Influence of Homogenizing Methodology on Mechanical and Tribological Performance of Powder Metallurgy Processed Titanium Composites Reinforced by Graphene Nanoplatelets
Abstract
:1. Introduction
2. Experimental Part
2.1. Materials
2.2. Processing
2.2.1. Dry Ball Milling
2.2.2. Wet Ball Milling
2.2.3. Rotator Mixing
2.2.4. Consolidation
2.3. Characterization
3. Results and Discussion
3.1. Morphological Evolution of Composite Powders
3.2. Raman Spectroscopy
3.3. XRD Analysis
3.4. Density and Sinterability of Composites
3.5. Mechanical Strength of Composites
3.6. Tribological Performance
4. Conclusions
- The morphological study shows better homogenization of composite constituents for dry ball milled composite powders owing to the adherence of GNPs to Ti particles as a result of impact forces. GNPs aggregation for wet ball milled and rotator mixed has been observed.
- Density and sinterability of composites produced through the dry ball milling method display higher values due to the better sintering kinetics resulting from the particles’ flattened morphology, good combination of small and large particles, and well dispersed GNPs.
- Composites processed via dry ball milling show better mechanical strength, as the micro Vickers hardness is 4.56% and 15.7% higher than that of wet ball milled and rotator mixed composites, respectively. This improvement is due to the relatively denser composite and the greater role of the strengthening mechanisms as a result of GNPs’ uniform dispersion.
- The self-lubricating characteristics of GNPs have a key role in improving the tribological properties of 0.25 wt% GNP-Ti composites through the protective tribofilm formation. The effect is more pronounced in the case of dry ball milled composites due to well homogenized GNPs in the Ti matrix.
- For effective use in aerospace and tribological applications, 0.25GNP-Ti composites with improved mechanical and tribological performance have been synthesized via the powder metallurgy route by adopting the homogenizing approach of dry ball milling.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Mortensen, A.; Llorca, J. Metal matrix composites. Annu. Rev. Mater. Res. 2010, 40, 243–270. [Google Scholar] [CrossRef]
- Elanchezhian, C.; Vijaya Ramnath, B.; Ramakrishnan, G.; Sripada Raghavendra, K.N.; Muralidharan, M.; Kishore, V. Review on metal matrix composites for marine applications. Mater. Today Proc. 2018, 5, 1211–1218. [Google Scholar] [CrossRef]
- Banerjee, D.; Williams, J. Perspectives on titanium science and technology. Acta Mater. 2013, 61, 844–879. [Google Scholar] [CrossRef]
- Miller, P.; Holladay, J. Friction and wear properties of titanium. Wear 1958, 2, 133–140. [Google Scholar] [CrossRef]
- Chauhan, S.; Dass, K. Dry sliding wear behaviour of titanium (Grade 5) alloy by using response surface methodology. Adv. Tribol. 2013, 2013, 272106. [Google Scholar] [CrossRef] [Green Version]
- Ammisetti, D.K.; Harish Kruthiventi, S.S. Recent trends on titanium metal matrix composites: A review. Mater. Today Proc. 2021, 46, 9730–9735. [Google Scholar] [CrossRef]
- Shufeng, L.; Kondoh, K.; Imai, H.; Chen, B.; Jia, L.; Umeda, J. Microstructure and mechanical properties of P/M titanium matrix composites reinforced by in-situ synthesized TiC–TiB. Mater. Sci. Eng. A 2015, 628, 75–83. [Google Scholar]
