Dietary Polyphenols: Extraction, Identification, Bioavailability, and Role for Prevention and Treatment of Colorectal and Prostate Cancers
Abstract
:1. Introduction
2. Extraction Techniques of Polyphenols
3. Bioavailability of Polyphenols
4. Anticancer Activities of Dietary Polyphenols
4.1. Prostate Cancer, Polyphenols, and Identification Techniques
4.2. Colorectal Cancer, Polyphenols, and Identification Techniques
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seyed, M.A.; Jantan, I.; Bukhari, S.N.A.; Vijayaraghavan, K. A comprehensive review on the chemotherapeutic potential of piceatannol for cancer treatment, with mechanistic insights. J. Agric. Food Chem. 2016, 64, 725–737. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- de Martel, C.; Ferlay, J.; Franceschi, S.; Vignat, J.; Bray, F.; Forman, D.; Plummer, M. Global burden of cancers attributable to infections in 2008: A review and synthetic analysis. Lancet Oncol. 2012, 13, 607–615. [Google Scholar] [CrossRef]
- Samuel, W.D.; Merriel, G.F.; Willie, H. Prostate Cancer in Primary Care. Adv. Ther. 2018, 35, 1285–1294. [Google Scholar]
- Andrew, R.; Hongmei, N. Epidemiology of colorectal cancer. Int. J. Mol. Epidemiol. Genet. 2016, 7, 105–114. [Google Scholar]
- Hermann, B.; Chen, C. The colorectal cancer epidemic: Challenges and opportunities for primary, secondary and tertiary prevention. Br. J. Cancer 2018, 119, 785–792. [Google Scholar]
- Yuan, X.; Ying, C.; Jing, F. Comprehensive review of targeted therapy for colorectal cancer. Signal Trans. Targ. Ther. 2020, 5, 22. [Google Scholar]
- Piwowarski, J.P.; Stanisławska, I.; Granica, S. Dietary polyphenol and microbiota interactions in the context of prostate health. Ann. N. Y. Acad. Sci. 2022, 1508, 54–77. [Google Scholar] [CrossRef]
- Ali, M.Y.; Sina, A.A.I.; Khandker, S.S.; Neesa, L.; Tanvir, E.M.; Kabir, A.; Khalil, M.I.; Gan, S.H. Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A review. Foods 2020, 10, 45. [Google Scholar] [CrossRef]
- Ma, R.H.; Ni, Z.J.; Zhu, Y.Y.; Thakur, K.; Zhang, F.; Zhang, Y.Y.; Hu, F.; Zhang, J.G.; Wei, Z.J. A recent update on the multifaceted health benefits associated with ginger and its bioactive components. Food Funct. 2021, 12, 519–542. [Google Scholar]
- Farha, A.K.; Gan, R.Y.; Li, H.B.; Wu, D.T.; Atanasov, A.G.; Gul, K.; Zhang, J.R.; Yang, Q.Q.; Corke, H. The anticancer potential of the dietary polyphenol rutin: Current status, challenges, and perspectives. Crit. Rev. Food Sci. Nutr. 2022, 62, 832–859. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Rahaman, M.S.; Islam, M.R.; Rahman, F.; Mithi, F.M.; Alqahtani, T.; Almikhlafi, M.A.; Alghamdi, S.Q.; Alruwaili, A.S.; Hossain, M.S.; et al. Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules 2021, 27, 233. [Google Scholar] [CrossRef] [PubMed]
- Rauf, A.; Imran, M.; Butt, M.S.; Nadeem, M.; Peters, D.G.; Mubarak, M.S. Resveratrol as an Anticancer Agent: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1428–1447. [Google Scholar] [CrossRef] [PubMed]
