Analysis of Proanthocyanidins in Plant Materials Using Hydrophilic Interaction HPLC-QTOF-MS
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials and Reagents
3.2. Extraction and Purification of PACs
3.3. UV–Vis Spectroscopic Measurement
3.4. HPLC-QTOF-MS Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. J. Nutr. 2000, 130, 2073S–2085S. [Google Scholar] [CrossRef] [PubMed]
- Cires, M.J.; Wong, X.; Carrasco-Pozo, C.; Gotteland, M. The gastrointestinal tract as a key target organ for the health-promoting effects of dietary proanthocyanidins. Front. Nutr. 2017, 3, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalili, K.M.; de Villiers, A. Off-line comprehensive 2-dimensional hydrophilic interaction × reversed phase liquid chromatography analysis of procyanidins. J. Chromatogr. A 2009, 1216, 6274–6284. [Google Scholar] [CrossRef] [PubMed]
- Alejo-Armijo, A.; Salido, S.; Altarejos, J.N. Synthesis of A-type proanthocyanidins and their analogues: A comprehensive review. J. Agric. Food Chem. 2020, 68, 8104–8118. [Google Scholar] [CrossRef] [PubMed]
- Shoji, T.; Masumoto, S.; Moriichi, N.; Akiyama, H.; Kanda, T.; Ohtake, Y.; Goda, Y. Apple Procyanidin Oligomers Absorption in Rats after Oral Administration: Analysis of procyanidins in plasma using the porter method and high-performance liquid chromatography/tandem mass spectrometry. J. Agric. Food Chem. 2006, 54, 884–892. [Google Scholar] [CrossRef] [PubMed]
- Tsang, C.; Auger, C.; Mullen, W.; Bornet, A.; Rouanet, J.-M.; Crozier, A.; Teissedre, P.-L. The absorption, metabolism and excretion of flavan-3-ols and procyanidins following the ingestion of a grape seed extract by rats. Br. J. Nutr. 2005, 94, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.; Wei, C.; Shen, S.; Wang, M.; Chen, S.; Ye, X.; Cao, Y. Mainly dimers and trimers of Chinese bayberry leaves proanthocyanidins (BLPs) are utilized by gut microbiota: In vitro digestion and fermentation coupled with caco-2 transportation. Molecules 2020, 25, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen-Civil, A.I.S.; Leppä, M.M.; Thamsborg, S.M.; Salminen, J.-P.; Williams, A.R. Structure-function analysis of purified proanthocyanidins reveals a role for polymer size in suppressing inflammatory responses. Commun. Biol. 2021, 4, 896. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.A.; Jones, G.P. Analysis of proanthocyanidin cleavage products following acid-catalysis in the presence of excess phloroglucinol. J. Agric. Food Chem. 2001, 49, 1740–1746. [Google Scholar] [CrossRef] [PubMed]
- Awika, J.M.; Dykes, L.; Gu, L.W.; Rooney, L.W.; Prior, R.L. Processing of sorghum (Sorghum bicolor) and sorghum products alters procyanidin oligomer and polymer distribution and content. J. Agric. Food Chem. 2003, 51, 5516–5521. [Google Scholar] [CrossRef] [PubMed]
- Verardo, V.; Cevoli, C.; Pasini, F.; Gomez-Caravaca, A.M.; Marconi, E.; Fabbri, A.; Caboni, M.F. Analysis of oligomer proanthocyanidins in different barley genotypes using high-performance liquid chromatography-fluorescence detection-mass spectrometry and near-infrared methodologies. J. Agric. Food Chem. 2015, 63, 4130–4137. [Google Scholar] [CrossRef] [PubMed]
