Reverse Engineering Analysis of the High-Temperature Reversible Oligomerization and Amyloidogenicity of PSD95-PDZ3
Abstract
:1. Introduction
2. Results and Discussion
2.1. Reverse Engineering of PDZ3
2.2. Biophysical Characterization of the PDZ3 Variants
2.3. DSC Analysis and Thermodynamic Parameters
2.4. High-Temperature ROs and Amyloidogenesis of the Variants
2.5. The N326L Mutation Induces RO and Amyloidogenesis
3. Materials and Methods
3.1. Protein Expression, Purification, and Identification
3.2. Differential Scanning Calorimetry (DSC) Measurements
3.3. Circular Dichroism (CD) Measurements
3.4. Dynamic Light Scattering (DLS) Measurements
3.5. Fluorescence Spectroscopy Measurement
3.6. Analytical Ultracentrifugation (AUC) Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Privalov, P.L. Stability of proteins: Small globular proteins. Adv. Protein Chem. 1979, 33, 167–241. [Google Scholar] [CrossRef] [PubMed]
- Pfeil, W. Thermodynamics of alpha-lactalbumin unfolding. Biophys. Chem. 1981, 13, 181–186. [Google Scholar] [CrossRef]
- Privalov, P.L.; Gill, S.J. Stability of protein structure and hydrophobic interaction. Adv. Protein Chem. 1988, 39, 191–234. [Google Scholar] [CrossRef]
- Makhatadze, G.I.; Privalov, P.L. Protein interactions with urea and guanidinium chloride. A calorimetric study. J. Mol. Biol. 1992, 226, 491–505. [Google Scholar] [CrossRef]
- Kidokoro, S.-I.; Wada, A. Determination of thermodynamic functions from scanning calorimetry data. Biopolymers 1987, 26, 213–229. [Google Scholar] [CrossRef]
- Ohgushi, M.; Wada, A. ‘Molten-globule state’: A compact form of globular proteins with mobile side-chains. FEBS Lett. 1983, 164, 21–24. [Google Scholar] [CrossRef] [Green Version]
- Kuwajima, K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins Struct. Funct. Bioinform. 1989, 6, 87–103. [Google Scholar] [CrossRef]
- Kuroda, Y.; Kidokoro, S.-I.; Wada, A. Thermodynamic characterization of cytochrome c at low pH: Observation of the molten globule state and of the cold denaturation process. J. Mol. Biol. 1992, 223, 1139–1153. [Google Scholar] [CrossRef]
- Bychkova, V.E.; Semisotnov, G.V.; Balobanov, V.A.; Finkelstein, A.V. The molten globule concept: 45 years later. Biochemistry 2018, 83, S33–S47. [Google Scholar] [CrossRef]
- Kuroda, Y.; Endo, S.; Nakamura, H. How a novel scientific concept was coined the “molten globule state”. Biomolecules 2020, 10. [Google Scholar] [CrossRef] [Green Version]
- Vassilenko, K.S.; Uversky, V.N. Native-like secondary structure of molten globules. Biochim. Biophys. Acta 2002, 1594, 168–177. [Google Scholar] [CrossRef]
