Phenolic Profile and Antioxidant, Antibacterial, and Antiproliferative Activity of Juglans regia L. Male Flowers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of Total Phenolic, Flavonoid, and Proanthocyanidin Contents
2.2. Antioxidant Activity
2.3. Antibacterial Potential
2.4. Viability of Cancer Cell Lines
2.5. Identification and Quantification of Phenolic Compounds
3. Materials and Methods
3.1. Materials and Reagents
3.2. Plant Material
3.3. Preparation of Extract
3.4. Determination of Total Phenolic, Flavonoid, and Total Proanthocyanidin Content
3.5. Determination of Antioxidant Activity
3.5.1. DPPH˙ Radical Scavenging Activity
3.5.2. Chelating Ability of Ferrous Ions
3.5.3. Superoxide (O2●−) Radical Scavenging Activity Assay
3.5.4. Hydroxyl (OH˙) Radical Scavenging Activity Assay
3.5.5. Determination of Copper Ion Reduction by CUPRAC Method
3.6. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
3.7. Cell Culture
3.8. Cell Viability Assay
3.9. Determination of Polyphenol Profile by UPLC-PDA-MS/MS
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Pawlowska, A.M.; De Leo, M.; Braca, A. Phenolics of Arbutus unedo L. (Ericaceae) fruits: Identification of anthocyanins and gallic acid derivatives. J. Agric. Food Chem. 2006, 54, 10234–10238. [Google Scholar] [CrossRef]
- Taha, N. Utility and Importance of Walnut, Juglans regia Linn: A Review. Afr. J. Microbiol. Res. 2011, 5, 32. [Google Scholar] [CrossRef]
- Thakur, A. Juglone: A therapeutic phytochemical from Juglans regia L. Res. J. Med. Plant 2011, 5, 5324–5330. [Google Scholar]
- Sen, M.; Kuradeniz, T. The nutritional value of walnut. J. Hyg. Eng. Des. 2015, 11, 68–71. [Google Scholar]
- Savage, G.P.; McNeil, D.L.; Dutta, P.C. Some nutritional advantages of walnuts. Acta Hortic. 2001, 544, 557–563. [Google Scholar] [CrossRef]
- International Nut and Dried Fruit Council. Nuts and Dried Fruits Statisstical Yearbook 2019/2020; International Nut and Dried Fruit Council: Reus, Spain, 2020. [Google Scholar]
- Abdallah, I.B.; Tlili, T.; Martinez-Force, E.; Rubio, A.; Perez-Camino, M.C.; Albouchi, A.; Boukhchina, S. Content of Carotenoids, Tocopherols, Sterols, Triterpenic and Aliphatic Alcohols, and Volatile Compounds in Six Walnuts (Juglans regia L.) Varieties. Food Chem. 2015, 173, 972–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, J.A.; Oliveira, I.; Sousa, A.; Ferreira, I.; Bento, A.; Estevinho, L. Bioactive Properties and Chemical Composition of Six Walnut (Juglans regia L.) Cultivars’. Food Chem. Toxicol. 2008, 46, 2103–2111. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.K.; Alasalvar, C.; Bolling, B.; Shahidi, F. Nuts and their co-products: The impact of processing (roasting) on phenolics, bioavailability, and health benefits—A comprehensive review. J. Funct. Foods 2016, 26, 88–122. [Google Scholar] [CrossRef]
- Pycia, K.; Kapusta, I.; Jaworska, G. Impact of the Degree of Maturity of Walnuts (Juglans regia L.) and Their Variety on the Antioxidant Potential and the Content of Tocopherols and Polyphenols. Molecules 2019, 24, 2936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hama, J.R. Fitzsimmons-Thoss, V. Determination of Unsaturated Fatty Acids Composition in Walnut (Juglans regia L.) Oil Using NMR Spectroscopy. Food Anal. Methods 2022. [Google Scholar] [CrossRef]