- Rue, E.A.; Rush, M.D.; van Breemen, R.B. Procyanidins: A comprehensive review encompassing structure elucidation via mass spectrometry. Phytochem. Rev. 2018, 17, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Hollands, W.J.; Voorspoels, S.; Jacobs, G.; Aaby, K.; Meisland, A.; Garcia-Villalba, R.; Tomas-Barberan, F.; Piskula, M.K.; Mawson, D.; Vovk, I.; et al. Development, validation and evaluation of an analytical method for the determination of monomeric and oligomeric procyanidins in apple extracts. J. Chromatogr. A 2017, 1495, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Anouar, E.H.; Gierschner, J.; Duroux, J.-L.; Trouillas, P. UV/Visible spectra of natural polyphenols: A time-dependent density functional theory study. Food Chem. 2012, 131, 79–89. [Google Scholar] [CrossRef]
- Wang, D.Y.; Nie, B.L.; Li, H.J.; Zhang, W.W.; Wu, Y.C. Anticorrosion performance of grape seed proanthocyanidins extract and Tween-80 for mild steel in hydrochloric acid medium. J. Mol. Liq. 2021, 331, 115799. [Google Scholar] [CrossRef]
- Liu, H.; Zou, T.; Gao, J.-M.; Gu, L. Depolymerization of cranberry procyanidins using (+)-catechin, (−)-epicatechin, and (−)-epigallocatechin gallate as chain breakers. Food Chem. 2013, 141, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Kelm, M.A.; Hammerstone, J.F.; Zhang, Z.; Beecher, G.; Holden, J.; Haytowitz, D.; Prior, R.L. Liquid chromatographic/electrospray ionization mass spectrometric studies of proanthocyanidins in foods. J. Mass Spectrom. 2003, 38, 1272–1280. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Kumar, S.; Kumar, B. LC-MS identification of proanthocyanidins in bark and fruit of six Terminalia species. Nat. Prod. Commun. 2018, 13, 555–560. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Wang, Y.; Xu, X.; Qian, Z.; Cheng, H.; Ye, X.; Chen, S. Simultaneous extraction and depolymerization of condensed tannins from Chinese bayberry leaves for improved bioavailability and antioxidant activity. J. Agric. Food Chem. 2021, 69, 11292–11302. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Qiao, L.; Cao, Y.; Zhou, X.; Liu, Y.; Ye, X. Structural elucidation and antioxidant activities of proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves. PLoS ONE 2014, 9, e96162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Peak | DP | Retention Time (min) | Molecular Formula | NA | [M-H]− | [M-2H]2− | [MS/MS] | Error (ppm) | Identification |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 19.561 | C22H18O11 | - | 457.0776 | - | 125.0249HRF, 169.0143(gallic acid) | 0.7 | (E)GCG |
2 | 2 | 27.206 | C37H28O18 | 1 | 759.1228 | - | 177.0204HRF, 301.0366QM, 455.0648RDA | 0.4 | (E)GC + (E)GCG |
3 | 2 | 29.275 | C37H30O18 | - | 761.1362 | - | 125.0249HRF, 177.0195HRF, 305.0671QM, 423.0730RDA | −0.3 | (E)GC + (E)GCG |
4 | 2 | 31.659 | C44H34O22 | - | 913.1470 | - | 177.0194HRF, 285.0404QM, 423.0726RDA, 591.1177(GL, galloyl loss) | 0.9 | 2(E)GCG |
5 | 3 | 36.757 | C52H42O25 | - | 1065.1929 | - | 177.0198HRF; 243.0298; 423.0740RDA | −1 | 2(E)GC + (E)GCG |
6 | 3 | 39.413 | C59H46O29 | - | 1217.2025 | - | 423.0742RDA, 709.1262(RDA, galloyl loss), 1047.1941(galloyl loss) | −2.3 | (E)GC + 2(E)GCG |
7 | 3 | 41.382 | C66H50O33 | - | 1369.2128 | 684.1023 | 125.0266HRF, 169.0156(gallic acid), 285.0411QM, 423.073RDA | −1.4 | 3(E)GCG |
8 | 4 | 44.517 | C74H56O36 | 1 | 1519.2421 | 759.1204 | - | −2.2 | 2(E)GC + 2(E)GCG |
