2017, 16, 1–9. [Google Scholar] [CrossRef]
- Monique, P.; Christine, V.S.; Konstantinos, P.; Claire, E.; Jean-Paul, S.; Aymeric, M.; Denis, B. ESI-MS/MS analysis of underivatised amino acids: A new tool for the diagnosis of inherited disorders of amino acid metabolism. Fragmentation study of 79 molecules of biological interest in positive and negative ionisation mode. Rapid Commun. Mass Spectrom. 2003, 17, 1297–1311. [Google Scholar] [CrossRef]
- Han, M.; Xie, M.; Han, J.; Yuan, D.; Yang, T.; Xie, Y. Development and validation of a rapid, selective, and sensitive LC-MS/MS method for simultaneous determination of D- and L-amino acids in human serum: Application to the study of hepatocellular carcinoma. Anal. Bioanal Chem. 2018, 410, 2517–2531. [Google Scholar] [CrossRef]
No. | Batch | tR | Theoretical Mass m/z | Experimental Mass m/z | Error (ppm) | Formula | MS/MS Fragment (-) | Identification |
---|---|---|---|---|---|---|---|---|
1 | A, B, C | 0.83 # | 131.0462 | 131.0450 | −9.05 | C4H8N2O3 | MS2[131]: 114.0183(100), 113.0343(65), 70.0284(37), 95.0237(25), 131.0449(22) | Asparagine |
2 | A, B, C | 0.86 # | 145.0619 | 145.0606 | −8.80 | C5H10N2O3 | MS2[145]: 127.0500(100), 128.0340(73), 145.0606(97), 102.0546(48), 109.0394(40) | Glutamine |
3 | A, B, C | 0.88 | 387.1144 | 387.1139 | −1.44 | C13H24O13 | MS2[387]: 89.0229(100), 119.0336(45), 179.0550(42), 341.1084(33), 161.0444(16), 221.0658(5) | 2,3,4,5,6-pentahydroxy-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyheptanoic acid |
4 | A, B, C | 0.88 # | 341.1089 | 341.1084 | −1.66 | C12H22O11 | MS2[341]: 89.0230(100), 59.0124(48), 71.0124(40), 101.0230(33), 119.0336(29), 113.0231(25) | α,α-Trehalose |
5 | A, B, C | 0.88 # | 179.0561 | 179.0550 | −6.27 | C6H12O6 | MS2[341]: 59.0124(100), 89.0230(68), 71.0124(63), 75.0073(48), 101.0230(33), 119.0336(29) | Mannose |
6 | A, B, C | 0.88 # | 503.1618 | 503.1612 | −1.19 | C18H32O16 | MS2[503]: 89.0230(100), 101.0230(50), 113.0230(38), 179.0551(26) | Raffinose |
7 | A, B, C | 0.89 # | 135.0299 | 135.0286 | −9.68 | C4H8O5 | MS2[135]: 75.0073(100), 135.0287(51), 72.9917(13), 89.0230(11), 59.0124(10) | Threonic acid |
8 | A, B, C | 0.90 # | 195.0510 | 195.0500 | −5.26 | C6H12O7 | MS2[195]: 195.0501(100), 75.0073(82), 129.0180(76), 99.0074(22), 87.0073(21), 59.0124(12) | Gluconic acid |
9 | A, B, C | 0.90 # | 191.0561 | 191.0551 | −5.25 | C7H12O6 | MS2[191]: 111.0074(100), 87.0073(35), 85.0280(28), 191.0551(12) | Quinic acid |
10 | A, B, C | 0.91 # | 149.0455 | 149.0443 | −8.17 | C5H10O5 | MS2[149]: 149.0443(100), 89.0230(76), 59.0124(32), 75.0073(32) | Arabinose |
11 | A, B, C | 0.92 # | 193.0354 | 193.0344 | −5.16 | C6H10O7 | MS2[193]: 103.0023(100), 59.0124(29), 85.0280(16), 193.0708(10) | β-D-Glucopyranuronic acid |
12 | A, B, C | 0.93 # | 133.0142 | 133.0130 | −9.60 | C4H6O5 | MS2[133]: 115.0023(100), 71.0124(44), 133.0130(32) | Malic acid |
13 | A, B, C | 0.93 # | 177.0405 | 177.0395 | −5.60 | C6H10O6 | MS2[177]: 59.0124(100), 129.0181(42), 99.0074(34), 89.0230(32), 177.0397(31) | δ-Gluconic acidδ-lactone |
14 | A, B, C | 0.94 # | 191.0197 | 191.0188 | −5.01 | C6H8O7 | MS2[191]: 111.0074(100), 87.0073(35), 85.0280(28), 191.0188(11) | Citric acid isomer |
15 | A, B, C | 1.17 # | 191.0197 | 191.0188 | −5.01 | C6H8O7 | MS2[191]: 111.0074(100), 87.0073(34), 85.0281(23), 191.0188(10) | Citric acid |
16 | A, B, C | 1.17 # | 147.0299 | 147.0287 | −8.35 | C5H8O5 | MS2[147]: 129.0180(100), 85.0280(28), 103.0386(20), 147.0287(18), 101.0230(17) | α-Hydroxyglutaric acid |
17 | A, B, C | 1.17 # | 243.0623 | 243.0617 | −2.35 | C9H12N2O6 | MS2[243]: 110.0234(100), 128.0340(24), 200.0556(21), 152.0342(16), 140.0341(11) | Uridine |
18 | A, B, C | 1.17 | 167.0211 | 167.0199 | −6.79 | C5H4N4O3 | MS2[167]: 167.0200(100), 124.0140(38) | Uric acid |
19 | A, B, C | 1.31 # | 161.0455 | 161.0444 | −7.37 | C6H10O5 | MS2[161]: 99.0437(100), 57.0332(63), 101.0230(33), 161.0444(29), 59.0124(22) | 3-Hydroxy-3-methylglutaric acid |