- Tsao, L.T.; Yang, R.; Kramer, J.; Hernandez, M. Fatty Acid Profiles, Tocopherol Contents, and Antioxidant Activities of Heartnut (Juglans ailanthifolia Var. Cordiformis) and Persian Walnut (Juglans regia L.). J. Agric. Food Chem. 2007, 55, 1164–1169. [Google Scholar] [CrossRef]
- Pereira, J.A.; Oliveira, I.; Sousa, A.; Valentão, P.; Andrade, P.; Ferreira, I.; Ferreres, F.; Bento, A.; Seabra, R.; Estevinho, L. Walnut (Juglans regia L.) Leaves: Phenolic Compounds, Antibacterial Activity and Antioxidant Potential of Different Cultivars. Food Chem. Toxicol. 2007, 45, 2287–2295. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, W.; Koike, K.; Zhang, S.; Nikaido, T. New α-Tetralonyl Glucosides from the Fruit of Juglans mandshurica. Chem. Pharm. Bull. 2004, 52, 566–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunwar, R.M.; Adhikari, N. Ethnomedicine of Dolpa district, Nepal: The plants, their vernacular names and uses. J. Ecol. Appl. 2005, 8, 43–49. [Google Scholar]
- Tagarelli, G.; Tagarelli, A.; Piro, P. Folk Medicine Used to Heal Malaria in Calabria (Southern Italy). J. Ethnobiol. Ethnomed. 2010, 6, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabavi, S.F.; Ebrahimzadeh, M.; Nabavi, S.; Mahmoudi, M.; Rad, S. Biological Activities of Juglans Regia Flowers. Rev. Bras. Farmacogn. 2011, 21, 465–470. [Google Scholar] [CrossRef] [Green Version]
- Milatović, D.; Nikolić, D.; Janković, S.; Janković, D.; Stanković, J. Morphological Characteristics of Male Reproductive Organs in Some Walnut (Juglans regia L.) Genotypes. Sci. Hortic. 2020, 272, 109587. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, W.; Pan, X. Nutritional Quality of the Walnut Male Inflorescences at Four Flowering Stages. J. Food Nutr. Res. 2014, 2, 457–464. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Wang, C.; Shi, B.-B.; Pan, X.-J. Effect of Storage Temperature and Time on the Nutritional Quality of Walnut Male Inflorescences. J. Food Drug Anal. 2017, 25, 374–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qadir, U.; Paul, V.I.; Ganesh, P. Preliminary Phytochemical Screening and in vitro Antibacterial Activity of Anamirta cocculus (Linn.) Seeds. J. King Saud Univ. Sci. 2015, 27, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Muzaffer, U.; Paul, V. Phytochemical Analysis, in vitro Antioxidant and Antimicrobial Activities of Male Flower of Juglans regia L. Int. J. Food Prop. 2018, 21, 345–356. [Google Scholar] [CrossRef] [Green Version]
- Pop, A.; Fizeșan, I.; Vlase, L.; Rusu, M.E.; Cherfan, J.; Babota, M.; Gheldiu, A.M.; Tomuta, I.; Popa, D.S. Enhanced Recovery of Phenolic and Tocopherolic Compounds from Walnut (Juglans Regia L.) Male Flowers Based on Process Optimization of Ultrasonic Assisted-Extraction: Phytochemical Profile and Biological Activities. Antioxidants 2021, 10, 607. [Google Scholar] [CrossRef] [PubMed]