- Gu, D.; Meng, G.; Li, C.; Meiners, W.; Poprawe, R. Selective laser melting of TiC/Ti bulk nanocomposites: Influence of nanoscale reinforcement. Scr. Mater. 2012, 67, 185–188. [Google Scholar] [CrossRef]
- Wang, C.M.; Gao, S.Y.; Xiao, S.F.; Chen, Y.G. In Situ Formation of Ti Matrix Composites Reinforced Nanometric TiC by Powder Metallurgy Technique. Adv. Mater. Res. 2015, 1061–1062, 100–103. [Google Scholar] [CrossRef]
- Shafiei-Zarghani, A.; Kashani-Bozorg, S.F.; Gerlich, A.P. Strengthening analyses and mechanical assessment of Ti/Al2O3 nano-composites produced by friction stir processing. Mater. Sci. Eng. A 2015, 631, 75–85. [Google Scholar] [CrossRef]
- Huang, L.; Wang, L.; Qian, M.; Zou, J. High tensile-strength and ductile titanium matrix composites strengthened by TiB nanowires. Scr. Mater. 2017, 141, 133–137. [Google Scholar] [CrossRef]
- Pan, Y.; Li, W.; Lu, X.; Hayat, M.D.; Yin, L.; Song, W.; Qu, X.; Cao, P. Microstructure and tribological properties of titanium matrix composites reinforced with in situ synthesized TiC particles. Mater. Charact. 2020, 170, 110633. [Google Scholar] [CrossRef]
- Jin, J.; Zhou, S.; Zhao, Y.; Zhang, Q.; Wang, X.; Li, W.; Chen, D.; Zhang, L.-C. Refined microstructure and enhanced wear resistance of titanium matrix composites produced by selective laser melting. Opt. Laser Technol. 2021, 134, 106644. [Google Scholar] [CrossRef]
- Bakshi, S.; Lahiri, D.; Agarwal, A. Carbon nanotube reinforced metal matrix composites-a review. Int. Mater. Rev. 2010, 55, 41–64. [Google Scholar] [CrossRef]
- Khanna, V.; Kumar, V.; Bansal, S.A. Effect of carbonaceous nanomaterials’ reinforcement on mechanical properties of aluminium metal-based nanocomposite: A review. Mater. Today Proc. 2021, 38, 289–295. [Google Scholar] [CrossRef]
- Dong, L.L.; Lu, J.W.; Fu, Y.Q.; Huo, W.T.; Liu, Y.; Li, D.D.; Zhang, Y.S. Carbonaceous nanomaterial reinforced Ti-6Al-4V matrix composites: Properties, interfacial structures and strengthening mechanisms. Carbon 2020, 164, 272–286. [Google Scholar] [CrossRef]
- Saba, F.; Zhang, F.; Liu, S.; Liu, T. Tribological properties, thermal conductivity and corrosion resistance of titanium/nanodiamond nanocomposites. Compos. Commun. 2018, 10, 57–63. [Google Scholar] [CrossRef]
- Munir, K.S.; Kingshott, P.; Wen, C. Carbon nanotube reinforced titanium metal matrix composites prepared by powder metallurgy—A review. Crit. Rev. Solid State Mater. Sci. 2015, 40, 38–55. [Google Scholar] [CrossRef]
- Kuzumaki, T.; Ujiie, O.; Ichinose, H.; Ito, K. Mechanical characteristics and preparation of carbon nanotube fiber-reinforced Ti composite. Adv. Eng. Mater. 2000, 2, 416–418. [Google Scholar] [CrossRef]
- Kondoh, K.; Threrujirapapong, T.; Imai, H.; Umeda, J.; Fugetsu, B. Characteristics of powder metallurgy pure titanium matrix composite reinforced with multi-wall carbon nanotubes. Compos. Sci. Technol. 2009, 69, 1077–1081. [Google Scholar] [CrossRef] [Green Version]
- Xue, F.; Jiehe, S.; Yan, F.; Wei, C. Preparation and elevated temperature compressive properties of multi-walled carbon nanotube reinforced Ti composites. Mater. Sci. Eng. A 2010, 527, 1586–1589. [Google Scholar] [CrossRef]
- Wang, F.-C.; Zhang, Z.-H.; Sun, Y.-J.; Liu, Y.; Hu, Z.-Y.; Wang, H.; Korznikov, A.V.; Korznikova, E.; Liu, Z.-F.; Osamu, S. Rapid and low temperature spark plasma sintering synthesis of novel carbon nanotube reinforced titanium matrix composites. Carbon 2015, 95, 396–407. [Google Scholar] [CrossRef]