20 | A, B, C | 1.42 # | 145.0506 | 145.0495 | −8.02 | C6H10O4 | MS2[145]: 145.0494(100), 101.0594(50) | 3-Methylglutaric acid |
21 | A, B, C | 1.66 # | 169.0142 | 169.0133 | −5.49 | C7H6O5 | MS2[169]: 125.0231(100) | Gallic acid |
22 | A, B, C | 1.92 | 164.0717 | 164.0707 | −6.23 | C9H11NO2 | MS2[164]: 147.0440(100), 164.0706(59), 72.0077(28), 96.9587(13) | Phenylalanine |
23 | A, B, C | 1.96 # | 137.0244 | 137.0232 | −8.74 | C7H6O3 | MS2[137]: 93.0331(100), 137.0231(37) | Salicylic acid |
24 | A, B, C | 2.14 # | 218.1034 | 218.1028 | −2.60 | C9H17NO5 | MS2[218]: 88.0389(100), 146.0810(50), 218.1027(13), 71.0124(9) | Pantothenic acid |
25 | A, B, C | 2.28 # | 197.0455 | 197.0447 | −4.40 | C9H10O5 | MS2[167]: 72.9917(100), 135.0439(67), 179.0340(58), 123.0439(50), 197.0445(11) | Danshensu |
26 | A, B, C | 2.28 # | 417.0827 | 417.0800 | −6.62 | C20H18O10 | MS2[417]: 219.0268(100), 197.0445(21), 179.0339(5) | Salvianolic acid D |
27 | A, B, C | 2.35 # | 167.0350 | 167.0339 | −6.36 | C8H8O4 | MS2[167]: 167.0339(100), 123.0439(87) | Vanillic acid |
28 | A, B, C | 2.81 # | 153.0193 | 153.0183 | −3.10 | C7H6O4 | MS2[153]: 109.0281(100), 153.0182(30), 126.0911(19) | Protocatechuic acid |
29 | B, C | 2.96 # | 158.0823 | 158.0811 | −7.38 | C7H13NO3 | MS2[158]: 116.0704(100), 158.0811(21) | N-Acetylvaline |
30 | A, B, C | 3.33 # | 181.0506 | 181.0497 | −5.43 | C9H10O4 | MS2[181]: 163.0389(100), 181.0496(68), 135.0439(54), 137.0231(42), 119.0489(34) | Ethyl 3,4-dihydroxybenzoate |
31 | A, B, C | 3.35 # | 167.0350 | 167.0339 | −6.24 | C8H8O4 | MS2[167]: 123.0438(100), 167.0339(10) | Isovanillic acid |
32 | A, B, C | 3.46 # | 203.0826 | 203.0818 | −3.85 | C11H12N2O2 | MS2[203]: 116.0492(100), 203.0816(70), 74.0233(36), 72.0077(32), 159.0916(31), 142.0650(29) | Tryptophan |
33 | A, B, C | 3.66 # | 175.0612 | 175.0601 | −6.16 | C7H12O5 | MS2[175]: 146.9600(100), 115.0387(80), 175.0601(69), 113.0594(32), 85.0644(31) | 2-Isopropylmalic acid |
34 | A, B, C | 3.77 # | 161.0244 | 161.0231 | −8.25 | C9H6O3 | MS2[161]: 161.0233(100), 133.0282(66) | 7-Hydroxycoumarin |
35 | A, B, C | 3.80 # | 153.0193 | 153.0182 | −3.82 | C7H6O4 | MS2[153]: 109.0282(100), 153.0181(57) | Gentisic acid |
36 | A, B, C | 4.16 # | 188.0353 | 188.0345 | −4.51 | C10H7NO3 | MS2[188]: 144.0443(100), 188.0343(4) | Kynurenic acid |
37 | C | 4.51 # | 465.1038 | 465.1038 | −0.20 | C21H22O12 | MS2[465]: 285.0403(100), 125.0232(85), 275.0563(53), 177.0189(26), 151.0033(21), 303.0518(19) | Taxifolin-glucoside |
38 | B, C | 4.62 *# | 289.0718 | 289.0721 | 1.00 | C15H14O6 | MS2[289]: 245.0816(100), 289.0721(94), 125.0233(62), 109.0283(58), 179.0340(48), 151.0390(30), 161.0594(20) | Catechin/Catechin hydrate |
39 | A, B, C | 4.78 # | 163.0401 | 163.0390 | −6.61 | C9H8O3 | MS2[163]: 163.0389(100), 120.0522(32) | 3-Coumaric acid |
40 | A, B, C | 5.02 # | 163.0401 | 163.0390 | −6.74 | C9H8O3 | MS2[163]: 119.0489(100), 163.0390(16) | p-Coumaric acid |
41 | A, C | 5.08 # | 465.1038 | 465.1037 | −0.26 | C21H22O12 | MS2[465]: 285.0403(100), 125.0232(39), 275.0558(12), 177.0183(14), 151.0033(21), 303.0507(8) | Taxifolin-glucoside isomer |
42 | B, C | 5.17 # | 172.0979 | 172.0969 | −5.85 | C8H15NO3 | MS2[172]: 130.0861(100), 172.0969(16), 128.1068(2) | N-Acetyl-L-leucine |
43 | A, B, C | 5.22 | 179.0350 | 179.0340 | −5.49 | C9H8O4 | MS2[179]: 135.0439(100), 179.0340(29) | Caffeic acid |
44 | B, C | 5.33 # | 151.0401 | 151.0390 | −7.14 | C8H8O3 | MS2[151]: 107.0489(100), 151.0387(5) | 2-Hydroxyphenylacetic acid |
45 | A, B, C | 5.41 # | 193.0506 | 193.0497 | −4.68 | C10H10O4 | MS2[193]: 134.0361(100), 149.0596(34), 193.0499(13) | Ferulic acid |
46 | A, B, C | 5.94 # | 375.1310 | 375.1307 | −0.96 | C17H20N4O6 | MS2[375]: 255.0884(100), 212.0821(18), 151.0388(18), 161.0234(14) | Riboflavin |
47 | C | 6.01 # | 449.1089 | 449.1090 | 0.17 | C21H22O11 | MS2[449]: 259.0608(100), 59.0124(94), 269.0455(78), 125.0233(37), 287.0564(32), 178.9974(18) | Eriodictyol-glucoside |