9 | 4 | 44.998 | C74H58O36 | - | 1521.2564 | 760.1275 | 125.0266HRF, 169.0157(gallic acid), 177.0211HRF, 243.0307 | −3.5 | 2(E)GC + 2(E)GCG |
10 | 4 | 47.107 | C81H62O40 | - | 1673.2664 | 836.1304 | 125.0272HRF, 169.0162(gallic acid), 177.0214HRF, 319.0479 | −2.9 | (E)GC + 3(E)GCG |
11 | 4 | 48.637 | C88H66O44 | - | 1825.2773 | 912.1391 | 169.0159(gallic acid), 177.0229HRF, 285.0426QM, 319.0496 | 0.5 | 4(E)GCG |
12 | 5 | 51.776 | C96H74O47 | - | 1977.3243 | 988.1548 | 169.0156(gallic acid), 177.0207HRF, 243.0312; 319.0461; 423.0715RDA, 760.1393QM, 1217.2235QM, 1522.2688QM | −1.6 | 2(E)GC + 3(E)GCG |
13 | 5 | 52.447 | C103H78O51 | - | - | 1064.1583 | 169.0160(gallic acid), 303.0535, 423.0767RDA, 762.1430QM, 1066.2029(two GL), 1370.2245QM | −0.8 | (E)GC + 4(E)GCG |
14 | 6 | 57.218 | C118H90O58 | - | - | 1216.1920 | - | −2.1 | 2(E)GC + 4(E)GCG |
15 | 6 | 59.001 | C132H98O66 | - | - | 1368.1997 | - | −0.6 | 6(E)GCG |
16 | 7 | 63.259 | C147H110O73 | - | - | 1520.2345 | - | 0.5 | (E)GC + 6(E)GCG |
17 | 7 | 64.176 | C154H114O77 | - | - | 1596.2549 | - | 0.4 | 7(E)GCG |
18 | 8 | 66.286 | C162H120O80 | - | - | 1671.2474 | - | −1.2 | 2(E)GC + 6(E)GCG |
19 | 8 | 67.333 | C169H125O84 | - | - | 1748.7661 | - | −3.1 | (E)GC + 7(E)GCG |
20 | 8 | 69.309 | C176H130O88 | - | - | 1824.2760 | - | 2.4 | 8(E)GCG |
Peak | DP | Retention Time (min) | Molecular Formula | NA | [M-H]− | [M-2H]2− | [MS/MS] | Error (ppm) | Identification |
---|---|---|---|---|---|---|---|---|---|
1 | 3 | 23.9703 | C45H36O18 | 1 | 863.1870 | - | 289.0709QM, 411.0726(RDA, H2O loss) | 4.3 | 3(E)C |
2 | 3 | 25.0561 | C45H38O18 | - | 865.2014 | - | 289.0698QM, 407.0767(RDA, H2O loss) | 3.3 | 3(E)C |
3 | 4 | 29.1185 | C60H48O24 | 1 | 1151.2478 | - | 287.0547QM, 407.0774(RDA, H2O loss), 575.1241QM, 861.1795QM | 2.4 | 4(E)C |
4 | 4 | 31.4384 | C60H50O24 | - | 1153.2632 | - | 287.0553QM, 407.0780(RDA, H2O loss), 575.1238QM, 739.1748HRF, 865.2100QM | −0.1 | 4(E)C |
5 | 5 | 34.8734 | C75H60O30 | 1 | 1439.3088 | 719.1500 | 289.0703QM, 407.0769(RDA, H2O loss), 529.0789RDA | −0.8 | 5(E)C |
6 | 5 | 35.9701 | C75H62O30 | - | 1441.3215 | 720.1579 | 289.0693QM, 407.0757(RDA, H2O loss) | −1.4 | 5(E)C |
7 | 6 | 39.2811 | C90H72O36 | 1 | 1728.3641 | 863.1802 | 289.0700QM, 411.0707(RDA, H2O loss) | −1.3 | 6(E)C |
8 | 6 | 39.8536 | C90H74O36 | - | 1729.3784 | 864.1872 | 289.0696QM, 407.0755(RDA, H2O loss) | −3.8 | 6(E)C |
9 | 7 | 41.0480 | C105H84O42 | 1 | - | 1007.2108 | 285.0382QM, 449.0887HRF, 575.1190QM | −2.1 | 7(E)C |
10 | 7 | 43.2758 | C105H86O42 | - | - | 1008.2181 | 287.0539QM, 407.0757(RDA, H2O loss), 575.1197QM, 863.1896QM | −3.7 | 7(E)C |
11 | 8 | 46.2532 | C120H98O48 | - | - | 1152.2455 | 287.0540QM, 407.0749(RDA, H2O loss), 449.0863HRF, 575.1198QM, 693.1234(RDA, H2O loss), 865.2083QM, 1152.2677QM, 1440.3280QM, 1728.3798QM | −4.7 | 8(E)C |
12 | 8 | 47.1237 | C120H96O48 | 1 | - | 1151.2415 | 287.0534QM, 407.0742(RDA, H2O loss), 575.1182QM, 693.1235(RDA, H2O loss), 861.1725QM, 1439.3156QM, 1726.3827QM | −5.3 | 8(E)C |
13 | 9 | 48.9865 | C135H110O54 | - | - | 1296.2752 | - | −5.8 | 9(E)C |
14 | 9 | 49.7734 | C135H108O54 | 1 | - | 1295.2678 | - | −6.3 | 9(E)C |
15 | 10 | 51.1335 | C150H120O60 | 1 | - | 1439.2981 | - | −5.4 | 10(E)C |
16 | 10 | 51.5021 | C150H122O60 | - | - | 1440.3040 | - | −7.7 | 10(E)C |