- Munir, K.S.; Li, Y.; Qian, M.; Wen, C. Identifying and understanding the effect of milling energy on the synthesis of carbon nanotubes reinforced titanium metal matrix composites. Carbon 2016, 99, 384–397. [Google Scholar] [CrossRef]
- Munir, K.S.; Zheng, Y.; Zhang, D.; Lin, J.; Li, Y.; Wen, C. Microstructure and mechanical properties of carbon nanotubes reinforced titanium matrix composites fabricated via spark plasma sintering. Mater. Sci. Eng. A 2017, 688, 505–523. [Google Scholar] [CrossRef]
- Munir, K.S.; Zheng, Y.; Zhang, D.; Lin, J.; Li, Y.; Wen, C. Improving the strengthening efficiency of carbon nanotubes in titanium metal matrix composites. Mater. Sci. Eng. A 2017, 696, 10–25. [Google Scholar] [CrossRef]
- Phiri, J.; Gane, P.; Maloney, T.C. General overview of graphene: Production, properties and application in polymer composites. Mater. Sci. Eng. B 2017, 215, 9–28. [Google Scholar] [CrossRef] [Green Version]
- Berman, D.; Erdemir, A.; Sumant, A.V. Graphene: A new emerging lubricant. Mater. Today 2014, 17, 31–42. [Google Scholar] [CrossRef]
- Nieto, A.; Lahiri, D.; Agarwal, A. Synthesis and properties of bulk graphene nanoplatelets consolidated by spark plasma sintering. Carbon 2012, 50, 4068–4077. [Google Scholar] [CrossRef]
- Nieto, A.; Bisht, A.; Lahiri, D.; Zhang, C.; Agarwal, A. Graphene reinforced metal and ceramic matrix composites: A review. Int. Mater. Rev. 2017, 62, 241–302. [Google Scholar] [CrossRef]
- Yang, W.-Z.; Huang, W.-M.; Wang, Z.-F.; Shang, F.-J.; Huang, W.; Zhang, B.-Y. Thermal and Mechanical Properties of Graphene–Titanium Composites Synthesized by Microwave Sintering. Acta Metall. Sin. (Engl. Lett.) 2016, 29, 707–713. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Chen, Y.; Liu, W.W.; Li, W.L.; Wang, Y.G.; Zhao, D.; Liu, X.B. Microscopic mechanical properties of titanium composites containing multi-layer graphene nanofillers. Mater. Des. 2016, 109, 256–263. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, X.; Li, J.; Wu, Y.; Zhang, H.; Guo, J.; Wang, S. Reinforcement with graphene nanoflakes in titanium matrix composites. J. Alloys Compd. 2017, 696, 498–502. [Google Scholar] [CrossRef]
- Gürbüz, M.; Mutuk, T. Effect of process parameters on hardness and microstructure of graphene reinforced titanium composites. J. Compos. Mater. 2018, 52, 543–551. [Google Scholar] [CrossRef]
- Mu, X.N.; Cai, H.N.; Zhang, H.M.; Fan, Q.B.; Zhang, Z.H.; Wu, Y.; Ge, Y.X.; Wang, D.D. Interface evolution and superior tensile properties of multi-layer graphene reinforced pure Ti matrix composite. Mater. Des. 2018, 140, 431–441. [Google Scholar] [CrossRef]
- Mu, X.N.; Cai, H.N.; Zhang, H.M.; Fan, Q.B.; Wang, F.C.; Zhang, Z.H.; Wu, Y.; Ge, Y.X.; Chang, S.; Shi, R.; et al. Uniform dispersion of multi-layer graphene reinforced pure titanium matrix composites via flake powder metallurgy. Mater. Sci. Eng. A 2018, 725, 541–548. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, K.; Niu, J.; Sun, M.; Dai, G.; Sun, Z.; Chang, H. Effect of reinforcement content on microstructures and mechanical properties of graphene nanoflakes-reinforced titanium alloy matrix composites. J. Mater. Res. Technol. 2021, 15, 6871–6882. [Google Scholar] [CrossRef]
- Qian, M.; Froes, F.H. Titanium Powder Metallurgy: Science, Technology and Applications; Butterworth-Heinemann: Oxford, UK, 2015. [Google Scholar]