48 | A, B, C | 6.01 # | 206.0823 | 206.0817 | −3.00 | C11H13NO3 | MS2[206]: 164.0706(100), 147.0440(28), 58.0285(24), 206.0814(21), 70.0285(14) | N-Acetyl-L-phenylalanine |
49 | A, B, C | 6.16 # | 167.0350 | 167.0340 | −5.88 | C8H8O4 | MS2[167]: 167.0339(100), 152.0103(19) | 4-Methoxysalicylic acid |
50 | A, B, C | 6.49 # | 173.0819 | 173.0809 | −5.79 | C8H14O4 | MS2[173]: 111.0802(100), 173.0809(55), 129.0908(6), 112.0835(5) | Suberic acid |
51 | A, B, C | 6.54 # | 537.1038 | 537.1036 | 0.52 | C27H22O12 | MS2[537]: 339.0504(100), 229.0137(64), 295.0609(56), 197.0446(31), 135.0439(25), 179.0338(14) | Salvianolic acid U |
52 | A, B, C | 6.54 # | 163.0401 | 163.0390 | −6.61 | C9H8O3 | MS2[163]: 119.0490(100), 163.0389(14), 120.0522(6) | 4-Coumaric acid isomer |
53 | A, B, C | 6.61 # | 313.0718 | 313.0715 | −0.74 | C17H14O6 | MS2[313]: 109.0281(100), 147.0439(38), 159.0440(27), 269.0816(14) | Salvianolic acid F |
54 | A, B, C | 6.67 # | 174.0561 | 174.0550 | −5.82 | C10H9NO2 | MS2[174]: 146.9600(100), 174.0550(67), 130.0650(35) | Indole-3-acetic acid |
55 | A, B, C | 6.71 # | 537.1038 | 537.1036 | 0.52 | C27H22O12 | MS2[537]: 197.0446(100), 135.0439(80), 339.0505(68), 229.0137(64), 295.0609(63), 179.0340(42) | Salvianolic acid T |
56 | A, B, C | 6.91 # | 537.1038 | 537.1033 | −0.97 | C27H22O12 | MS2[537]: 197.0447(100), 135.0439(71), 339.0506(64), 295.0609(58), 229.0137(47), 179.0340(41) | Salvianolic acid J |
57 | B, C | 6.91 # | 313.0718 | 313.0711 | −2.09 | C17H14O6 | MS2[313]: 269.0818(100), 313.0716(46), 203.0341(44), 159.0443(31), 109.0281(22) | Salvianolic acid F isomer |
58 | A, B, C | 6.91 # | 493.1140 | 493.1135 | −1.08 | C26H22O10 | MS2[493]: 197.0446(100), 135.0439(63), 295.0609(34), 179.0339(33), 72.9917(24), 269.0818(21) | Salvianolic acid A isomer |
59 | C | 7.03 # | 433.1140 | 433.1140 | −0.17 | C21H22O10 | MS2[433]: 271.0609(100), 151.0030(30), 98.9477(74), 119.0489(11) | Naringenin-glucoside |
60 | A, B, C | 7.13 # | 193.0506 | 193.0497 | −4.83 | C10H10O4 | MS2[193]: 134.0361(100), 193.0496(13), 149.0596(7) | Isoferulic acid |
61 | C | 7.22 # | 449.1089 | 449.1087 | −0.53 | C21H22O11 | MS2[449]: 151.0025(100), 287.0558(65), 135.0439(46), 98.9477(41), 96.9587(12) | Eriodictyol hexoside 1 |
62 | C | 7.30 # | 433.1140 | 433.1134 | −1.44 | C21H22O10 | MS2[433]: 271.0610(100), 151.0025(33), 98.9476(10), 119.0492(6) | Naringenin-glucoside isomer |
63 | A, B, C | 7.50 *# | 609.1461 | 609.1456 | −0.79 | C27H30O16 | MS2[609]: 300.0273(100), 301.0345(57) | Rutin |
64 | A, B, C | 7.57 # | 137.0244 | 137.0231 | −9.40 | C7H6O3 | MS2[137]: 93.0332(100), 137.0232(52) | Salicylic acid isomer |
65 | B, C | 7.60 # | 715.1305 | 715.1303 | −0.30 | C36H28O16 | MS2[715]: 197.0446(100), 151.0390(54), 135.0437(40), 177.0182(39), 179.0339(35) | DidehydioSalvianolic acid B |
66 | C | 7.77 *# | 463.0882 | 463.0881 | −0.28 | C21H20O12 | MS2[463]: 300.0272(100), 301.0346(56), 151.0025(4), 178.9980(2) | Isoquercitrin |
67 | A, B, C | 7.81 # | 163.0401 | 163.0390 | −6.74 | C9H8O3 | MS2[163]: 163.0389(100), 137.0596(91), 119.0489(46), 162.8380(17) | 4-Coumaric acid |
68 | A, B, C | 7.88 # | 551.1195 | 551.1198 | 0.46 | C28H24O12 | MS2[551]: 197.0447(100), 135.0440(74), 59.0124(62), 353.0659(50), 179.0341(45), 309.0770(41) | Monomethyl lithospermate isomer |
69 | A, B, C | 7.92 # | 717.1461 | 717.1456 | −0.75 | C36H30O16 | MS2[717]: 339.0505(100), 321.0760(40), 295.0611(20), 197.0449(26), 135.0440(16), 179.03469(6) | Salvianolic acid B isomer |
70 | A, B, C | 8.02 # | 537.1038 | 537.1034 | −0.86 | C27H22O12 | MS2[537]: 295.0609(100), 339.0504(44), 109.0282(41), 185.0233(31), 277.0504(13) | Salvianolic acid isomer |
71 | A, B, C | 8.19 # | 357.0616 | 357.0611 | −1.46 | C18H14O8 | MS2[357]: 135.0439(100), 229.0135(31), 197.0448(29), 179.0341(23), 109.0280(17) | Salvianolic acid H |
72 | B, C | 8.31 # | 277.1445 | 277.1443 | −0.99 | C16H22O4 | MS2[277]: 259.1336(100), 247.1335(88), 174.0675(82), 121.0282(76), 241.1230(47) | De-O-Methyllasiodiplodin |