17 | 11 | 53.4928 | C165H134O66 | - | - | 1584.3329 | - | −5.4 | 11(E)C |
Peak | DP | Retention Time (min) | Molecular Formula | NA | [M-H]− | [M-2H]2− | [MS/MS] | Error (ppm) | Identification |
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 18.4672 | C30H24O12 | 1 | 575.1180 | - | 285.0392QM, 407.0702(RDA, H2O loss) | −2 | 2(E)C |
2 | 2 | 20.7521 | C30H26O12 | - | 577.1339 | - | 289.0711 QM, 407.0792(RDA, H2O loss) | −1.9 | 2(E)C |
3 | 3 | 23.5959 | C45H34O18 | 2 | 861.1660 | - | 285.0398QM, 571.0902QM | −1.5 | 3(E)C |
4 | 3 | 25.9204 | C45H36O18 | 1 | 863.1807 | - | 285.0402QM, 407.0742(RDA, H2O loss), 449.0807HRF | −1.9 | 3(E)C |
5 | 3 | 27.7716 | C45H38O18 | - | 865.1951 | - | 289.0721QM, 407.0702(RDA, H2O loss) | −3.2 | 3(E)C |
6 | 4 | 29.0211 | C60H46O24 | 2 | 1149.2240 | - | 285.0409QM, 411.0733HRF, 575.1215QM, 979.1813(RDA, H2O loss) | −4.5 | 4(E)C |
7 | 4 | 31.1407 | C60H48O24 | 1 | 1151.2387 | - | 287.0576QM, 449.0890HRF, 575.1214QM, 693.1288(RDA, H2O loss), 863.1882QM, 981.1936(RDA, H2O loss) | −6.1 | 4(E)C |
8 | 5 | 34.8175 | C75H58O30 | 2 | 1437.2789 | 718.1421 | 285.0425QM, 411.0735HRF, 575.1183QM | −1.6 | 5(E)C |
9 | 5 | 38.3058 | C75H60O30 | 1 | 1439.2956 | 719.1503 | 285.0422QM, 407.0812(RDA, H2O loss) | −1.3 | 5(E)C |
10 | 6 | 40.6233 | C90H70O36 | 2 | 1725.3401 | 861.1636 | 285.0438QM, 411.0754HRF, 575.1231QM | −5.9 | 6(E)C |
11 | 6 | 42.6287 | C90H72O36 | 1 | 1727.3537 | 863.1782 | −5.8 | 6(E)C | |
12 | 7 | 43.9009 | C105H80O42 | 3 | - | 1005.6966 | 285.0426QM, 411.0749HRF, 575.1219QM | −3.3 | 7(E)C |
13 | 7 | 44.7250 | C105H82O42 | 2 | - | 1006.2002 | 285.0436QM, 411.0745HRF, 575.1225QM | −4.5 | 7(E)C |
14 | 8 | 45.8513 | C120H92O48 | 3 | - | 1149.2220 | 287.0584QM, 411.0737HRF, 575.1229QM, 863.1879QM, 1151.2521QM | −6.2 | 8(E)C |
15 | 8 | 46.9126 | C120H94O48 | 2 | - | 1150.2270 | 287.0580QM, 411.0745HRF, 575.1212QM, 863.1855QM, 1151.2475QM | −7.9 | 8(E)C |
16 | 9 | 48.8524 | C135H106O54 | 2 | - | 1294.2588 | - | −8.8 | 9(E)C |
17 | 10 | 51.6613 | C150H116O60 | 3 | - | 1437.2806 | - | −9.3 | 10(E)C |
18 | 11 | 54.2179 | C165H128O66 | 3 | - | 1581.3085 | - | −9.2 | 11(E)C |
19 | 12 | 56.7175 | C180H138O72 | 4 | - | 1724.3341 | - | −5.8 | 12(E)C |
20 | 12 | 57.7746 | C180H140O72 | 3 | - | 1725.3350 | - | −9.1 | 12(E)C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, Z.; Wang, Y.; Shen, S.; Tao, W.; Zhang, Y.; Ye, X.; Chen, S.; Pan, H. Analysis of Proanthocyanidins in Plant Materials Using Hydrophilic Interaction HPLC-QTOF-MS. Molecules 2022, 27, 2684. https://doi.org/10.3390/molecules27092684
Qian Z, Wang Y, Shen S, Tao W, Zhang Y, Ye X, Chen S, Pan H. Analysis of Proanthocyanidins in Plant Materials Using Hydrophilic Interaction HPLC-QTOF-MS. Molecules. 2022; 27(9):2684. https://doi.org/10.3390/molecules27092684
Chicago/Turabian StyleQian, Ziqi, Yi Wang, Shuyu Shen, Wenyang Tao, Yu Zhang, Xingqian Ye, Shiguo Chen, and Haibo Pan. 2022. "Analysis of Proanthocyanidins in Plant Materials Using Hydrophilic Interaction HPLC-QTOF-MS" Molecules 27, no. 9: 2684. https://doi.org/10.3390/molecules27092684
APA StyleQian, Z., Wang, Y., Shen, S., Tao, W., Zhang, Y., Ye, X., Chen, S., & Pan, H. (2022). Analysis of Proanthocyanidins in Plant Materials Using Hydrophilic Interaction HPLC-QTOF-MS. Molecules, 27(9), 2684. https://doi.org/10.3390/molecules27092684