- Moghadam, A.D.; Omrani, E.; Menezes, P.L.; Rohatgi, P.K. Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene—A review. Compos. Part B Eng. 2015, 77, 402–420. [Google Scholar] [CrossRef]
- Mouritz, A.P. Introduction to Aerospace Materials; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Zhang, L.C.; Chen, L.Y. A review on biomedical titanium alloys: Recent progress and prospect. Adv. Eng. Mater. 2019, 21, 1801215. [Google Scholar] [CrossRef] [Green Version]
- Suryanarayana, C. Mechanical alloying and milling. Prog. Mater. Sci. 2001, 46, 1–184. [Google Scholar] [CrossRef]
- Suryanarayana, C. Recent developments in mechanical alloying. Rev. Adv. Mater. Sci. 2008, 18, 203–211. [Google Scholar]
- Froes, F.; Mashl, S.; Hebeisen, J.; Moxson, V.; Duz, V. The technologies of titanium powder metallurgy. JOM J. Miner. Met. Mater. Soc. 2004, 56, 46–48. [Google Scholar] [CrossRef]
- Evans, C.A.; Brundle, C.R.; Wilson, S. Encyclopedia of Materials Characterization; Reed Publishing: New York, NY, USA, 1992. [Google Scholar]
- Committee, H. ASM Handbook, Vol. 10: Materials Characterization, 3rd ed.; ASM International: Almere, The Netherlands, 1992. [Google Scholar]
- Watts, J.F. Encyclopedia of Materials Characterization; Brundle, C.R., Evans, C.A., Jr., Wilson, S., Eds.; Butterworth-Heinemann: Stoneham, MA, USA, 1992; Elsevier: Amsterdam, The Netherlands, 1993; ISBN 0-7506-9168-9. [Google Scholar]
- Kang, S.-J.L. 1—SINTERING PROCESSES. In Sintering; Kang, S.-J.L., Ed.; Butterworth-Heinemann: Oxford, UK, 2005; pp. 3–8. [Google Scholar] [CrossRef]
- Froes, F.; Eylon, D.; Eichelman, G.; Burte, H. Developments in titanium powder metallurgy. JOM 1980, 32, 47–54. [Google Scholar] [CrossRef]
- Al-Sherbini, A.-S.; Bakr, M.; Ghoneim, I.; Saad, M. Exfoliation of graphene sheets via high energy wet milling of graphite in 2-ethylhexanol and kerosene. J. Adv. Res. 2017, 8, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Stobinski, L.; Lesiak, B.; Malolepszy, A.; Mazurkiewicz, M.; Mierzwa, B.; Zemek, J.; Jiricek, P.; Bieloshapka, I. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc. Relat. Phenom. 2014, 195, 145–154. [Google Scholar] [CrossRef]
- Munir, K.S.; Qian, M.; Li, Y.; Oldfield, D.T.; Kingshott, P.; Zhu, D.M.; Wen, C. Quantitative Analyses of MWCNT-Ti Powder Mixtures using Raman Spectroscopy: The Influence of Milling Parameters on Nanostructural Evolution. Adv. Eng. Mater. 2015, 17, 1660–1669. [Google Scholar] [CrossRef]
- Pérez-Bustamante, R.; Bolaños-Morales, D.; Bonilla-Martínez, J.; Estrada-Guel, I.; Martínez-Sánchez, R. Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying. J. Alloys Compd. 2014, 615, S578–S582. [Google Scholar] [CrossRef]
- Jia, H.; Zhang, Z.; Qi, Z.; Liu, G.; Bian, X. Formation of nanocrystalline TiC from titanium and different carbon sources by mechanical alloying. J. Alloys Compd. 2009, 472, 97–103. [Google Scholar] [CrossRef]
- Suryanarayana, C.; Ivanov, E.; Boldyrev, V. The science and technology of mechanical alloying. Mater. Sci. Eng. A 2001, 304, 151–158. [Google Scholar] [CrossRef]
- Ali, A.-A.; Baumli, P.; Mucsi, G. Mechanical Alloying and Milling; University of Miskolc: Miskolc, Hungaria, 2015. [Google Scholar]
- Eisen, W.B. Advances in Powder Metallurgy and Particulate Materials; Metal Powder Industries Federation: Princeton, USA, 2001. [Google Scholar]