73 | A, B, C | 8.37 *# | 593.1512 | 593.1509 | −0.43 | C27H30O15 | MS2[593]: 285.0401(100), 284.0324(49) | Nicotiflorin |
74 | A, B, C | 8.40 # | 187.0976 | 187.0966 | −5.25 | C9H16O4 | MS2[187]: 125.0959(100), 187.0966(50), 97.0645(4), 169.0859(3) | Azelaic acid |
75 | A, B, C | 8.50 # | 551.1195 | 551.1201 | 1.13 | C28H24O12 | MS2[551]: 327.0827(100), 135.0439(37), 197.0446(33), 217.0499(24), 229.0137(22), 353.0664(22) | Monomethyl lithospermate |
76 | A, B | 8.65 *# | 609.1825 | 609.1829 | 1.61 | C28H34O15 | MS2[609]: 301.0714(100), 302.0744(8) | Hesperidin |
77 | A, B, C | 8.84 * | 359.0772 | 359.0769 | −0.95 | C18H16O8 | MS2[359]: 161.0233(100), 197.0446(37), 179.0339(16), 72.9917(11), 135.0440(6) | Rosmarinic acid |
78 | A, B, C | 8.88 # | 731.1618 | 731.1613 | −0.60 | C37H32O16 | MS2[731]: 109.0282(100), 335.0921(89), 353.0670(70), 197.0446(61), 489.1185(45) | 9″-Methyl salvianolate B isomer |
79 | A, B, C | 9.00 # | 731.1618 | 731.1620 | 0.32 | C37H32O16 | MS2[731]: 367.0821(100), 353.0667(97), 109.0282(74), 197.0446(58), 335.0924(53), 489.1198(35) | 9″-Methyl salvianolate B |
80 | A, B, C | 9.22 * | 537.1038 | 537.1036 | −0.51 | C27H22O12 | MS2[537]: 339.0511(100), 197.0447(82), 135.0440(74), 295.0613(66), 179.0338(25) | Lithospermic acid |
81 | A, B, C | 9.22 # | 493.1140 | 493.1138 | −0.45 | C26H22O10 | MS2[493]: 185.0235(100), 109.0281(94), 295.0608(77), 203.0343(21), 159.0440(20), 135.0439(19), 197.0448(17), 179.0343(12) | Salvianolic acid A |
82 | C | 9.68 # | 493.1140 | 493.1140 | −0.09 | C26H22O10 | MS2[493]: 197.0446(100), 135.0439(82), 295.0608(55), 179.0338(38), 185.0234(33), 109.0281(33), 269.0817(30) | Salvianolic acid A isomer |
83 | C | 10.19 * | 717.1461 | 717.1460 | −0.15 | C36H30O16 | MS2[717]: 321.0401(100), 339.0507(29), 295.0609(16), 185.0237(10), 197.0444(3), 135.0438(2), 179.0339(2) | Salvianolic acid B |
84 | A, B, C | 10.33 # | 357.0616 | 357.0616 | −0.12 | C18H14O8 | MS2[357]: 135.0439(100), 337.0353(56), 72.9917(27), 179.0339(26), 197.0446(25), 321.0403(18) | Salvianolic acid I |
85 | A, B, C | 10.66 # | 731.1618 | 731.1625 | 1.07 | C37H32O16 | MS2[731]: 229.0136(100), 339.0506(76), 313.0716(59), 203.0340(47), 267.0659(32) | 9″-Methyl salvianolate B isomer |
86 | A, B, C | 11.04 # | 277.1445 | 277.1441 | −1.56 | C16H22O4 | MS2[277]: 277.1443(100), 233.1541(74), 203.1433(11) | Dibutylphthalate |
87 | B, C | 11.16 # | 373.0929 | 373.0926 | −0.73 | C19H18O8 | MS2[373]: 135.0439(100), 175.0391(65), 197.0447(57), 179.0340(27), 72.9917(23), 161.0235(15) | Methyl rosmarinate |
88 | A, B, C | 11.20 # | 201.1132 | 201.1125 | −3.79 | C10H18O4 | MS2[201]: 139.1116(100), 201.1123(92), 183.1017(47) | 3-tert-Butyladipic acid |
89 | A, B, C | 11.65 * | 491.0984 | 491.0980 | −0.84 | C26H20O10 | MS2[491]: 311.0559(100), 135.0439(35), 197.0447(4), 179.0341(2) | Salvianolic acid C |
90 | C | 11.87 # | 551.1195 | 551.1193 | −0.44 | C28H24O12 | MS2[551]: 321.0400(100), 231.0292(22), 109.0281(21), 293.0455(17), 135.0440(11), 197.0447(8), 179.0337(4) | Monomethyl lithospermate isomer |
91 | B, C | 11.92 # | 731.1618 | 731.1627 | 1.32 | C37H32O16 | MS2[731]: 335.0560(100), 353.0666(60), 309.0762(38), 135.0439(33), 197.0446(20) | 9″-Methyl salvianolate B isomer |
92 | A | 12.49 *# | 301.0354 | 301.0353 | −0.22 | C15H10O7 | MS2[301]: 151.0026(100), 301.0359(89), 178.9977(53), 121.0283(19) | Quercetin |
93 | C | 13.01 # | 731.1618 | 731.1630 | 1.73 | C37H32O16 | MS2[731]: 339.0507(100), 229.0137(42), 295.0607(30), 359.0772(19) | 9″-Methyl salvianolate B isomer |
94 | A, B, C | 13.13 # | 363.1085 | 363.1086 | 0.03 | C18H20O8 | MS2[363]: 218.0214(100), 190.0262(79), 303.0872(74), 227.0343(70), 219.0251(5) | Shikonin derivative |
95 | C | 13.25 *# | 271.0612 | 271.0613 | 0.31 | C15H12O5 | MS2[271]: 151.0025(100), 271.0612(62), 119.0490(42), 227.1071(23), 107.0125(14), 93.0332(14), 177.0185(11) | Naringenin |
96 | A, B, C | 14.54 # | 285.0405 | 285.0408 | 1.30 | C15H10O6 | MS2[285]: 285.0406(100), 227.0711(16), 241.0508(11), 215.0701(11) | Kaempferol |