- Chen, X.; Levy, J.M.; Hou, A.; Winters, C.; Azzam, R.; Sousa, A.A.; Leapman, R.D.; Nicoll, R.A.; Reese, T.S. PSD-95 family MAGUKs are essential for anchoring AMPA and NMDA receptor complexes at the postsynaptic density. Proc. Natl. Acad. Sci. USA 2015, 112, E6983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murciano-Calles, J.; Marin-Argany, M.; Cobos, E.S.; Villegas, S.; Martinez, J.C. The impact of extra-domain structures and post-translational modifications in the folding/misfolding behaviour of the third PDZ domain of MAGUK neuronal protein PSD-95. PLoS ONE 2014, 9, e98124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savioz, A.; Leuba, G.; Vallet, P.G. A framework to understand the variations of PSD-95 expression in brain aging and in Alzheimer’s disease. Ageing Res. Rev. 2014, 18, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Petit, C.M.; King, D.S.; Lee, A.L. Phosphorylation of a PDZ domain extension modulates binding affinity and interdomain interactions in postsynaptic density-95 (PSD-95) protein, a membrane-associated guanylate kinase (MAGUK). J. Biol. Chem. 2011, 286, 41776–41785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saotome, T.; Mezaki, T.; Brindha, S.; Unzai, S.; Martinez, J.C.; Kidokoro, S.I.; Kuroda, Y. Thermodynamic analysis of point mutations inhibiting high-temperature reversible oligomerization of PDZ3. Biophys. J. 2020, 119, 1391–1401. [Google Scholar] [CrossRef]
- Murciano-Calles, J.; Cobos, E.S.; Mateo, P.L.; Camara-Artigas, A.; Martinez, J.C. An oligomeric equilibrium intermediate as the precursory nucleus of globular and fibrillar supramacromolecular assemblies in a PDZ domain. Biophys. J. 2010, 99, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Murciano-Calles, J.; Cobos, E.S.; Mateo, P.L.; Camara-Artigas, A.; Martinez, J.C. A comparative analysis of the folding and misfolding pathways of the third PDZ domain of PSD95 investigated under different pH conditions. Biophys. Chem. 2011, 158, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, S.; Kibria, M.G.; Unzai, S.; Kuroda, Y.; Kidokoro, S.I. Reversible oligomerization and reverse hydrophobic effect induced by Isoleucine tags attached at the C-terminus of a simplified BPTI variant. Biochemistry 2020, 59, 3660–3668. [Google Scholar] [CrossRef]
- Krissinel, E.; Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol 2007, 372, 774–797. [Google Scholar] [CrossRef]
- Saotome, T.; Onchaiya, S.; Brindha, S.; Mezaki, T.; Unzai, S.; Noguchi, K.; Martinez, J.C.; Kidokoro, S.I.; Kuroda, Y. Blocking PSD95-PDZ3’s amyloidogenesis through point mutations that inhibit high-temperature reversible oligomerization (RO). FEBS J. 2021. [Google Scholar] [CrossRef] [PubMed]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Cryst. D Biol. Cryst. 2010, 66, 486–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tien, M.Z.; Meyer, A.G.; Sydykova, D.K.; Spielman, S.J.; Wilke, C.O. Maximum allowed solvent accessibilities of residues in proteins. PLoS ONE 2013, 8, e80635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawe, A.; Sutter, M.; Jiskoot, W. Extrinsic fluorescent dyes as tools for protein characterization. Pharm. Res. 2008, 25, 1487–1499. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, M.; Kishore, N. Characterization and analysis of binding of Thioflavin T with partially folded and native states of alpha-lactalbumin protein by calorimetric and spectroscopic techniques. Int. J. Biol. Macromol. 2017, 95, 376–384. [Google Scholar] [CrossRef]
