Rapid Characterization of Bacterial Lipids with Ambient Ionization Mass Spectrometry for Species Differentiation
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemical Reagents and Materials
3.2. Culturing of Bacterial Strains
3.3. Thermal Desorption–Electrospray Ionization/Mass Spectrometry (TD-ESI/MS) Analysis and Multivariate Statistical Analyses
3.4. Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF/MS) Analysis and Multivariate Statistical Analyses
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Chakravorty, S.; Helb, D.; Burday, M.; Connell, N.; Alland, D. A Detailed Analysis of 16 rRNA Gene Segments for The Diagnosis of Pathogenic Bacteria. J. Microbiol. Methods 2007, 69, 330–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drancourt, M.; Berger, P.; Raoult, D. Systematic 16S rRNA Gene Sequencing of a Typical Clinical Isolates Identified 27 New Bacterial Species Associated with Humans. J. Clin. Microbiol. 2004, 42, 2197–2202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, P.C.; Lau, S.K.; Teng, J.L.; Tse, H.; Yuen, K.Y. Then and now: Use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin. Microbiol. Infect. 2008, 14, 908–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarridge, J.E., 3rd. Impact of 16S rRNA Gene Sequence Analysis for Identification of Bacteria on Clinical Microbiology and Infectious Diseases. Clin. Microbiol. Rev. 2004, 17, 840–862. [Google Scholar] [CrossRef] [Green Version]
- Klouche, M.; Schröder, U. Rapid Methods for Diagnosis of Bloodstream Infections. Clin. Chem. Lab. Med. 2008, 46, 888–908. [Google Scholar] [CrossRef]
- Sontakke, S.; Cadenas, M.B.; Maggi, R.G.; Diniz, P.P.; Breitschwerdt, E.B. Use of Broad-range 16S rDNA PCR in Clinical Microbiology. J. Microbiol. Methods. 2009, 76, 217–225. [Google Scholar] [CrossRef]
- Petti, C.A. Detection and Identification of Microorganisms by Gene Amplification and Sequencing. Clin. Infect. Dis. 2007, 44, 1108–1114. [Google Scholar]
- Větrovský, T.; Baldrian, P. The Variability of the 16S rRNA Gene in Bacterial Genomes and Its Consequences for Bacterial Community Analyses. PLoS ONE 2013, 8, e57923. [Google Scholar] [CrossRef] [Green Version]
- Janda, J.M.; Abbott, S.L. 16S rRNA Gene Sequencing for Bacterial Identification in The Diagnostic Laboratory: Pluses, Perils, and Pitfalls. J. Clin. Microbiol. 2007, 45, 2761–2764. [Google Scholar] [CrossRef] [Green Version]
- Anhalt, J.P.; Fenselau, C. Identification of Bacteria Using Mass Spectrometry. Anal. Chem. 1975, 47, 219–225. [Google Scholar] [CrossRef]
- Meuzelaar, H.L.C.; Kistemaker, P.G. Technique for Fast and Reproducible Fingerprinting of Bacteria by Pyrolysis Mass Spectrometry. Anal. Chem. 1973, 45, 587–590. [Google Scholar] [CrossRef] [PubMed]
- Schulten, H.R.; Beckey, H.D.; Meuzelaar, H.L.C.; Boerboom, A.J.H. High-resolution Field Ionization Mass Spectrometry of Bacterial Pyrolysis Products. Anal. Chem. 1973, 45, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Anantha, P.S.; Deventhiran, M.; Saravanan, P.; Anand, D.; Rajarajan, S. A Comparative GC-MS Analysis of Bacterial Secondary Metabolites of Pseudomonas Species. Pharma Innov. 2016, 5, 84–89. [Google Scholar]
- Isobe, K.; Koba, K.; Ueda, S.; Senoo, K.; Harayama, S.; Suwa, Y. A Simple and Rapid GC/MS Method for The Simultaneous Determination of Gaseous Metabolites. J. Microbiol. Methods 2011, 84, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Tyurina, Y.Y.; Domingues, R.M.; Tyurin, V.A.; Maciel, E.; Domingues, P.; Amoscato, A.A.; Bayir, H.; Kagan, V.E. Characterization of Cardiolipins and Their Oxidation Products by LC–MS Analysis. Chem. Phys. Lipids 2014, 179, 3–10. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, J.P.; Needham, B.D.; Brown, D.B.; Trent, M.S.; Brodbelt, J.S. Top-down Strategies for The Structural Elucidation of Intact Gram-negative Bacterial Endotoxins. Chem. Sci. 2014, 5, 4291–4301. [Google Scholar] [CrossRef]