97 | A, B, C | 14.56 | 253.0870 | 253.0869 | −0.67 | C16H14O3 | MS2[253]: 237.0551(100), 238.0615(31), 270.0533(20), 253.0505(14) | Rhizonone |
98 | A, B, C | 14.57 | 315.1238 | 315.1239 | 0.43 | C18H20O5 | MS2[315]: 241.0865(100), 256.1102(65), 300.1002(27), 271.0973(22), 285.0762(11) | Ethylshikonin |
99 | A, B, C | 14.61 # | 299.0561 | 299.0561 | 0.03 | C16H12O6 | MS2[301]: 284.0323(100), 255.0293(16), 299.0560(12), 285.0359(10) | Hispidulin |
100 | C | 15.35 # | 583.2562 | 583.2564 | 0.24 | C33H36N4O6 | MS2[583]: 285.1242(100), 297.1239(15), 241.1341(9), 213.1030(3) | Bilirubin |
101 | A, B, C | 15.35 # | 187.1340 | 187.1331 | −4.53 | C10H20O3 | MS2[187]: 59.0124(100), 125.0960(21), 141.8672(14), 187.1324(14) | 3-Hydroxydecanoic acid |
102 | A, B, C | 15.74 # | 371.1500 | 371.1497 | −0.87 | C21H24O6 | MS2[371]: 271.0970(100), 253.0863(52), 99.0439(49), 241.0868(40), 225.0916(38) | Valerylshikonin isomer |
103 | A, B, C | 15.85 # | 403.1398 | 403.1398 | −0.03 | C21H24O8 | MS2[403]: 303.0875(100), 218.0215(96), 227.0345(65), 190.0258(75), 99.0435(83) | Shikonin derivative |
104 | B, C | 15.96 | 391.1762 | 391.1762 | −0.20 | C21H28O7 | MS2[391]: 255.1024(100), 273.1133(92), 190.0262(18), 117.0544(17), 227.0340(14) | Hydroxyshikonofuran J |
105 | A, B, C | 15.99 # | 391.1398 | 391.1399 | 0.21 | C20H24O8 | MS2[363]: 218.0215(100), 303.0872(98), 227.0343(87), 190.0262(82), 87.0437(71) | Shikonin derivative |
106 | A, B, C | 16.05 | 269.0819 | 269.0819 | −0.09 | C16H14O4 | MS2[269]: 136.0153(100), 251.0712(58), 223.0753(44), 269.0817(41), 241.0870(31) | Dehydratedshikonin |
107 | A, B, C | 16.13 | 333.1344 | 333.1341 | −0.82 | C18H22O6 | MS2[333]: 255.1023(100), 273.1129(66), 219.0292(15), 254.0937(2), 237.0917(1) | Hydroxyshikonofuran A |
108 | B, C | 16.31 | 391.1762 | 391.1763 | 0.27 | C21H28O7 | MS2[391]: 255.1023(100), 273.1133(91), 117.0545(25) | Hydroxyshikonofuran K |
109 | C | 16.36 # | 283.0612 | 283.0611 | −0.45 | C16H12O5 | MS2[283]: 283.0608(100), 240.0423(27), 257.0451(19), 239.0373(3) | Glycitein |
110 | A, B, C | 16.46 # | 333.1344 | 333.1343 | −0.07 | C18H22O6 | MS2[333]: 255.1023(100), 273.1130(65), 315.1576(30), 254.0945(2), 237.0918(2) | Hydroxyshikonofuran A isomer |
111 | A, B, C | 16.76 | 315.1238 | 315.1238 | −0.06 | C18H20O5 | MS2[315]: 255.1023(100), 59.0125(29), 227.1077(13), 237.0922(11), 121.0281(7), 187.0390(4) | Shikonofuran A |
112 | A, B, C | 16.76 | 347.1136 | 347.1134 | −0.57 | C18H20O7 | MS2[347]: 241.0867(100), 287.0922(73), 269.0824(69), 59.0124(68), 227.1079(23) | Shikonin acetate |
113 | A, B, C | 16.79 # | 305.1758 | 305.1758 | 1.63 | C18H26O4 | MS2[305]: 135.0803(100), 249.1492(62), 174.9551(46), 235.0195(26), 146.9600(26) | Octyl ferulate |
114 | C | 16.87 *# | 283.0612 | 283.0612 | −0.03 | C16H12O5 | MS2[283]: 283.0608(100), 268.0377(67), 265.1805(10) | Baicalein |
115 | A, B, C | 17.67 # | 349.1293 | 349.1292 | −0.37 | C18H22O7 | MS2[349]: 255.1023(100), 227.1071(43), 237.0921(13) | Shikonofurans derivative |
116 | A, B, C | 17.00 | 405.1555 | 405.1558 | 0.74 | C21H26O8 | MS2[405]: 303.0870(100), 218.0214(59), 190.0262(58), 227.0343(56), 245.0451(54), 101.0594(53) | Dihydrohydroxyshikonin tiglate |
117 | A, B, C | 17.11 * | 299.0561 | 299.0560 | −0.38 | C16H12O6 | MS2[299]: 299.0558(100), 254.0581(27), 237.0556(25), 281.0452(22), 284.0333(13) | Kaempferide |
118 | A, B, C | 17.14 # | 313.0718 | 313.0716 | −0.46 | C17H14O6 | MS2[313]: 298.0482(100), 202.1159(82), 283.0243(53), 312.2260(47), 255.0294(24) | Pectolinarigenin |
119 | B, C | 17.19 | 345.0980 | 345.0975 | −1.47 | C18H18O7 | MS2[345]: 285.0766(100), 267.0674(32), 257.0807(25), 59.0123(20) | Lithospermidin C |
120 | A, B, C | 18.04 * | 287.0925 | 287.0923 | −0.62 | C16H16O5 | MS2[287]: 218.0214(100), 219.0255(9), 190.0261(2) | Shikonin |
121 | B, C | 18.15 | 433.1868 | 433.1871 | 0.65 | C23H30O8 | MS2[433]: 255.1023(100), 273.1131(84), 273.9557(16), 59.0126(5) | Hydroxyshikonofuran F |
