Enhanced Extraction Efficiency of Flavonoids from Pyrus ussuriensis Leaves with Deep Eutectic Solvents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Profiling of PUL Extracts
2.2. Preparation of DES and Selection of DES by Extraction Efficiency
2.3. Optimization of Extraction Conditions for Flavonoids by RSM
2.4. Evaluation of Antioxidant Activity
2.5. Evaluation of Anti-Inflammatory Effectiveness
3. Materials and Methods
3.1. Materials
3.2. Extraction and Determination of Flavonoids in PUL
3.3. Preparation of DES
3.4. Extraction with DES
3.5. Optimization of the Extraction Condition using the Box–Behnken Design
3.6. SEM Analysis
3.7. Antioxidant Activity
3.8. Anti-Inflammatory Effectiveness
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Boyko, N.; Zhilyakova, E.; Malyutina, A.; Novikov, O.; Pisarev, D.; Abramovich, R.; Potanina, O.; Lazar, S.; Mizina, P.; Sahaidak-Nikitiuk, R. Studying and Modeling of the Extraction Properties of the Natural Deep Eutectic Solvent and Sorbitol-Based Solvents in Regard to Biologically Active Substances from Glycyrrhizae Roots. Molecules 2020, 25, 1482. [Google Scholar] [CrossRef] [Green Version]
- Mišan, A.; Nađpal, J.; Stupar, A.; Pojić, M.; Mandić, A.; Verpoorte, R.; Choi, Y.H. The perspectives of natural deep eutectic solvents in agri-food sector. Crit. Rev. Food Sci. Nutr. 2020, 60, 2564–2592. [Google Scholar] [CrossRef]
- Choi, Y.H.; van Spronsen, J.; Dai, Y.; Verberne, M.; Hollmann, F.; Arends, I.W.C.E.; Witkamp, G.-J.; Verpoorte, R. Are Natural Deep Eutectic Solvents the Missing Link in Understanding Cellular Metabolism and Physiology? Plant Physiol. 2011, 156, 1701–1705. [Google Scholar] [CrossRef] [Green Version]
- Savi, L.K.; Carpiné, D.; Waszczynskyj, N.; Ribani, R.H.; Haminiuk, C.W.I. Influence of temperature, water content and type of organic acid on the formation, stability and properties of functional natural deep eutectic solvents. Fluid Phase Equilibria 2019, 488, 40–47. [Google Scholar] [CrossRef]
- Jakovljević, M.; Vladić, J.; Vidović, S.; Pastor, K.; Jokić, S.; Molnar, M.; Jerković, I. Application of Deep Eutectic Solvents for the Extraction of Rutin and Rosmarinic Acid from Satureja montana L. and Evaluation of the Extracts Antiradical Activity. Plants 2020, 9, 153. [Google Scholar] [CrossRef] [Green Version]
- Sut, S.; Faggian, M.; Baldan, V.; Poloniato, G.; Castagliuolo, I.; Grabnar, I.; Perissutti, B.; Brun, P.; Maggi, F.; Voinovich, D.; et al. Natural Deep Eutectic Solvents (NADES) to Enhance Berberine Absorption: An In Vivo Pharmacokinetic Study. Molecules 2017, 22, 1921. [Google Scholar] [CrossRef] [Green Version]
- de los Ángeles Fernández, M.; Boiteux, J.; Espino, M.; Gomez, F.J.; Silva, M.F. Natural deep eutectic solvents-mediated extractions: The way forward for sustainable analytical developments. Anal. Chim. Acta 2018, 1038, 1–10. [Google Scholar] [CrossRef]
- Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 1, 70–71. [Google Scholar] [CrossRef] [Green Version]
- Jablonský, M.; Škulcová, A.; Malvis, A.; Šima, J. Extraction of value-added components from food industry based and agro-forest biowastes by deep eutectic solvents. J. Biotechnol. 2018, 282, 46–66. [Google Scholar] [CrossRef]
- Liu, Y.; Garzon, J.; Friesen, J.B.; Zhang, Y.; McAlpine, J.B.; Lankin, D.C.; Chen, S.-N.; Pauli, G.F. Countercurrent assisted quantitative recovery of metabolites from plant-associated natural deep eutectic solvents. Fitoterapia 2016, 112, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents as a New Extraction Media for Phenolic Metabolites in Carthamus tinctorius L. Anal. Chem. 2013, 85, 6272–6278. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Williams, R.J.; Spencer, J.P.E.; Rice-Evans, C. Flavonoids: Antioxidants or signalling molecules? Free. Radic. Biol. Med. 2004, 36, 838–849. [Google Scholar] [CrossRef]