- Rauf, A.; Imran, M.; Suleria, H.A.; Ahmad, B.; Peters, D.G.; Mubarak, M.S. A comprehensive review of health perspectives of resveratrol. Food Funct. 2017, 8, 4284–4305. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Rauf, A.; Shah, Z.A.; Arshad, M.U.; Gilani, S.A.; Imran, A.; Ahmad, B.; Bawazeer, S.; Mubarak, M.S. Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review. Phytother. Res. 2019, 33, 263–275. [Google Scholar] [CrossRef]
- Rauf, A.; Imran, M.; Khan, I.A.; Rehman, M.; Gilani, S.A.; Zaffar, M.; Mubarak, M.S. Anticancer Potential of Quercetin: A Comprehensive Review. Phytother. Res. 2018, 32, 2109–2130. [Google Scholar] [CrossRef]
- Charepalli, V.; Reddivari, L.; Vadde, R.; Walia, S.; Radhakrishnan, S.; Vanamala, J.K. Eugenia jambolana (Java plum) fruit extract exhibits anti-cancer activity against early stage human HCT-116 colon cancer cells and colon cancer stem cells. Cancers 2016, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F.; Naczk, M. Phenolics in Food and Nutraceuticals; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Vasantha Rupasinghe, H.P.; Nair, S.V.G.; Robinson, R.A. Chemopreventive Properties of Fruit Phenolic Compounds and Their Possible Mode of Actions. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; ELSEVIER: Amsterdam, The Netherlands, 2014; Volume 42, pp. 229–266. [Google Scholar]
- Thyagarajan, A.; Forino, A.S.; Konger, R.L.; Sahu, R.P. Dietary polyphenols in cancer chemoprevention: Implications in pancreatic cancer. Antioxidants 2020, 9, 651. [Google Scholar] [CrossRef]
- Stanković, N.; Mihajilov-Krstev, T.; Zlatković, B.; Stankov-Jovanović, V.; Mitić, V.; Jović, J.; Bernstein, N. Antibacterial and antioxidant activity of traditional medicinal plants from the Balkan Peninsula. NJAS—Wagening. J. Life Sci. 2016, 78, 21–28. [Google Scholar] [CrossRef]
- Christensen, K.Y.; Naidu, A.; Parent, M.E.; Pintos, J.; Abrahamowicz, M.; Siemiatycki, J.; Koushik, A. The risk of lung cancer related to dietary intake of flavonoids. Nutr. Cancer 2012, 64, 964–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, H.D.; Lee, J.; Choi, I.J.; Kim, C.G.; Lee, J.Y.; Kwon, O.; Kim, J. Dietary flavonoids and gastric cancer risk in a Korean population. Nutrients 2014, 6, 4961–4973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tse, G.; Eslick, G.D. Soy and isoflavone consumption and risk of gastrointestinal cancer: A systematic review and meta-analysis. Eur. J. Nutr. 2016, 55, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, A.; Jafari, S.; Rafiei, P.; Beigrezaei, S.; Sadeghi, A.; Hekmatdoost, A.; Hejazi, E. Dietary intake of polyphenols and risk of colorectal cancer and adenoma–A case-control study from Iran. Complement. Ther. Clin. 2019, 45, 269–274. [Google Scholar]
- Zamora-Ros, R.; Not, C.; Guino, E.; Lujan-Barroso, L.; Garcia, R.M.; Biondo, S.; Salazar, R.; Moreno, V. Association between habitual dietary flavonoid and lignan intake and colorectal cancer in a Spanish case-control study (the Bellvitge Colorectal Cancer Study). Cancer Causes Control 2013, 24, 549–557. [Google Scholar] [CrossRef]
- Ghanavati, M.; Clark, C.C.; Bahrami, A.; Teymoori, F.; Movahed, M.; Sohrab, G.; Hejazi, E. Dietary intake of polyphenols and total antioxidant capacity and risk of prostate cancer: A case–control study in Iranian men. Eur. J. Cancer Care 2021, 30, e13364. [Google Scholar] [CrossRef]