- Alam, N.; Bristi, N.J.; Rafiquzzaman, M.D. Review on in Vivo and in vitro Methods Evaluation of Antioxidant Activity. Saudi Pharm. J. 2013, 21, 143–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Chen, C.; Zhao, S.; Ge1, F.; Liu, D. Effect of Solvents on the Antioxidant Activity of Walnut (Juglans regia L.) Shell Extracts. J. Food Nutr. Res. 2014, 2, 621–626. [Google Scholar] [CrossRef] [Green Version]
- Almeida, I.; Fernandes, E.; Lima, J.; Costa, P.; Bahia, M. Walnut (Juglans regia) leaf extracts are strong scavengers of pro-oxidant reactive species. Food Chem. 2008, 106, 1014–1020. [Google Scholar] [CrossRef]
- Zakavi, F.; Hagh, L.; Daraeighadikolaei, A.; Sheikh, A.; Daraeighadikolaei, A.; Shooshtari, Z. Antibacterial Effect of Juglans Regia Bark against Oral Pathologic Bacteria. Int. J. Dent. 2013, 2013, 854765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, M.; Ferreira, P.J.; Mendes, V.S.; Silva, R.S.; Pereira, J.A.; Jerónimo, C.; Silva, B.M. Human Cancer Cell Antiproliferative and Antioxidant Activities of Juglans regia L. Food Chem. Toxicol. 2010, 48, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, R.; Halim, L. Antioxidant and antiproliferative activities of common edible nut seeds. LWT 2009, 42, 1–8. [Google Scholar] [CrossRef]
- Mabry, T.J.; Markham, K.R.; Mabry, H. The Systematic Identification of Flavonoids. J. Mol. Struct. 1970, 10, 320. [Google Scholar] [CrossRef]
- Audrey, F.; Niveau, F.; Hennechart-Collette, C.; Coudray-Meunier, C.; Martin-Latil, S.; Perelle, S. Discrimination of infectious and heat-treated norovirus by combining platinum compounds and real-time RT-PCR. Int. J. Food Microbiol. 2018, 23, 64–74. [Google Scholar] [CrossRef]
- Zhang, Y.-G.; Kan, H.; Chen, S.-X.; Thakur, K.; Wang, S.; Zhang, J.-G.; Shang, Y.-F.; Wei, Z.-J. Comparison of Phenolic Compounds Extracted from Diaphragma Juglandis Fructus, Walnut Pellicle, and Flowers of Juglans Regia Using Methanol, Ultrasonic Wave, and Enzyme Assisted-Extraction. Food Chem. 2020, 321, 126672. [Google Scholar] [CrossRef] [PubMed]
- Chrzanowski, G.; Leszczyński, B.; Czarniewicz, P.; Sytykiewicz, H.; Matok, H.; Krzyżanowski, R. Phenolic acids of walnut (Juglans regia L.). Herba Pol. 2011, 57, 22–29. [Google Scholar]
- Stampar, F.; Solar, A.; Hudina, M.; Veberic, R.; Colaric, M. Traditional Walnut Liqueur—Cocktail of Phenolics. Food Chem. 2006, 95, 627–631. [Google Scholar] [CrossRef]
- Hama, J.R.; Omer, R.A.; Rashid, R.S.M.; Nur-e-Alam, M.; Thoss, V. The diversity of phenolic compounds along defatted kernel, green husk and leaves of walnut (Juglans regia L.). Anal. Chem. Letter. 2016, 6, 35–46. [Google Scholar] [CrossRef]
- Persic, M.; Mikulic-Petkovsek, M.; Slatnar, A.; Solar, A.; Veberic, R. Changes in Phenolic Profiles of Red-Colored Pellicle Walnut and Hazelnut Kernel during Ripening. Food Chem. 2018, 252, 349–355. [Google Scholar] [CrossRef]
- Colaric, M.; Veberic, R.; Solar, A.; Hudina, M.; Stampar, F. Phenolic Acids, Syringaldehyde, and Juglone in Fruits of Different Cultivars of Juglans regia L. J. Agric. Food Chem. 2005, 53, 6390–6396. [Google Scholar] [CrossRef] [PubMed]
- Pycia, K.; Kapusta, I.; Jaworska, G.; Jankowska, A. Antioxidant Properties, Profile of Polyphenolic Compounds and Tocopherol Content in Various Walnut (Juglans regia L.) Varieties. Eur. Food Res. Technol. 2019, 245, 607–616. [Google Scholar] [CrossRef]