- Krebs, M.R.; Bromley, E.H.; Donald, A.M. The binding of thioflavin-T to amyloid fibrils: Localisation and implications. J. Struct. Biol. 2005, 149, 30–37. [Google Scholar] [CrossRef]
- Guliyeva, A.J.; Gasymov, O.K. ANS fluorescence: Potential to discriminate hydrophobic sites of proteins in solid states. Biochem. Biophys. Rep. 2020, 24, 100843. [Google Scholar] [CrossRef]
- Kibria, M.G.; Akazawa-Ogawa, Y.; Rahman, N.; Hagihara, Y.; Kuroda, Y. The immunogenicity of an anti-EGFR single domain antibody (VHH) is enhanced by misfolded amorphous aggregation but not by heat-induced aggregation. Eur. J. Pharm. Biopharm. 2020, 152, 164–174. [Google Scholar] [CrossRef]
- Sulatsky, M.I.; Sulatskaya, A.I.; Povarova, O.I.; Antifeeva, I.A.; Kuznetsova, I.M.; Turoverov, K.K. Effect of the fluorescent probes ThT and ANS on the mature amyloid fibrils. Prion 2020, 14, 67–75. [Google Scholar] [CrossRef]
- Nakamura, S.; Seki, Y.; Katoh, E.; Kidokoro, S.-I. Thermodynamic and structural properties of the acid molten globule state of horse cytochrome c. Biochemistry 2011, 50, 3116–3126. [Google Scholar] [CrossRef]
- Saotome, T.; Nakamura, S.; Islam, M.M.; Nakazawa, A.; Dellarole, M.; Arisaka, F.; Kidokoro, S.; Kuroda, Y. Unusual reversible oligomerization of unfolded dengue envelope protein domain 3 at high temperatures and its abolition by a point mutation. Biochemistry 2016, 55, 4469–4475. [Google Scholar] [CrossRef]
- Fernandez-Escamilla, A.M.; Rousseau, F.; Schymkowitz, J.; Serrano, L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat. Biotechnol. 2004, 22, 1302–1306. [Google Scholar] [CrossRef] [PubMed]
- Marin-Argany, M.; Candel, A.M.; Murciano-Calles, J.; Martinez, J.C.; Villegas, S. The interconversion between a flexible beta-sheet and a fibril beta-arrangement constitutes the main conformational event during misfolding of PSD95-PDZ3 domain. Biophys. J. 2012, 103, 738–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.A.; Islam, M.M.; Kuroda, Y. Analysis of protein aggregation kinetics using short amino acid peptide tags. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2013, 1834, 2107–2115. [Google Scholar] [CrossRef] [PubMed]
- Rathnayaka, T.; Tawa, M.; Nakamura, T.; Sohya, S.; Kuwajima, K.; Yohda, M.; Kuroda, Y. Solubilization and folding of a fully active recombinant Gaussia luciferase with native disulfide bonds by using a SEP-Tag. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2011, 1814, 1775–1778. [Google Scholar] [CrossRef] [PubMed]
- Kato, A.; Yamada, M.; Nakamura, S.; Kidokoro, S.-I.; Kuroda, Y. Thermodynamic properties of BPTI variants with highly simplified amino acid sequences. J. Mol. Biol. 2007, 372, 737–746. [Google Scholar] [CrossRef]