- Bose, A. Advances in Particulate Materials; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Larkin, P.J. Chapter 1—Introduction: Infrared and Raman Spectroscopy. In Infrared and Raman Spectroscopy, 2nd ed.; Larkin, P.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Mu, X.N.; Zhang, H.M.; Cai, H.N.; Fan, Q.B.; Zhang, Z.H.; Wu, Y.; Fu, Z.J.; Yu, D.H. Microstructure evolution and superior tensile properties of low content graphene nanoplatelets reinforced pure Ti matrix composites. Mater. Sci. Eng. A 2017, 687, 164–174. [Google Scholar] [CrossRef]
- Hulman, M. 15—Raman spectroscopy of graphene. In Graphene, 2nd ed.; Skakalova, V., Kaiser, A.B., Eds.; Woodhead Publishing: Cambridge, UK, 2021; pp. 381–411. [Google Scholar] [CrossRef]
- Lohse, B.; Calka, A.; Wexler, D. Raman spectroscopy as a tool to study TiC formation during controlled ball milling. J. Appl. Phys. 2005, 97, 114912. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wu, M.; Yang, Y.; Yang, G.; Yan, H.; Jiang, K. Preparation and mechanical performance of graphene platelet reinforced titanium nanocomposites for high temperature applications. J. Alloys Compd. 2018, 765, 1111–1118. [Google Scholar] [CrossRef]
- Jiang, J.; Pachter, R.; Mehmood, F.; Islam, A.E.; Maruyama, B.; Boeckl, J.J. A Raman spectroscopy signature for characterizing defective single-layer graphene: Defect-induced I(D)/I(D’) intensity ratio by theoretical analysis. Carbon 2015, 90, 53–62. [Google Scholar] [CrossRef]
- Chawla, K.K. Metal matrix composites. In Composite Materials; Springer: Berlin/Heidelberg, Germany, 2012; pp. 197–248. [Google Scholar]
- Angelo, P.; Subramanian, R. Powder Metallurgy: Science, Technology and Applications; Prentice Hall Of India Private Limited: Delhi, India, 2008. [Google Scholar]
- Rahimian, M.; Ehsani, N.; Parvin, N.; reza Baharvandi, H. The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy. J. Mater. Processing Technol. 2009, 209, 5387–5393. [Google Scholar] [CrossRef]
- Khodabakhshi, F.; Gerlich, A.P. On the correlation between indentation hardness and tensile strength in friction stir processed materials. Mater. Sci. Eng. A 2020, 789, 139682. [Google Scholar] [CrossRef]
- Mahmoud Ali, M.; Omran, A.N.M.; Abd-El-Hakeem Mohamed, M. Prediction the correlations between hardness and tensile properties of aluminium-silicon alloys produced by various modifiers and grain refineries using regression analysis and an artificial neural network model. Eng. Sci. Technol. Int. J. 2021, 24, 105–111. [Google Scholar] [CrossRef]
- Dehuri, B.; Soumya Pradhan, S. Correlations between hardness and tensile strength of cracked aluminium plates repaired with composite patches. Mater. Today Proc. 2020, 21, 1335–1339. [Google Scholar] [CrossRef]
- Hansen, N.; Barlow, C.Y. 17—Plastic Deformation of Metals and Alloys. In Physical Metallurgy, 5th ed.; Laughlin, D.E., Hono, K., Eds.; Elsevier: Oxford, UK, 2014; pp. 1681–1764. [Google Scholar] [CrossRef]
- Gupta, A.; Khatirkar, R.; Singh, J. A review of microstructure and texture evolution during plastic deformation and heat treatment of β-Ti alloys. J. Alloys Compd. 2022, 899, 163242. [Google Scholar] [CrossRef]
- Bidulský, R.; Bidulská, J.; Grande, M.A. Effect of high-temperature sintering and severe plastic deformation on the porosity distribution. High Temp. Mater. Processes 2009, 28, 337–342. [Google Scholar] [CrossRef]
- Roberts, J.; Ueda, Y. Influence of Porosity on Deformation and Fracture of UO2. J. Am. Ceram. Soc. 1972, 55, 117–124. [Google Scholar] [CrossRef]