- Kitahara, K.; Matsumoto, Y.; Ueda, H.; Ueoka, R. A Remarkable Antioxidation Effect of Natural Phenol Derivatives on the Autoxidation of γ-Irradiated Methyl Linoleate. Chem. Pharm. Bull. 1992, 40, 2208–2209. [Google Scholar] [CrossRef] [Green Version]
- Hatano, T. Constituents of natural medicines with scavenging effects on active oxygen species-tannins and related polyphenols. Nat. Med. 1995, 49, 357–363. [Google Scholar]
- Masaki, H.; Sakaki, S.; Atsumi, T.; Sakurai, H. Active-oxygen scavenging activity of plant extracts. Biol. Pharm. Bull. 1995, 18, 162–166. [Google Scholar] [CrossRef] [Green Version]
- Moazedi, R.; Nahandi, F.Z.; Mahdavi, Y.; Ebrahemi, M.A. Assessment of genetic relationships of some cultivars of Asian pears (Pyrus pyrifolia Nakai) with some native pears of Northern Iran using SSR markers. Int. J. Farming Allied Sci. 2014, 3, 923–929. [Google Scholar]
- Bell, R. Chapter 14. Pears (Pyrus). Genetic resources of temperate fruit and nut crops. International Society for Horticultural Science, Wageningen, Netherlands. Acta Hortic. 1990, 290, 657–700. [Google Scholar]
- Bell, R.; Quamme, H.; Layne, R.; Skirvin, R. Pears. In Fruit Breeding, Volume I: Tree and Tropical Fruits; Janick, J., Moore, J.N., Eds.; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Kim, M.; Lee, S.; Lee, H.; Lee, S. Phenological Response in the Trophic Levels to Climate Change in Korea. Int. J. Environ. Res. Public Health 2021, 18, 1086. [Google Scholar] [CrossRef]
- Choi, H.-J.; Park, J.-H.; Han, H.-S.; Son, J.-H.; Son, K.-M.; Bae, J.-H.; Choi, C. Effect of polyphenol compound from Korean pear (Pyrus pyrifolia Nakai) on lipid metabolism. J. Korean Soc. Food Sci. Nutr. 2004, 33, 299–304. [Google Scholar]
- Banerjee, S.; Mazumdar, S. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte. Int. J. Anal. Chem. 2012, 2012, 282574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chojnacki, T.; Vogtman, T. The occurrence and seasonal distribution of C50-C60-polyprenols and of C100-and similar long-chain polyprenols in leaves of plants. Acta Biochim. Pol. 1984, 31, 115–126. [Google Scholar]
- Park, D.E.; Adhikari, D.; Pangeni, R.; Panthi, V.K.; Kim, H.J.; Park, J.W. Preparation and Characterization of Callus Extract from Pyrus pyrifolia and Investigation of Its Effects on Skin Regeneration. Cosmetics 2018, 5, 71. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Alam, M.A.; Pan, Y.; Wu, J.; Wang, Z.; Yuan, Z. A new approach of microalgal biomass pretreatment using deep eutectic solvents for enhanced lipid recovery for biodiesel production. Bioresour. Technol. 2016, 218, 123–128. [Google Scholar] [CrossRef]
- Kundu, J.K.; Surh, Y.-J. Inflammation: Gearing the journey to cancer. Mutat. Res./Rev. Mutat. Res. 2008, 659, 15–30. [Google Scholar] [CrossRef]
- Nathan, C. Nitric oxide as a secretory product of mammalian cells. The FASEB journal 1992, 6, 3051–3064. [Google Scholar] [CrossRef]
- Ratty, A.; Sunamoto, J.; Das, N.P. Interaction of flavonoids with 1, 1-diphenyl-2-picrylhydrazyl free radical, liposomal membranes and soybean lipoxygenase-1. Biochem. Pharmacol. 1988, 37, 989–995. [Google Scholar] [CrossRef]
- Garcia, E.J.; Oldoni, T.L.C.; de Alencar, S.M.; Reis, A.; Loguercio, A.D.; Grande, R.H.M. Antioxidant activity by DPPH assay of potential solutions to be applied on bleached teeth. Braz. Dent. J. 2012, 23, 22–27. [Google Scholar] [CrossRef]