- Jovanovic, A.; Petrovic, P.; Đorđevic, V.; Zdunic, G.; Šavikin, K.; Bugarski, B. Polyphenols extraction from plant sources. Lek. Sirovine 2017, 37, 45–49. [Google Scholar] [CrossRef]
- Jemain, S.F.P.; Jamal, P.; Raus, A.R.; Amid, A.; Jaswir, I. Effects of process conditions on the ultrasonic extraction of phenolics scavenger from Curcuma caesia rhizome. Int. Food Res. J. 2017, 24, 422–427. [Google Scholar]
- Borhan, M.Z.; Ahmad, R.; Rusop, M.; Abdullah, S. Green extraction: Enhanced extraction yield of asiatic acid from Centella asiatica (L.) nanopowders. J. Appl. Chem. 2013, 2013, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Danlami, J.M.; Arsad, A.; Ahmad Zaini, M.A.; Sulaiman, H. A comparative study of various oil extraction techniques from plants. Rev. Chem. Eng. 2014, 30, 605–626. [Google Scholar] [CrossRef]
- Mutalib, L.Y. Comparison between conventional and modern methods for extraction of Rosmarinus officinalis leaves. Zanco J. Med. Sci. 2015, 19, 1029–1034. [Google Scholar] [CrossRef]
- Saifullah, M.; McCullum, R.; McCluskey, A.; Vuong, Q. Comparison of conventional extraction technique with ultrasound assisted extraction on recovery of phenolic compounds from lemon scented tea tree (Leptospermum petersonii) leaves. Heliyon 2020, 6, e03666. [Google Scholar] [CrossRef] [PubMed]
- Oroian, M.; Dranca, F.; Ursachi, F. Comparative evaluation of maceration, microwave and ultrasonic-assisted extraction of phenolic compounds from propolis. J. Food Sci. Technol. 2020, 57, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Han, W.; Fan, L.; Wang, C. Enzymatic pretreatment and microwave extraction of asiaticoside from Centella asiatica. J. Biomed. Sci. Eng. 2009, 2, 526–531. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Liu, A.; Ye, M.; Wang, L.; Chen, J.; Wang, X.; Han, C. Analysis of biologically active constituents in Centella asiatica by microwave-assisted extraction combined with LC–MS. Chromatographia 2009, 70, 431–438. [Google Scholar] [CrossRef]
- Sen, K.K.; Chouhan, K.B.S.; Tandey, R.; Mehta, R.; Mandal, V. Impact of microwaves on the extraction yield of phenolics, flavonoids, and triterpenoids from Centella leaves: An approach toward digiti botanical extraction. Pharmacogn. Mag. 2019, 15, 267–273. [Google Scholar]
- Mohapatra, P.; Ray, A.; Jena, S.; Nayak, S.; Mohanty, S. Influence of extraction methods and solvent system on the chemical composition and antioxidant activity of Centella asiatica L. leaves. Biocatal. Agric. Biotechnol. 2021, 33, 101971. [Google Scholar] [CrossRef]
- Trusheva, B.; Trunkova, D.; Bankova, V. Different extraction methods of biological active components from propolis: A preliminary study. Chem. Cent. J. 2007, 13, 1–4. [Google Scholar]
- Pasrija, D.; Anandharamakrishnan, C. Techniques for extraction of green tea polyphenols: A review. Food Bioproc. Technol. 2015, 8, 935–950. [Google Scholar] [CrossRef]
- Campalani, C.; Amadio, E.; Zanini, S.; Dall’Acqua, S.; Panozzo, M.; Ferrari, S.; Perosa, A. Supercritical CO2 as a green solvent for the circular economy: Extraction of fatty acids from fruit pomace. J. CO2 Util. 2020, 41, 101259. [Google Scholar] [CrossRef]