- Holland, R.D.; Wilkes, J.G.; Rafii, F.; Sutherland, J.B.; Persons, C.C.; Voorhees, K.J.; Lay, J.O., Jr. Rapid Identification of Intact Whole Bacteria based on Spectral Patterns Using Matrix-Assisted Laser Desorption/Ionization with Time-of-Flight Mass Spectrometry. Rapid. Commun. Mass Spectrom. 1996, 10, 1227–1232. [Google Scholar] [CrossRef]
- Williams, T.L.; Andrzejewski, D.; Lay, J.O.; Musser, S.M. Experimental factors affecting the quality and reproducibility of MALDI TOF mass spectra obtained from whole bacteria cells. J. Am. Soc. Mass Spectrom. 2003, 14, 342–351. [Google Scholar] [CrossRef] [Green Version]
- Suarez, S.; Ferroni, A.; Lotz, A.; Jolley, K.A.; Guérin, P.; Leto, J.; Dauphin, B.; Jamet, A.; Maiden, M.C.J.; Nassif, X.; et al. Ribosomal proteins as biomarkers for bacterial identification by mass spectrometry in the clinical microbiology laboratory. J. Microbiol. Methods 2013, 94, 390–396. [Google Scholar] [CrossRef] [Green Version]
- Ryzhov, V.; Fenselau, C. Characterization of the Protein Subset Desorbed by MALDI from Whole Bacterial Cells. Anal. Chem. 2001, 73, 746750. [Google Scholar] [CrossRef]
- Cox, C.R.; Jensen, K.R.; Saichek, N.R.; Voorhees, K.J. Strain-level bacterial identification by CeO2-catalyzed MALDI-TOF MS fatty acid analysis and comparison to commercial protein-based methods. Sci. Rep. 2015, 5, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saichek, N.R.; Cox, C.R.; Kim, S.; Harrington, P.B.; Stambach, N.R.; Voorhees, K.J. Strain-level Staphylococcus differentiation by CeO2-metal oxide laser ionization mass spectrometry fatty acid profiling. BMC Microbiol. 2016, 16, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, L.M.; Fondrie, W.E.; Doi, Y.; Johnson, J.K.; Strickland, D.K.; Ernst, R.K.; Goodlett, D.R. Identification of the ESKAPE pathogens by mass spectrometric analysis of microbial membrane glycolipids. Sci Rep. 2017, 7, 6403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vance, J.E. Phospholipid synthesis and transport in mammalian cells. Traffic 2015, 16, 1–18. [Google Scholar] [CrossRef]
- Bogdanov, M.; Pyrshev, K.; Yesylevskyy, S.; Ryabichko, S.; Boiko, V.; Ivanchenko, P.; Kiyamova, R.; Guan, Z.; Ramseyer, C.; Dowhan, W. Phospholipid distribution in the cytoplasmic membrane of Gram-negative bacteria is highly asymmetric, dynamic, and cell shape-dependent. Sci. Adv. 2020, 6, 6333. [Google Scholar] [CrossRef]
- Heller, D.N.; Cotter, R.J.; Fenselau, C.; Uy, O.M. Profiling of bacteria by fast atom bombardment mass spectrometry. Anal. Chem. 1987, 59, 2806–2809. [Google Scholar] [CrossRef]
- Mazzella, N.; Molinet, J.; Syakti, A.D.; Dodi, A.; Doumenq, P.; Artaud, J.; Bertrand, J.C. Bacterial phospholipid molecular species analysis by ion-pair reversed-phase HPLC/ESI/MS. J. Lipid Res. 2004, 45, 1355–1363. [Google Scholar] [CrossRef] [Green Version]
- AndyáTao, W.; GrahamáCooks, R. Rapid ambient mass spectrometric profiling of intact, untreated bacteria using desorption electrospray ionization. Chem. Commun. 2007, 1, 61–63. [Google Scholar]
- Watrous, J.; Roach, P.; Heath, B.; Alexandrov, T.; Laskin, J.; Dorrestein, P.C. Metabolic profiling directly from the Petri dish using nanospray desorption electrospray ionization imaging mass spectrometry. Anal. Chem. 2013, 85, 10385–10391. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, J.; Nie, H.; Dong, C.; Li, Z.; Zheng, Z.; Bai, Y.; Liu, H.; Zhao, J. Study on variation of lipids during different growth phases of living cyanobacteria using easy ambient sonic-spray ionization mass spectrometry. Anal. Chem. 2014, 86, 7096–7102. [Google Scholar] [CrossRef]