- Islam, M.M.; Sohya, S.; Noguchi, K.; Kidokoro, S.-I.; Yohda, M.; Kuroda, Y. Thermodynamic and structural analysis of highly stabilized BPTIs by single and double mutations. Proteins Struct. Funct. Bioinform. 2009, 77, 962–970. [Google Scholar] [CrossRef]
- Kidokoro, S.-I.; Uedaira, H.; Wada, A. Determination of thermodynamic functions from scanning calorimetry data. II. For the system that includes self-dissociation / association process. Biopolymers 1988, 27, 271–297. [Google Scholar] [CrossRef]
- Micsonai, A.; Wien, F.; Kernya, L.; Lee, Y.H.; Goto, Y.; Refregiers, M.; Kardos, J. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc. Natl Acad Sci USA 2015, 112, E3095–E3103. [Google Scholar] [CrossRef] [Green Version]
- Greenfield, N.J. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat. Protoc. 2006, 1, 2527–2535. [Google Scholar] [CrossRef]
- Stetefeld, J.; McKenna, S.A.; Patel, T.R. Dynamic light scattering: A practical guide and applications in biomedical sciences. Biophys Rev. 2016, 8, 409–427. [Google Scholar] [CrossRef] [PubMed]
- Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J. 2000, 78, 1606–1619. [Google Scholar] [CrossRef] [Green Version]
- Laue, T.M. Computer-aided interpretation of analytical sedimentation data for proteins. Analytical Ultracentrifugation in Biochemistry and Polymer Science; Royal Society of Chemistry: London, UK, 1992; pp. 90–125. [Google Scholar]
Residue | Monomeric ASA (Å2) | Tetrameric ASA (Å2) | Tetrameric BSA (Å2) | Total RSA (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | A | B | C | D | A | B | C | D | ||
GLU 310 | 142 | 145 | 140 | 143 | 28 | 145 | 140 | 46 | 114 | 0 | 0 | 97 | 95 |
ASN 326 | 109 | 107 | 110 | 107 | 109 | 23 | 21 | 107 | 0 | 84 | 89 | 0 | 89 |
ARG 309 | 216 | 218 | 220 | 218 | 27 | 218 | 220 | 202 | 189 | 0 | 0 | 16 | 75 |
ASN 369 | 154 | 160 | 157 | 160 | 154 | 17 | 157 | 160 | 0 | 143 | 0 | 0 | 73 |
GLU 331 | 175 | 175 | 173 | 174 | 175 | 12 | 173 | 174 | 0 | 163 | 0 | 0 | 73 |
THR 321 | 76 | 77 | 76 | 80 | 76 | 20 | 8 | 80 | 0 | 57 | 68 | 0 | 73 |
ARG 368 | 177 | 150 | 174 | 153 | 84 | 131 | 174 | 74 | 93 | 19 | 0 | 79 | 70 |
LEU 342 | 85 | 87 | 84 | 85 | 85 | 17 | 17 | 85 | 0 | 70 | 67 | 0 | 68 |
ALA 343 | 88 | 86 | 91 | 88 | 88 | 47 | 48 | 88 | 0 | 39 | 43 | 0 | 64 |
GLY 333 | 96 | 100 | 96 | 98 | 96 | 34 | 96 | 98 | 0 | 66 | 0 | 0 | 63 |
SER 320 | 131 | 132 | 132 | 131 | 131 | 100 | 66 | 131 | 0 | 32 | 66 | 0 | 63 |
ARG 313 | 169 | 169 | 164 | 172 | 90 | 169 | 164 | 81 | 79 | 0 | 0 | 91 | 62 |
PRO 311 | 67 | 69 | 65 | 67 | 20 | 69 | 65 | 17 | 47 | 0 | 0 | 50 | 61 |
GLU 395 | 150 | 146 | 148 | 149 | 38 | 146 | 148 | 149 | 112 | 0 | 0 | 0 | 50 |
LYS 380 | 138 | 138 | 138 | 140 | 138 | 113 | 50 | 140 | 0 | 25 | 88 | 0 | 48 |
GLY 322 | 25 | 24 | 22 | 25 | 25 | 2 | 0 | 25 | 0 | 22 | 22 | 0 | 42 |
ILE 389 | 50 | 48 | 49 | 48 | 10 | 48 | 49 | 11 | 40 | 0 | 0 | 37 | 39 |
VAL 328 | 34 | 35 | 33 | 33 | 34 | 2 | 2 | 33 | 0 | 33 | 31 | 0 | 37 |
ASP 366 | 108 | 91 | 107 | 88 | 75 | 68 | 107 | 77 | 33 | 23 | 0 | 11 | 35 |