122 | A, B, C | 18.17 | 361.1657 | 361.1655 | −0.54 | C20H26O6 | MS2[361]: 255.1022(100), 273.1129(73), 259.0607(15), 87.0439(4) | Hydroxyshikonofuran G |
123 | B, C | 18.45 | 433.1868 | 433.1866 | −0.56 | C23H30O8 | MS2[433]: 255.1023(100), 273.1131(81), 59.0123(6), 237.0913(3) | Hydroxyshikonofuran H |
124 | A, B, C | 18.47 | 361.1657 | 361.1658 | 0.39 | C20H26O6 | MS2[361]: 255.1022(100), 273.1128(72), 218.0214(10), 87.0438(3) | Hydroxyshikonofuran D |
125 | A, B, C | 18.57 # | 269.0455 | 269.0454 | 3.57 | C15H10O5 | MS2[301]: 269.0454(100), 149.0229(1) | Apigenin |
126 | A, B, C | 18.65 # | 345.0980 | 345.0975 | −1.47 | C18H18O7 | MS2[345]: 285.0766(100), 267.0659(14), 257.0817(8), 59.0124(4), 239.0709(1) | Lithospermidin C isomer |
127 | A, B, C | 18.83 | 343.1551 | 343.1551 | −0.03 | C20H24O5 | MS2[343]: 283.0974(100), 266.0824(14), 255.1023(35), 87.0438(16), 227.1078(3) | Shikonofuran D |
128 | A, B, C | 18.89 | 343.1187 | 343.1184 | −0.80 | C19H20O6 | MS2[343]: 283.0974(100), 255.1023(35), 87.0438(16), 266.0824(14) | 1-Methoxyacetylshikonin |
129 | A, B, C | 18.92 | 373.1657 | 373.1658 | 0.37 | C21H26O6 | MS2[373]: 255.1022(100), 273.1131(61), 174.9551(35) | Hydroxyshikonofuran I |
130 | C | 18.99 # | 357.2071 | 357.2071 | −0.04 | C22H30O4 | MS2[357]: 357.2070(100), 339.1964(69), 295.2061(31), 327.1965(30), 269.0819(13) | Cannabidiolic acid |
131 | A, B, C | 19.04 # | 269.0819 | 269.0812 | −0.20 | C16H14O4 | MS2[269]: 269.0816(100), 254.0582(80), 149.0231(42), 133.0646(37), 210.0677(35) | Medicarpin |
132 | A, B, C | 19.16 | 373.1657 | 373.1655 | −0.36 | C21H26O6 | MS2[373]: 255.1025(100), 273.1130(67), 174.9550(24) | Hydroxyshikonofuran E |
133 | B, C | 19.33 | 375.1813 | 375.1812 | 1.03 | C21H28O6 | MS2[375]: 255.1025(100), 273.1132(71) | Hydroxyshikonofuran B |
134 | A, B, C | 19.33 | 343.1187 | 343.1185 | −0.53 | C19H20O6 | MS2[343]: 283.0973(100), 255.1021(13) | 1-methoxyacetylshikonin isomer |
135 | A, B, C | 19.49 | 375.1813 | 375.1810 | 0.72 | C21H28O6 | MS2[375]: 255.1023(100), 273.1132(74) | Hydroxyshikonofuran L |
136 | A, B, C | 19.52 | 355.1551 | 355.1546 | −1.49 | C21H24O5 | MS2[355]: 255.1025(100), 355.3217(70), 99.0438(58), 218.0218(30), 227.1070(15), 237.0919(4) | Shikonofuran E |
137 | B, C | 19.67 | 375.1813 | 375.1784 | −7.74 | C21H28O6 | MS2[375]: 255.1024(100), 273.1131(69), 101.0594(3) | Hydroxyshikonofuran C |
138 | A, B, C | 19.74 | 359.1136 | 359.1139 | 0.82 | C19H20O7 | MS2[359]: 299.0921(100), 284.0687(57), 359.1137(11), 161.0234(9), 271.0973(7) | 1/4-methoxylithospermidin C |
139 | A, B, C | 19.80 | 425.1242 | 425.1245 | 1.90 | C23H22O8 | MS2[425]: 321.1494(100), 178.9977(59), 227.1074(58), 271.0969(27), 363.1226(21), 245.1178(16), 345.1130(12) | Unknown |
140 | A, B, C | 19.80 | 375.1813 | 375.1811 | −0.52 | C21H28O6 | MS2[375]: 255.1023(100), 273.1131(72), 101.0594(3) | Hydroxyshikonofuran M |
141 | A, B | 20.06 | 357.1707 | 357.1705 | −0.61 | C21H26O5 | MS2[357]: 255.1023(100), 101.0594(47), 297.1130(18), 227.1069(9), 121.0281(7), 237.0916(6) | Shikonofuran B |
142 | A, B, C | 20.15 | 357.1707 | 357.1704 | −0.95 | C21H26O5 | MS2[357]: 255.1023(100), 101.0594(45), 227.1068(10), 237.0921(8), 121.0283(8), 172.0517(2), 143.0497(2) | Shikonofuran C |
143 | A, B, C | 20.16 | 371.1500 | 371.1497 | −0.79 | C21H24O6 | MS2[371]: 269.0817(100), 241.0866(16), 251.0706(7) | α,α-dimethylpropionylshikonin |
144 | A, B, C | 20.50 | 387.1449 | 387.1448 | −0.30 | C21H24O7 | MS2[387]: 117.0544(100), 269.0813(31), 251.0711(31), 59.0123(21), 241.0867(13) | β-hydroxyisovalerylshikonin |
145 | A, B, C | 20.94 | 401.1606 | 401.1605 | 1.16 | C22H26O7 | MS2[401]: 299.0923(100), 255.1027(57), 121.0284(15), 313.0705(10), 237.0908(10) | 1-Methoxy-β-hydroxyisovalerylshikonin |
146 | A, B, C | 21.33 | 387.1449 | 387.1448 | −0.23 | C21H24O7 | MS2[387]: 101.0594(100), 189.0184(76), 285.0765(60), 217.0135(49), 257.0814(28), 267.0659(19) | Lithospermidin A |