- Casati, R.; Vedani, M. Metal matrix composites reinforced by nano-particles—A review. Metals 2014, 4, 65–83. [Google Scholar] [CrossRef]
- Molina-Aldareguia, J.M.; Elizalde, M.R. Metal Matrix Composites reinforced with nano-size reinforcements. Compos. Sci. Technol. 2010, 70, 2227. [Google Scholar] [CrossRef]
- Hu, Z.; Tong, G.; Lin, D.; Chen, C.; Guo, H.; Xu, J.; Zhou, L. Graphene-reinforced metal matrix nanocomposites—A review. Mater. Sci. Technol. 2016, 32, 930–953. [Google Scholar] [CrossRef]
- Sanaty-Zadeh, A. Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall–Petch effect. Mater. Sci. Eng. A 2012, 531, 112–118. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, D.L. Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater. Sci. Eng. A 2008, 483–484, 148–152. [Google Scholar] [CrossRef]
- Li, S.; Sun, B.; Imai, H.; Mimoto, T.; Kondoh, K. Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite. Compos. Part A Appl. Sci. Manuf. 2013, 48, 57–66. [Google Scholar] [CrossRef]
- Mu, X.N.; Cai, H.N.; Zhang, H.M.; Fan, Q.B.; Wang, F.C.; Zhang, Z.H.; Ge, Y.X.; Shi, R.; Wu, Y.; Wang, Z.; et al. Uniform dispersion and interface analysis of nickel coated graphene nanoflakes/ pure titanium matrix composites. Carbon 2018, 137, 146–155. [Google Scholar] [CrossRef]
- Fang, L.; Zhou, Q.; Li, Y. An explanation of the relation between wear and material hardness in three-body abrasion. Wear 1991, 151, 313–321. [Google Scholar] [CrossRef]
- Zhang, Y.; Chromik, R.R. Tribology of self-lubricating metal matrix composites. In Self-Lubricating Composites; Springer: Berlin/Heidelberg, Germany, 2022; pp. 31–71. [Google Scholar]
- Xu, Z.; Shi, X.; Zhai, W.; Yao, J.; Song, S.; Zhang, Q. Preparation and tribological properties of TiAl matrix composites reinforced by multilayer graphene. Carbon 2014, 67, 168–177. [Google Scholar] [CrossRef]
- Tabandeh-Khorshid, M.; Omrani, E.; Menezes, P.L.; Rohatgi, P.K. Tribological performance of self-lubricating aluminum matrix nanocomposites: Role of graphene nanoplatelets. Eng. Sci. Technol. Int. J. 2016, 19, 463–469. [Google Scholar] [CrossRef] [Green Version]
- Rohatgi, P.K.; Tabandeh-Khorshid, M.; Omrani, E.; Lovell, M.R.; Menezes, P.L. Tribology of metal matrix composites. In Tribology for Scientists and Engineers; Springer: Berlin/Heidelberg, Germany, 2013; pp. 233–268. [Google Scholar]
- Tabandeh-Khorshid, M.; Kumar, A.; Omrani, E.; Kim, C.; Rohatgi, P. Synthesis, characterization, and properties of graphene reinforced metal-matrix nanocomposites. Compos. Part B Eng. 2020, 183, 107664. [Google Scholar] [CrossRef]
Element Concentration (%) | ||
---|---|---|
Fe | Al | Ti |
0.036 | 0.021 | 99.943 |
Sample Batch | Composite Constituents Mixing | Consolidation | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Method | Medium | Charge Ratio | Speed | Time | Compaction Pressure | Sintering Temperature | Sintering Time | Heating and Cooling Rate | Sintering Environment | |
1 | Dry ball milling | Tungsten carbide balls | Balls to powder ratio 6:1 | 225 rpm | 3 h | 400 MPa | 1100 °C | 2 h | 10 °C/min | 10−3 vacuum |
2 | Wet ball milling | Tungsten carbide balls | Balls to powder ratio 6:1 | 225 rpm | 3 h | |||||
3 | Rotator mixing | Stainless steel blade | Volume filled 1/3 | 300 rpm | 3 h |
Composites Processed via | Theoretical Density (g/cm3) | Green Density | Sintered Density | Sinterability | ||