- Żurek, N.; Karatsai, O.; Rędowicz, M.J.; Kapusta, I.T. Polyphenolic Compounds of Crataegus Berry, Leaf, and Flower Extracts Affect Viability and Invasive Potential of Human Glioblastoma Cells. Molecules 2021, 26, 2656. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Ohlander, M.; Jeppsson, N.; Björk, L.; Trajkovski, V. Changes in Antioxidant Effects and Their Relationship to Phytonutrients in Fruits of Sea Buckthorn (Hippophae rhamnoides L.) during Maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colometric Methods. J. Food Drug Anal. 2020, 10, 3. [Google Scholar] [CrossRef]
- Porter, L.J.; Hrstich, L.; Chan, B.G. The Conversion of Procyanidins and Prodelphinidins to Cyanidin and Delphinidin. Phytochemistry 1985, 25, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Desmarchelier, C.; Bermudez, M.J.; Coussio, J.; Ciccia, G.; Boveris, A. Antioxidant and Prooxidant Activities in Aqueous Extracts of Argentine Plants. Int. J. Pharmacogn. 1997, 35, 116–120. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Robak, J.; Gryglewski, R.J. Flavonoids Are Scavengers of Superoxide Anions. Biochem. Pharmacol. 1988, 37, 837–841. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.; Aruoma, O.I. The Deoxyribose Method: A Simple “Test-Tube” Assay for Determination of Rate Constants for Reactions of Hydroxyl Radicals. Anal. Biochem. 1987, 165, 215–219. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E.; Erçağ, E. The Cupric Ion Reducing Antioxidant Capacity and Polyphenolic Content of Some Herbal Teas. Int. J. Food Sci. Nutr. 2006, 57, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Sowa, P.; Grabek-Lejko, D.; Wesołowska, M.; Swacha, S.; Dżugan, M. Hydrogen peroxide-dependent antibacterial action of Melilotus albus honey. Lett. Appl. Microbiol. 2017, 65, 82–89. [Google Scholar] [CrossRef] [PubMed]
TP | TF | TPA | |
---|---|---|---|
(mg GAE/g d.w.) | (mg QE/g d.w.) | (mg CYE/g d.w.) | |
Extract of J. regia flowers | 248.33 ± 2.33 | 111.01 ± 1.03 | 16.66 ± 0.70 |
DPPH˙ | ChA | O2●− | OH− | CUPRAC | |
---|---|---|---|---|---|
IC50 (µg/mL) | (mmol TE/g) | ||||
Extract of J. regia flowers | 22.34 ± 2.70 | 71.69 ± 0.02 | 147.06 ± 0.27 | 41.85 ± 0.09 | 3.33 ± 0.01 |
Ascorbic acid | 5.0 ± 0.01 | - | 80.58 ± 1.16 | - | 62.19 ± 0.74 |
EDTA | - | 16.19 ± 0.09 | - | - | - |
Quercetin | - | - | - | 9.34 ± 0.01 | - |
No. | Bacteria Strain | MIC | MBC |
---|---|---|---|
(mg/mL) | |||
1 | Klebsiella pneumoniae | 20 | 20 |
2 | Salmonella enterica | 2.5 | 2.5 |
3 | Escherichia coli | 1.25 | 1.25 |
4 | Staphylococcus aureus | 0.3125 | 0.3125 |
5 | Listeria monocytogenes | 0.625 | 2.5 |
6 | Bacillus cereus | 0.625 | 0.625 |
No. | Cell Line | IC50 (µg/mL) | ||
---|---|---|---|---|
Time | ||||
24 h | 48 h | 72 h | ||
1 | MCF-7 | 132.35 ± 8.73 | 208.80 ± 3.42 | 194.22 ± 8.26 |
2 | SK-MEL-29 | 593.62 ± 16.88 | 618.74 ± 10.70 | 706.21 ± 11.01 |
3 | Caco-2 | 579.99 ± 13.36 | 443.49 ± 19.83 | 222.59 ± 10.04 |
4 | HT-29 | 349.12 ± 9.20 | 401.83 ± 6.07 | 371.73 ± 9.03 |
5 | U87MG | 200.55 ± 11.01 | 200.42 ± 4.98 | 220.05 ± 12.06 |