147 | B, C | 21.69 | 459.1661 | 459.1664 | 0.71 | C24H28O9 | MS2[459]: 299.0916(100), 59.0124(58), 271.0966(36), 281.0820(21) | 1/4-methoxylithospermidin H |
148 | B, C | 21.70 | 445.1504 | 445.1503 | −0.18 | C23H26O9 | MS2[445]: 285.0766(100), 257.0819(9), 59.0124(8), 267.0657(7) | Lithospermidin D |
149 | A, B | 21.76 # | 271.0976 | 271.0974 | −0.53 | C16H16O4 | MS2[271]: 253.0867(100), 271.0968(73), 203.0342(58), 256.0739(44), 238.0630(39) | Deoxyshikonin isomer |
150 | A, B, C | 21.89 * | 329.1031 | 329.1030 | −0.19 | C18H18O6 | MS2[329]: 269.0818(100), 251.0710(81), 241.0868(48), 59.0124(47) | Acetylshikonin |
151 | A, B, C | 22.80 | 387.1449 | 387.1449 | 0.01 | C21H24O7 | MS2[387]: 299.0923(100), 270.0893(94), 285.0756(68), 271.0954(66), 87.0438(63), 253.0864(24) | 1/4-methoxylithospermidin I |
152 | A, B, C | 22.84 | 373.1293 | 373.1293 | 0.15 | C20H22O7 | MS2[373]: 285.0768(100), 267.0663(10), 257.0817(9), 174.9552(8), 87.0438(6) | Lithospermidin E |
153 | B, C | 23.03 # | 445.1504 | 445.1497 | −1.61 | C23H26O9 | MS2[445]: 285.0768(100), 257.0817(49), 59.0123(18), 267.0655(7) | Lithospermidin D isomer |
154 | A, B, C | 23.13 | 387.1449 | 387.1447 | −0.56 | C21H24O7 | MS2[387]: 299.0903(100), 285.0767(78), 270.0897(74), 87.0438(58), 271.0974(50) | 1/4-methoxylithospermidin E |
155 | A, B, C | 24.03 | 285.0768 | 285.0767 | −0.66 | C16H14O5 | MS2[285]: 285.0766(100), 267.0659(55), 227.0344(50), 73.0281(8), 257.0817(6), 239.0708(2) | Sakuranetin |
156 | B, C | 24.23 # | 445.1504 | 445.1504 | −0.11 | C23H26O9 | MS2[445]: 285.0771(100), 257.0809(93), 59.0124(35) | Lithospermidin D isomer |
157 | A, B, C | 24.57 | 399.1449 | 399.1445 | −1.07 | C22H24O7 | MS2[399]: 270.0891(100), 299.0921(98), 271.0978(68), 99.0437(56), 281.0811(21) | 1/4-methoxylithospermidin J |
158 | A, B, C | 24.63 | 385.1293 | 385.1292 | −0.33 | C21H22O7 | MS2[385]: 285.0767(100), 257.0817(11), 99.0438(9), 267.0651(8) | Lithospermidin F |
159 | A, B, C | 24.81 | 399.1449 | 399.1445 | −1.07 | C22H24O7 | MS2[399]: 299.0921(100), 271.0957(63), 99.0438(53), 281.0811(25) | 1/4-methoxylithospermidin F |
160 | A, B, C | 24.99 | 343.1187 | 343.1193 | 1.69 | C19H20O6 | MS2[343]: 57.0332(100), 343.2271(79), 269.0806(55), 251.0713(51), 285.1859(50), 73.0281(43), 241.0872(33) | Propionylshikonin |
161 | A, B, C | 25.48 | 401.1606 | 401.1603 | −0.67 | C22H26O7 | MS2[401]: 299.0919(100), 270.0900(92), 101.0594(61), 271.0976(53), 281.0826(21), 253.0871(17) | 1/4-methoxylithospermidin A |
162 | A, B, C | 25.60 | 387.1449 | 387.1448 | −0.30 | C21H24O7 | MS2[387]: 285.0766(100), 257.0816(9), 101.0594(9), 267.0658(8) | Lithospermidin B |
163 | B, C | 26.29 | 459.1661 | 459.1654 | −1.41 | C24H28O9 | MS2[459]: 299.0922(100), 271.0971(10), 59.0124(9) | 1/4-methoxylithospermidin D |
164 | B | 26.38 # | 445.1504 | 445.1500 | −0.94 | C23H26O9 | MS2[445]: 285.0768(100), 257.0815(54), 59.0125(21), 267.0662(6) | Lithospermidin D isomer |
165 | B | 26.38 # | 271.0976 | 271.0974 | −0.86 | C16H16O4 | MS2[271]: 253.0867(100), 271.0966(71), 203.0341(57), 256.0736(48), 238.0629(39) | Deoxyshikonin isomer |
166 | A, B, C | 26.60 | 429.1555 | 429.1552 | −0.59 | C23H26O8 | MS2[429]: 269.0822(100), 251.0710(65), 59.0125(65), 241.0866(35) | 5-acetoxy-valerylshikonin |
167 | A, B | 28.04 # | 271.0976 | 271.0974 | −0.53 | C16H16O4 | MS2[271]: 253.0866(100), 271.0967(66), 203.0341(54), 256.0738(45), 238.0629(42) | Deoxyshikonin isomer |
168 | B, C | 28.07 | 429.1555 | 429.1551 | −0.87 | C23H26O8 | MS2[429]: 269.0822(100), 251.0706(63), 59.0124(61), 241.0871(37) | β-acetoxyisovalerylshikonin |
169 | A, B, C | 28.08 # | 425.1242 | 425.1227 | −2.13 | C23H22O8 | MS2[425]: 269.0818(100), 251.0710(27), 87.0437(17), 241.0966(10) | Shikonin derivative |
170 | A, B, C | 28.16 | 357.1344 | 357.1342 | −0.40 | C20H22O6 | MS2[357]: 269.0819(100), 251.0713(70), 87.0438(63), 241.0863(50), 223.0820(4) | Butyrylshikonin |
171 | A, B, C | 29.19 | 357.1344 | 357.1342 | −0.40 | C20H22O6 | MS2[357]: 269.0819(100), 251.0707(66), 87.0437(72), 241.0866(43) | Isobutyrylshikonin |