HBD, Carbon Number | Choline Chloride/HBD (Molar Ratio) | Melting Point (°C) | Flavonoid Contents * (μg/mL) |
---|---|---|---|
Control (H2O) | Control | - | 105.926 ± 1.652 |
Oxalic acid (C2) | 2: 1 | 75 | 150.586 ± 3.072 |
Malonic acid (C3) | 1: 1 | 69 | 162.169 ± 3.016 |
Succinic acid (C4) | 2: 1 | 80 | 155.945 ± 2.070 |
Glutaric acid (C5) | 1: 1 | 60 | 171.326 ± 3.615 |
Adipic acid (C6) | 2: 1 | 84 | 32.113 ± 0.353 |
Run | Factor | Flavonoid Content (μg/mL) | |||
---|---|---|---|---|---|
Temperature (A, °C) | Extraction Time (B, h) | DES Content (C, %) | Stirring Speed (D, rpm) | ||
1 | 30 | 24.5 | 50 | 450 | 126.1 |
2 | 30 | 24.5 | 10 | 850 | 118.6 |
3 | 60 | 1 | 90 | 850 | 79.0 |
4 | 60 | 24.5 | 90 | 450 | 93.4 |
5 | 90 | 24.5 | 50 | 1250 | 223.0 |
6 | 90 | 24.5 | 10 | 850 | 95.8 |
7 | 60 | 24.5 | 50 | 850 | 149.6 |
8 | 60 | 48 | 50 | 450 | 147.2 |
9 | 60 | 24.5 | 90 | 1250 | 83.9 |
10 | 60 | 24.5 | 50 | 850 | 139.9 |
11 | 60 | 24.5 | 50 | 850 | 147.4 |
12 | 90 | 24.5 | 90 | 850 | 76.4 |
13 | 90 | 48 | 50 | 850 | 114.8 |
14 | 30 | 24.5 | 90 | 850 | 94.5 |
15 | 60 | 48 | 50 | 1250 | 157.3 |
16 | 30 | 48 | 50 | 850 | 221.3 |
17 | 30 | 24.5 | 50 | 1250 | 291.1 |
18 | 60 | 1 | 10 | 850 | 173.1 |
19 | 60 | 1 | 50 | 1250 | 151.9 |
20 | 60 | 48 | 10 | 850 | 135.2 |
21 | 60 | 24.5 | 50 | 850 | 147.6 |
22 | 60 | 24.5 | 50 | 850 | 152.6 |
23 | 60 | 48 | 90 | 850 | 83.6 |
24 | 90 | 1 | 50 | 850 | 231.3 |
25 | 30 | 1 | 50 | 850 | 207.2 |
26 | 90 | 24.5 | 50 | 450 | 120.3 |
27 | 60 | 1 | 50 | 450 | 139.2 |
28 | 60 | 24.5 | 10 | 450 | 152.1 |
29 | 60 | 24.5 | 10 | 1250 | 179.7 |
Source | Sum of Squares | Degree of Freedom | Mean of Square | F-Value | p-Value |
---|---|---|---|---|---|
model | 53,142.77 | 14 | 3795.912143 | 2.57 | 0.0441 |
A-A | 3241.96 | 1 | 3241.96 | 2.2 | 0.1606 |
B-B | 1248.81 | 1 | 1248.81 | 0.8457 | 0.3733 |
C-C | 9834.27 | 1 | 9834.27 | 6.66 | 0.0218 |
D-D | 7936.66 | 1 | 7936.66 | 5.38 | 0.0361 |
AB | 4266.84 | 1 | 4266.84 | 2.89 | 0.1112 |
AC | 5.53 | 1 | 5.53 | 0.0037 | 0.9521 |
AD | 972.46 | 1 | 972.46 | 0.6586 | 0.4306 |
BC | 451.55 | 1 | 451.55 | 0.3058 | 0.589 |
BD | 1.73 | 1 | 1.73 | 0.0012 | 0.9732 |
CD | 341.66 | 1 | 341.66 | 0.2314 | 0.6379 |
A2 | 2775.34 | 1 | 2775.34 | 1.88 | 0.192 |
B2 | 751.98 | 1 | 751.98 | 0.5093 | 0.4872 |
C2 | 15,394.76 | 1 | 15,394.76 | 10.43 | 0.0061 |
D2 | 1229.1 | 1 | 1229.1 | 0.8324 | 0.377 |
Residual | 20,672.24 | 14 | 1476.588571 | ||
Lack of Fit | 20,584.39 | 10 | 2058.439 | 93.73 | 0.0003 |
Pure Error | 87.85 | 4 | 21.9625 | ||
Cor. Total | 73,815.01 | 28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.W.; Park, H.Y.; Park, J. Enhanced Extraction Efficiency of Flavonoids from Pyrus ussuriensis Leaves with Deep Eutectic Solvents. Molecules 2022, 27, 2798. https://doi.org/10.3390/molecules27092798
Lee JW, Park HY, Park J. Enhanced Extraction Efficiency of Flavonoids from Pyrus ussuriensis Leaves with Deep Eutectic Solvents. Molecules. 2022; 27(9):2798. https://doi.org/10.3390/molecules27092798
Chicago/Turabian StyleLee, Jong Woo, Hye Yoon Park, and Junseong Park. 2022. "Enhanced Extraction Efficiency of Flavonoids from Pyrus ussuriensis Leaves with Deep Eutectic Solvents" Molecules 27, no. 9: 2798. https://doi.org/10.3390/molecules27092798
APA StyleLee, J. W., Park, H. Y., & Park, J. (2022). Enhanced Extraction Efficiency of Flavonoids from Pyrus ussuriensis Leaves with Deep Eutectic Solvents. Molecules, 27(9), 2798. https://doi.org/10.3390/molecules27092798