GLN 391 | 43 | 44 | 43 | 46 | 2 | 44 | 43 | 9 | 41 | 0 | 0 | 37 | 35 |
Name | Tm (°C) | ΔHvan’t Hoff (Tm) (kJ/mol) |
---|---|---|
PDZ3-F340A/E310L | 69.5 ± 0.0 | 375.6 ± 3.3 |
PDZ3-F340A/N326L | 72.4 ± 0.0 | 309.5 ± 2.6 |
PDZ3-F340A/R309L | 67.2 ± 0.0 | 363.1 ± 2.7 |
PDZ3-F340A | 71.3 ± 0.0 | 367.4 ± 3.6 |
PDZ3-wt | 71.1 ± 0.1 | 255.3 ± 3.2 |
Name | Concentration (mg/mL) | Transition | Tmid (°C) | ΔHcal (Tmid) (kJ/mol) |
---|---|---|---|---|
PDZ3-F340A/E310L | 1 | N-D | 68.9 ± 0.1 | 341.8 ± 2.7 |
0.5 | N-D | 69.3 ± 0.1 | 343.1 ± 1.9 | |
PDZ3-F340A/N326L | 1 | N-I4 | 68.1 ± 0.2 | 233.4 ± 10.1 |
N-D | 73.4 ± 1.2 | 250.8 ± 16.8 | ||
0.5 | N-I4 | 70.5 ± 0.1 | 239.0 ± 7.3 | |
N-D | 72.8 ± 0.7 | 242.7 ± 4.4 | ||
PDZ3-F340A/R309L | 1 | N-D | 67.0 ± 0.1 | 364.6 ± 2.6 |
0.5 | N-D | 66.8 ± 0.1 | 359.9 ± 2.7 | |
PDZ3-F340A | 1 | N-D | 70.0 ± 0.1 | 369.0 ± 2.6 |
0.5 | N-D | 70.2 ± 0.2 | 358.7 ± 2.7 | |
PDZ3-wt | 1 | N-I5 | 64.9 ± 0.1 | 251.4 ± 3.7 |
N-D | 67.9 ± 0.3 | 296.0 ± 4.4 | ||
0.5 | N-I5 | 67.8 ± 0.1 | 250.4 ± 8.2 | |
N-D | 69.5 ± 0.5 | 316.2 ± 8.5 |
Name | 25 °C | 40 °C | 60 °C | 70 °C | 80 °C | 90 °C | 25 °C (Reverse) |
---|---|---|---|---|---|---|---|
PDZ3-F340A/E310L | 1.76 ± 0.04 | 1.46 ± 0.24 | 0.99 ± 0.11 | 0.94 ± 0.55 | 1.88 ± 0.02 | 1.63 ± 0.10 | 1.58 ± 0.07 |
PDZ3-F340A/N326L | 1.15 ± 0.62 | 1.60 ± 0.03 | 0.82 ± 0.06 | 6.74 ± 0.13 | 7.94 ± 0.22 | 7.36 ± 0.98 | 5.68 ± 0.24 |
PDZ3-F340A/R309L | 1.62 ± 0.03 | 1.62 ± 0.05 | 1.70 ± 0.01 | 2.00 ± 0.05 | 2.08 ± 0.01 | 2.08 ± 0.02 | 1.48 ± 0.02 |
PDZ3-F340A | 1.54 ± 0.04 | 1.56 ± 0.02 | 1.66 ± 0.00 | 1.81 ± 0.07 | 2.23 ± 0.02 | 2.41 ± 0.13 | 1.61 ± 0.02 |
PDZ3-wt | 1.65 ± 0.00 | 1.46 ± 0.02 | 1.65 ± 0.03 | 3.61 ± 0.07 | 3.06 ± 0.03 | 2.41 ± 0.05 | 1.66 ± 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onchaiya, S.; Saotome, T.; Mizutani, K.; Martinez, J.C.; Tame, J.R.H.; Kidokoro, S.-i.; Kuroda, Y. Reverse Engineering Analysis of the High-Temperature Reversible Oligomerization and Amyloidogenicity of PSD95-PDZ3. Molecules 2022, 27, 2813. https://doi.org/10.3390/molecules27092813
Onchaiya S, Saotome T, Mizutani K, Martinez JC, Tame JRH, Kidokoro S-i, Kuroda Y. Reverse Engineering Analysis of the High-Temperature Reversible Oligomerization and Amyloidogenicity of PSD95-PDZ3. Molecules. 2022; 27(9):2813. https://doi.org/10.3390/molecules27092813
Chicago/Turabian StyleOnchaiya, Sawaros, Tomonori Saotome, Kenji Mizutani, Jose C. Martinez, Jeremy R. H. Tame, Shun-ichi Kidokoro, and Yutaka Kuroda. 2022. "Reverse Engineering Analysis of the High-Temperature Reversible Oligomerization and Amyloidogenicity of PSD95-PDZ3" Molecules 27, no. 9: 2813. https://doi.org/10.3390/molecules27092813
APA StyleOnchaiya, S., Saotome, T., Mizutani, K., Martinez, J. C., Tame, J. R. H., Kidokoro, S. -i., & Kuroda, Y. (2022). Reverse Engineering Analysis of the High-Temperature Reversible Oligomerization and Amyloidogenicity of PSD95-PDZ3. Molecules, 27(9), 2813. https://doi.org/10.3390/molecules27092813