172 | A, B, C | 29.53 | 399.1449 | 339.1999 | 9.71 | C22H24O7 | MS2[399]: 299.0923(100), 99.0439(11), 281.0812(10), 271.0970(9) | 1/4-Methoxylithospermidin L |
173 | A, B, C | 30.11 # | 271.0976 | 271.0974 | −0.64 | C16H16O4 | MS2[271]: 253.0867(100), 271.0967(74), 203.0341(54), 256.0736(45), 238.0631(41) | Deoxyshikonin isomer |
174 | A, B, C | 30.19 * | 369.1344 | 369.1342 | −0.39 | C21H22O6 | MS2[369]: 269.0818(100), 251.0710(71), 99.0438(68), 270.0888(57), 241.0867(49) | β,β-dimethylacrylshikonin |
175 | A, B, C | 30.44 | 401.1606 | 401.1603 | −0.59 | C22H26O7 | MS2[401]: 299.0924(100), 121.0283(15), 271.0959(12), 101.0592(11), 281.0879(10) | 1/4-methoxylithospermidin B |
176 | A, B, C | 30.64 | 599.1923 | 599.1926 | 1.52 | C34H32O10 | MS2[599]: 426.1099(100), 412.0935(42), 102.9554(26), 132.4304(21), 116.5537(21), 59.0124(21) | 7-(11′-Deoxyalkannin)-Acetylshikonin |
177 | A | 30.72 | 369.1344 | 369.1340 | −1.07 | C21H22O6 | MS2[369]: 269.0817(100), 251.0709(68), 99.0438(61), 241.0864(52) | α-methylene-butenoylshikonin |
178 | A, B, C | 30.89 # | 271.0976 | 271.0974 | −0.53 | C16H16O4 | MS2[271]: 253.0868(100), 271.0968(77), 203.0343(64), 256.0738(47), 238.0630(40) | Deoxyshikonin isomer |
179 | A, B, C | 30.98 | 371.1500 | 371.1497 | −0.95 | C21H24O6 | MS2[371]: 269.0818(100), 251.0710(66), 101.0594(65), 241.0865(43) | α-methylbutyrylshikonin |
180 | A, B, C | 31.62 | 555.1661 | 555.1657 | −0.63 | C32H28O9 | MS2[555]: 486.0952(100), 555.1646(11) | Shikometabolin B |
181 | A, B, C | 31.78 | 599.1923 | 599.1936 | 3.14 | C34H32O10 | MS2[599]: 412.0944(100), 426.1105(77) | 7-(11′-Deoxyalkannin)-Acetylalkannin |
182 | A | 32.05 | 369.1344 | 369.1343 | −0.14 | C21H22O6 | MS2[369]: 269.0816(100), 251.0705(48), 99.0439(43), 241.0871(37) | Tigloylshikonin |
183 | A, B, C | 33.05 | 371.1500 | 371.1497 | −0.95 | C21H24O6 | MS2[371]: 269.0819(100), 101.0594(71), 251.0710(64), 241.0866(47) | Isovalerylshikonin |
184 | A, B, C | 34.64 # | 271.0976 | 271.0973 | −1.08 | C16H16O4 | MS2[271]: 253.0866(100), 271.0974(66), 203.0341(58), 256.0735(45), 238.0630(37) | Deoxyshikonin isomer |
185 | A | 35.15 | 369.1344 | 369.1342 | −0.47 | C21H22O6 | MS2[369]: 269.0829(100), 251.0721(46), 99.0443(54), 241.0867(40) | Angeloylshikonin |
186 | A, B, C | 35.84 | 627.2236 | 627.2235 | 0.69 | C36H36O10 | MS2[627]: 426.1100(100), 412.0944(80), 87.0437(45), 495.1801(24), 349.1006(12), 290.5349(12) | 7-(11′-Deoxyalkannin)-Isobutyrylshikonin |
187 | A, B, C | 38.59 | 639.2236 | 639.2231 | 0.19 | C37H36O10 | MS2[639]: 537.1556(100), 639.2231(5), 509.1626(4), 519.1473(2), 101.0590(2) | 7-(11′-Deoxyalkannin)-β,β-dimethylacrylshikonin |
188 | A, B, C | 38.89 | 639.2236 | 639.2232 | 0.30 | C37H36O10 | MS2[639]: 537.1553(100), 639.2230(4), 519.1443(2), 101.0589(1) | 7-(11′-Deoxyalkannin)-β,β-dimethylacrylalkannin |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Ma, S.; Li, K.; Xiong, P.; Qin, S.; Cai, W. Systematic Screening of Chemical Constituents in the Traditional Chinese Medicine Arnebiae Radix by UHPLC-Q-Exactive Orbitrap Mass Spectrometry. Molecules 2022, 27, 2631. https://doi.org/10.3390/molecules27092631
Zhu L, Ma S, Li K, Xiong P, Qin S, Cai W. Systematic Screening of Chemical Constituents in the Traditional Chinese Medicine Arnebiae Radix by UHPLC-Q-Exactive Orbitrap Mass Spectrometry. Molecules. 2022; 27(9):2631. https://doi.org/10.3390/molecules27092631
Chicago/Turabian StyleZhu, Lian, Shengjun Ma, Kailin Li, Pei Xiong, Shihan Qin, and Wei Cai. 2022. "Systematic Screening of Chemical Constituents in the Traditional Chinese Medicine Arnebiae Radix by UHPLC-Q-Exactive Orbitrap Mass Spectrometry" Molecules 27, no. 9: 2631. https://doi.org/10.3390/molecules27092631
APA StyleZhu, L., Ma, S., Li, K., Xiong, P., Qin, S., & Cai, W. (2022). Systematic Screening of Chemical Constituents in the Traditional Chinese Medicine Arnebiae Radix by UHPLC-Q-Exactive Orbitrap Mass Spectrometry. Molecules, 27(9), 2631. https://doi.org/10.3390/molecules27092631