- Cody, R.B.; McAlpin, C.R.; Cox, C.R.; Jensen, K.R.; Voorhees, K.J. Identification of bacteria by fatty acid profiling with direct analysis in real time mass spectrometry. Rapid Commun. Mass Spectrom. 2015, 29, 2007–2012. [Google Scholar]
- Strittmatter, N.; Jones, E.A.; Veselkov, K.A.; Rebec, M.; Bundy, J.G.; Takats, Z. Analysis of intact bacteria using rapid evaporative ionisation mass spectrometry. Commun. Chem. 2013, 49, 6188–6190. [Google Scholar] [CrossRef]
- Strittmatter, N.; Rebec, M.; Jones, E.A.; Golf, O.; Abdolrasouli, A.; Balog, J.; Behrends, V.; Veselkov, K.A.; Takats, Z. Characterization and identification of clinically relevant microorganisms using rapid evaporative ionization mass spectrometry. Anal. Chem. 2014, 86, 6555–6562. [Google Scholar] [CrossRef]
- Bolt, F.; Cameron, S.J.; Karancsi, T.; Simon, D.; Schaffer, R.; Rickards, T.; Hardiman, K.; Burke, A.; Bodai, Z.; Perdones-Montero, A.; et al. Automated High-Throughput Identification and Characterization of Clinically Important Bacteria and Fungi using Rapid Evaporative Ionization Mass Spectrometry. Anal. Chem. 2016, 88, 9419–9426. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.Z.; Zhou, C.C.; Liu, D.L.; Jhang, S.S.; Cheng, S.C.; Shiea, J. Rapid Characterization of Chemical Compounds in Liquid and Solid States Using Thermal Desorption Electrospray Ionization Mass Spectrometry. Anal. Chem. 2013, 85, 8956–8963. [Google Scholar] [CrossRef] [PubMed]
- Jeng, J.Y.; Jiang, Z.H.; Cho, Y.T.; Su, H.; Lee, C.W.; Shiea, J. Obtaining molecular imagings of pesticide residues on strawberry surfaces with probe sampling followed by ambient ionization mass spectrometric analysis. J. Mass Spectrom. 2021, 56, 4. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Huang, T.L.; Lee, C.W.; Jeng, J.; Shiea, J. Molecular Cartography of Residue Pesticides on Grape Surface in 3D by Ambient Ionization Tandem Mass Spectrometry. J. Food Drug Anal. 2021, 29, 751–762. [Google Scholar] [CrossRef]
- Cho, Y.T.; Su, H.; Lin, S.J.; Wu, B.H.; Lai, C.Y.; Huang, I.C. Using thermal desorption electrospray ionization mass spectrometry to rapidly determine antimicrobial preservatives in cosmetics. Rapid Commun. Mass Spectrom. 2016, 30, 2315–2322. [Google Scholar] [CrossRef]
- Cho, Y.T.; Su, H.; Huang, I.C.; Lai, C.Y.; Tsai, Y.D. Rapid characterization of organic UV filters and their photoproducts in sunscreens by thermal desorption electrospray ionization mass spectrometry for the photostability study. Anal. Methods 2019, 11, 6013–6022. [Google Scholar] [CrossRef]
- Su, H.; Huang, M.Z.; Chou, J.H.; Chang, T.H.; Jiang, Y.M.; Cho, Y.T.; Cheng, S.C.; Wu, M.T.; Shiea, J. High-throughput Screening of Phthalate-containing Objects in the Kindergartens by Ambient Mass Spectrometry. Anal. Chim. Acta 2018, 1039, 65–73. [Google Scholar] [CrossRef]
- Su, H.; Huang, Y.J.; Huang, M.Z.; Lee, Y.T.; Chen, S.C.; Hung, C.H.; Kuo, C.H.; Wu, M.T.; Shiea, J. Using Ambient Mass Spectrometry to Explore the Origins of Phthalate Contamination in a Mass Spectrometry Laboratory. Anal. Chim. Acta 2020, 1105, 128–138. [Google Scholar] [CrossRef]