- Chaves, J.O.; De Souza, M.C.; Da Silva, L.C.; Lachos-Perez, D.; Torres-Mayanga, P.C.; Machado, A.P.D.F.; Rostagno, M.A. Extraction of flavonoids from natural sources using modern techniques. Front. Chem. 2020, 8, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Radojković, M.; Zeković, Z.; Mašković, P.; Vidović, S.; Mandić, A.; Mišan, A.; Đurović, S. Biological activities and chemical composition of Morus leaves extracts obtained by maceration and supercritical fluid extraction. J. Supercrit Fluids 2016, 117, 50–58. [Google Scholar] [CrossRef]
- Fernández, S.; Carreras, T.; Castro, R.; Perelmuter, K.; Giorgi, V.; Vila, A.; Vieitez, I. A comparative study of supercritical fluid and ethanol extracts of cannabis inflorescences: Chemical profile and biological activity. J. Supercrit Fluids 2022, 179, 105385. [Google Scholar] [CrossRef]
- Grgic, J.; Selo, G.; Planinic, M.; Tisma, M.; Bucic-Kojic, A. Role of the Encapsulation in Bioavailability of Phenolic Compounds. Antioxidants 2020, 9, 923. [Google Scholar] [CrossRef] [PubMed]
- Dias, R.; Oliveira, H.; Fernandes, I.; Simal-Gandara, J.; Perez-Gregorio, R. Recent advances in extracting phenolic compounds from food and their use in disease prevention and as cosmetics. Crit. Rev. Food Sci. Nutr. 2020, 61, 1130–1151. [Google Scholar] [CrossRef]
- McClements, D.J. Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals. Biotechnol. Adv. 2020, 38, 107287. [Google Scholar] [CrossRef]
- Thakur, N.; Raigond, P.; Singh, Y.; Mishra, T.; Singh, B.; Lal, M.K.; Dutt, S. Recent updates on bioaccessibility of phytonutrients. Trends Food Sci. Technol. 2020, 97, 366–380. [Google Scholar] [CrossRef]
- Kamiloglu, S. Effect of different freezing methods on the bioaccessibility of strawberry polyphenols. Int. J. Food Sci. Tech. 2019, 54, 2652–2660. [Google Scholar] [CrossRef]
- Del Bo, C.; Riso, P.; Brambilla, A.; Gardana, C.; Rizzolo, A.; Simonetti, P.; Bertolo, G.; Klimis-Zacas, D.; Porrini, M. Blanching improves anthocyanin absorption from highbush blueberry (Vaccinium corymbosum L.) puree in healthy human volunteers: A pilot study. J. Agric. Food. Chem. 2012, 60, 9298–9304. [Google Scholar] [CrossRef]
- Lamothe, S.; Langlois, A.; Bazinet, L.; Couillard, C.; Britten, M. Antioxidant activity and nutrient release from polyphenol-enriched cheese in a simulated gastrointestinal environment. Food Funct. 2016, 7, 1634–1644. [Google Scholar] [CrossRef]
- Pineda-Vadillo, C.; Nau, F.; Guerin-Dubiard, C.; Jardin, J.; Lechevalier, V.; Sanz-Buenhombre, M.; Guadarrama, A.; Toth, T.; Csavajda, E.; Hingyi, H.; et al. The food matrix affects the anthocyanin profile of fortified egg and dairy matrices during processing and in vitro digestion. Food Chem. 2017, 214, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Lagoa, R.; Silva, J.; Rodrigues, J.R.; Bishayee, A. Advances in phytochemical delivery systems for improved anticancer activity. Biotechnol. Adv. 2020, 38, 107382. [Google Scholar] [CrossRef] [PubMed]
- Karna, P.; Gundala, S.R.; Gupta, M.V.; Shamsi, S.A.; Pace, R.D.; Yates, C.; Aneja, R. Polyphenol-rich sweet potato greens extract inhibits proliferation and induces apoptosis in prostate cancer cells in vitro and in vivo. Carcinogenesis 2011, 32, 1872–1880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, M.Y.; Seeram, N.P.; Heber, D. Pomegranate polyphenols down-regulate expression of androgen-synthesizing genes in human prostate cancer cells overexpressing the androgen receptor. J. Nutr. Biochem. 2008, 19, 848–855. [Google Scholar] [CrossRef] [Green Version]