---|---|---|---|---|---|---|
Actual (g/cm3) | Relative (%) | Actual (g/cm3) | Relative (%) | |||
Dry ball milling | 4.53 | 3.8 ± 0.1 | 84.0 ± 2.0 | 4.4 ± 0.1 | 97.0 ± 2.0 | 0.82 ± 0.04 |
Wet ball milling | 4.53 | 3.5 ± 0.1 | 77.0 ± 2.0 | 4.2 ± 0.1 | 93.0 ± 2.0 | 0.68 ± 0.04 |
Rotator mixing | 4.53 | 3.5 ± 0.1 | 77.0 ± 2.0 | 4.3 ± 0.1 | 95.0 ± 2.0 | 0.78 ± 0.04 |
Composite System | Processing | Relative Density (RD) (%) | Porosity (%) (100-%RD) | References |
---|---|---|---|---|
0.25 wt% GNP-Ti | Dry ball milling | 97.0 ± 2.0 | 3.0 ± 2.0 | This study |
Cold compaction | ||||
Vacuum sintering | ||||
0.25 wt% GNP-Ti | Wet ball milling | 93.0 ± 2.0 | 7.0 ± 2.0 | This study |
Cold compaction | ||||
Vacuum sintering | ||||
0.25 wt% GNP-Ti | Rotator mixing | 95.0 ± 2.0 | 5 ± 2.0 | This study |
Cold compaction | ||||
Vacuum sintering | ||||
0.30 wt% GNP-Ti | Dry ball milling | 96.67 | 3.33 | [33] |
Cold compaction | ||||
Vacuum sintering | ||||
0.30 wt% GNP-Ti | Dry ball milling | 95 | 5 | [30] |
Cold compaction | ||||
Microwave sintering |
Composite System | Processing | Hardness | References |
---|---|---|---|
0.25 wt% GNP-Ti | Dry ball milling | 440 ± 20 HV0.1 | This study |
Cold compaction | |||
Vacuum sintering | |||
0.25 wt% GNP-Ti | Wet ball milling | 420 ± 20 HV0.1 | This study |
Cold compaction | |||
Vacuum sintering | |||
0.25 wt% GNP-Ti | Rotator mixing | 380 ± 20 HV0.1 | This study |
Cold compaction | |||
Vacuum sintering | |||
0.30 wt% GNP-Ti | Dry ball milling | 519 ± 35 HV0.5 | [33] |
Cold compaction | |||
Vacuum sintering | |||
0.30 wt% GNP-Ti | Dry ball milling | 435 ± 28 HV1 | [57] |
Spark plasma sintering |
Composites Produced through | Wear Loss (g) | Wear Rate mm3/Nm | Coefficient of Friction |
---|---|---|---|
Dry ball milling | 0.0013 ± 0.0002 | 0.00012 | 0.350 |
Wet ball milling | 0.0072 ± 0.0002 | 0.00084 | 0.413 |
Rotator mixing | 0.0063 ± 0.002 | 0.00072 | 0.415 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmood, S.; Iqbal, A.; Rafi-ud-Din; Wadood, A.; Mateen, A.; Amin, M.; Yahia, I.S.; Zahran, H.Y. Influence of Homogenizing Methodology on Mechanical and Tribological Performance of Powder Metallurgy Processed Titanium Composites Reinforced by Graphene Nanoplatelets. Molecules 2022, 27, 2666. https://doi.org/10.3390/molecules27092666
Mahmood S, Iqbal A, Rafi-ud-Din, Wadood A, Mateen A, Amin M, Yahia IS, Zahran HY. Influence of Homogenizing Methodology on Mechanical and Tribological Performance of Powder Metallurgy Processed Titanium Composites Reinforced by Graphene Nanoplatelets. Molecules. 2022; 27(9):2666. https://doi.org/10.3390/molecules27092666
Chicago/Turabian StyleMahmood, Sultan, Amjad Iqbal, Rafi-ud-Din, Abdul Wadood, Abdul Mateen, Muhammad Amin, Ibrahim S. Yahia, and Heba Y. Zahran. 2022. "Influence of Homogenizing Methodology on Mechanical and Tribological Performance of Powder Metallurgy Processed Titanium Composites Reinforced by Graphene Nanoplatelets" Molecules 27, no. 9: 2666. https://doi.org/10.3390/molecules27092666
APA StyleMahmood, S., Iqbal, A., Rafi-ud-Din, Wadood, A., Mateen, A., Amin, M., Yahia, I. S., & Zahran, H. Y. (2022). Influence of Homogenizing Methodology on Mechanical and Tribological Performance of Powder Metallurgy Processed Titanium Composites Reinforced by Graphene Nanoplatelets. Molecules, 27(9), 2666. https://doi.org/10.3390/molecules27092666