- Cheng, S.C.; Tsai, Y.D.; Lee, C.W.; Chen, B.H.; Shiea, J. Direct and Rapid Characterization of Illicit Drugs in Adulterated Samples Using Thermal Desorption Electrospray Ionization Mass Spectrometry. J. Food Drug Anal. 2019, 27, 451–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.W.; Su, H.; Chen, P.Y.; Lin, S.J.; Shiea, J.; Shin, S.J.; Chen, B.H. Rapid Identification of Pesticides in Human oral fluid for Emergency Management by Thermal Desorption Electrospray Ionization/Mass Spectrometry. J. Mass Spectrom. 2016, 51, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.W.; Su, H.; Wu, K.D.; Shiea, J.; Wu, D.C.; Shin, S.J.; Chen, B.H. Rapid Point-of-care Identification of Mis-swallowed Oral Medications in Gastric Lavage Content by Ambient Mass Spectrometry in Emergency Room. Rapid Commun. Mass Spectrom. 2016, 30, 1295–1303. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.W.; Su, H.; Cai, Y.D.; Wu, M.T.; Wu, D.C.; Shiea, J. Rapid Identification of Psychoactive Drugs in Drained Gastric Lavage Fluid and Whole Blood Specimens of Drug Overdose Patients Using Ambient Mass Spectrometry. Mass Spectrom. 2017, 6, S0056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.W.; Su, H.; Lee, R.H.; Lin, Y.P.; Tsai, Y.D.; Wu, D.C.; Shiea, J. Point-of-care Identification of Organophosphates in Gastric Juice by Ambient Mass Spectrometry in Emergency Settings. Clin. Chim. Acta 2018, 485, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Lin, H.H.; Chen, S.J.; Shiea, J.; Lee, C.W. Direct Immersion Solid-Phase Microextraction Combined with Ambient Ionization Tandem Mass Spectrometry to Rapidly Distinguish Pesticides in Serum for Emergency Diagnostics. J. Food Drug Anal. 2022, 30, 26–37. [Google Scholar] [CrossRef]
- Silhavy, T.J.; Kahne, D.; Walker, S. The Bacterial Cell Envelope. Cold Spring Harb. Perspect. Biol. 2010, 2, a000414. [Google Scholar] [CrossRef]
- Smith, P.B.W.; Snyder, A.P.; Harden, C. Characterization of Bacterial Phospholipids by Electrospray Ionization Tandem Mass Spectrometry. Anal. Chem. 1995, 67, 1824–1830. [Google Scholar] [CrossRef]
- Rashid, R.; Cazenave-Gassiot, A.; Gao, I.H.; Nair, Z.J.; Kumar, J.K.; Gao, L.; Kline, K.A.; Wenk, M.R. Comprehensive analysis of phospholipids and glycolipids in the opportunistic pathogen Enterococcus faecalis. PLoS ONE 2017, 12, e0175886. [Google Scholar] [CrossRef] [Green Version]
Gram-Negative Bacteria | Gram-Positive Bacteria |
---|---|
Escherichia coli (E. coli) | Bacillus subtilis (B. subtilis) |
(ATCC 11775) | (ATCC 6051) |
Klebsiella pneumonia (K. pneumonia) | Corynebacterium striatum (C. striatum) |
(ATCC 10031) | (ATCC BAA-1293) |
Moraxella catarrhalis (M. catarrhalis) | Enterococcus faecalis (E. faecalis) |
(ATCC 25238) | (ATCC 29212) |
Pseudomonas aeruginosa (P. aeruginosa) | Listeria monocytogenes (L. monocytogenes) |
(ATCC 10145) | (ATCC 15313) |
Serratia marcescens (S. marcescens) | Staphylococcus aureus (S. aureus) |
(ATCC 8100) | (ATCC 33591) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, H.; Jiang, Z.-H.; Chiou, S.-F.; Shiea, J.; Wu, D.-C.; Tseng, S.-P.; Jain, S.-H.; Chang, C.-Y.; Lu, P.-L. Rapid Characterization of Bacterial Lipids with Ambient Ionization Mass Spectrometry for Species Differentiation. Molecules 2022, 27, 2772. https://doi.org/10.3390/molecules27092772
Su H, Jiang Z-H, Chiou S-F, Shiea J, Wu D-C, Tseng S-P, Jain S-H, Chang C-Y, Lu P-L. Rapid Characterization of Bacterial Lipids with Ambient Ionization Mass Spectrometry for Species Differentiation. Molecules. 2022; 27(9):2772. https://doi.org/10.3390/molecules27092772
Chicago/Turabian StyleSu, Hung, Zong-Han Jiang, Shu-Fen Chiou, Jentaie Shiea, Deng-Chyang Wu, Sung-Pin Tseng, Shu-Huei Jain, Chung-Yu Chang, and Po-Liang Lu. 2022. "Rapid Characterization of Bacterial Lipids with Ambient Ionization Mass Spectrometry for Species Differentiation" Molecules 27, no. 9: 2772. https://doi.org/10.3390/molecules27092772
APA StyleSu, H., Jiang, Z. -H., Chiou, S. -F., Shiea, J., Wu, D. -C., Tseng, S. -P., Jain, S. -H., Chang, C. -Y., & Lu, P. -L. (2022). Rapid Characterization of Bacterial Lipids with Ambient Ionization Mass Spectrometry for Species Differentiation. Molecules, 27(9), 2772. https://doi.org/10.3390/molecules27092772