6 | U251MG | 195.79 ± 8.57 | 206.95 ± 9.00 | 199.26 ± 9.10 |
No. | Rt | UV–Vis | [M-H]− | [M-H]− MS/MS | Extract of J. regia Flowers | Compounds |
---|---|---|---|---|---|---|
(min) | (nm) | (m/z) | (m/z) | (mg/100 g d.w.) | ||
1 | 2.18 | 299sh, 324 | 353 | 191, 179 | 12.13 | 3-O-Caffeoylquinic acid |
2 | 2.35 | 299sh, 324 | 353 | 191, 179 | 532.66 | 5-O-Caffeoylquinic acid |
3 | 2.55 | 299sh, 324 | 341 | 179 | 107.00 | Caffeic acid glucoside |
4 | 2.70 | 299sh, 324 | 341 | 179 | 58.82 | Caffeic acid glucoside |
5 | 2.88 | 310 | 337 | 163, 119 | 207.17 | Coumaroylquinic acid |
6 | 2.98 | 299sh, 322 | 353 | 191, 179 | 94.59 | 4-O-Caffeoylquinic acid |
7 | 3.49 | 257, 317 | 339 | 179 | 74.76 | Juglanoside B isomer |
8 | 3.54 | 305, 325, 338 | 499 | 337, 163 | 627.49 | 3-O-caffeoyl-5-O-p-coumaroylquinic acid |
9 | 3.61 | 258, 339 | 355 | 175 | 14.25 | Juglanoside D isomer |
10 | 3.67 | 309 | 337 | 163, 119 | 20.06 | Coumaroyloquinic acid |
11 | 3.83 | 260, 350 | 355 | 175 | 12.13 | Juglanoside D isomer |
12 | 3.95 | 255, 352 | 625 | 463, 301 | 815.24 | Quercetin diglucoside |
13 | 4.39 | 264, 341 | 609 | 447, 285 | 28.71 | Kaemferol diglucoside |
14 | 4.67 | 255, 352 | 463 | 301 | 870.65 | Quercetin 3-O-glucoside |
15 | 4.74 | 262, 331 | 491 | 329 | 294.74 | 4′,5,7-Trihydroxy-3,6-dimethoxyflavone-7-O-beta-d-glucopyranoside |
16 | 4.99 | 255, 352 | 433 | 301 | 40.98 | Quercetin pentoside |
17 | 5.11 | 264, 357 | 447 | 285 | 169.52 | Kaempherol 3-O-glucoside |
18 | 5.19 | 255, 352 | 433 | 301 | 44.09 | Quercetin pentoside |
19 | 5.40 | 255, 360 | 447 | 301 | 99.04 | Quercetin rhamnoside |
20 | 5.61 | 272, 353 | 433 | 271 | 21.11 | Naringenin 7-O-glucoside |
21 | 6.25 | 288sh, 324 | 501 | 179 | 188.64 | Unidentified caffeic derivative |
22 | 6.66 | 327 | 517 | 335, 179 | 35.11 | Caffeic acid glucoside glucuronide |
23 | 7.28 | 299sh, 327 | 515 | 353 | 13.48 | 3,4-O-dicaffeoylquinic acid |
24 | 7.41 | 288sh, 324 | 501 | 179 | 14.36 | Unidentified caffeic derivative |
Total | 4396.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żurek, N.; Pawłowska, A.; Pycia, K.; Grabek-Lejko, D.; Kapusta, I.T. Phenolic Profile and Antioxidant, Antibacterial, and Antiproliferative Activity of Juglans regia L. Male Flowers. Molecules 2022, 27, 2762. https://doi.org/10.3390/molecules27092762
Żurek N, Pawłowska A, Pycia K, Grabek-Lejko D, Kapusta IT. Phenolic Profile and Antioxidant, Antibacterial, and Antiproliferative Activity of Juglans regia L. Male Flowers. Molecules. 2022; 27(9):2762. https://doi.org/10.3390/molecules27092762
Chicago/Turabian StyleŻurek, Natalia, Agata Pawłowska, Karolina Pycia, Dorota Grabek-Lejko, and Ireneusz Tomasz Kapusta. 2022. "Phenolic Profile and Antioxidant, Antibacterial, and Antiproliferative Activity of Juglans regia L. Male Flowers" Molecules 27, no. 9: 2762. https://doi.org/10.3390/molecules27092762
APA StyleŻurek, N., Pawłowska, A., Pycia, K., Grabek-Lejko, D., & Kapusta, I. T. (2022). Phenolic Profile and Antioxidant, Antibacterial, and Antiproliferative Activity of Juglans regia L. Male Flowers. Molecules, 27(9), 2762. https://doi.org/10.3390/molecules27092762