- Ma, G.Z.; Wang, C.M.; Li, L.; Ding, N.; Gao, X.L. Effect of pomegranate peel polyphenols on human prostate cancer PC-3 cells in vivo. Food Sci. Biotechnol. 2015, 24, 1887–1892. [Google Scholar] [CrossRef]
- Chaves, F.M.; Pavan, I.C.B.; da Silva, L.G.S.; de Freitas, L.B.; Rostagno, M.A.; Antunes, A.E.C.; Simabuco, F.M. Pomegranate juice and peel extracts are able to inhibit proliferation, migration and colony formation of prostate cancer cell lines and modulate the Akt/mTOR/S6K signaling pathway. Plant Foods Hum. Nutr. 2020, 75, 54–62. [Google Scholar] [CrossRef]
- Amri, Z.; Kharroubi, W.; Fidanzi-Dugas, C.; Leger, D.Y.; Hammami, M.; Liagre, B. Growth inhibitory and pro-apoptotic effects of ornamental pomegranate extracts in Du145 human prostate cancer cells. Nutr. Cancer 2020, 72, 932–938. [Google Scholar] [CrossRef]
- Reddivari, L.; Vanamala, J.; Chintharlapalli, S.; Safe, S.H.; Miller, J.C., Jr. Anthocyanin fraction from potato extracts is cytotoxic to prostate cancer cells through activation of caspase-dependent and caspase-independent pathways. Carcinogenesis 2007, 28, 2227–2235. [Google Scholar] [CrossRef] [Green Version]
- Del Bubba, M.; Di Serio, C.; Renai, L.; Scordo, C.V.A.; Checchini, L.; Ungar, A.; Bartoletti, R. Vaccinium myrtillus L. extract and its native polyphenol-recombined mixture have anti-proliferative and pro-apoptotic effects on human prostate cancer cell lines. Phytother Res. 2021, 35, 1089–1098. [Google Scholar] [CrossRef]
- Shammugasamy, B.; Valtchev, P.; Dong, Q.; Dehghani, F. Effect of citrus peel extracts on the cellular quiescence of prostate cancer cells. Food Funct. 2019, 10, 3727–3737. [Google Scholar] [CrossRef]
- Boyacioglu, O.; Kara, B.; Can, H.; Yerci, T.N.; Yilmaz, S.; Boyacioglu, S.O. Leaf hexane extracts of two Turkish fig (Ficus carica L.) cultivars show cytotoxic effects on a human prostate cancer cell line. Agric. Food Sci. Res. 2019, 6, 66–70. [Google Scholar] [CrossRef]
- Drozdowska, M.; Leszczyńska, T.; Koronowicz, A.; Piasna-Słupecka, E.; Dziadek, K. Comparative study of young shoots and the mature red headed cabbage as antioxidant food resources with antiproliferative effect on prostate cancer cells. RSC Adv. 2020, 10, 43021–43034. [Google Scholar] [CrossRef]
- Peng, Y.; Bishop, K.S.; Ferguson, L.R.; Quek, S.Y. Phenolic-rich feijoa extracts from flesh, peel and whole fruit activate apoptosis pathways in the LNCaP cell line. Food Chem. 2022, 383, 132285. [Google Scholar] [CrossRef] [PubMed]
- Shreelakshmi, S.V.; Chaitrashree, N.; Kumar, S.S.; Shetty, N.P.; Giridhar, P. Fruits of Ixora coccinea are a rich source of phytoconstituents, bioactives, exhibit antioxidant activity and cytotoxicity against human prostate carcinoma cells and development of RTS beverage. J. Food Process. Preser. 2021, 45, e15656. [Google Scholar] [CrossRef]
- Choi, J.; Yang, C.; Lim, W.; Song, G.; Choi, H. Antioxidant and apoptotic activity of cocoa bean husk extract on prostate cancer cells. Mol. Cell. Toxicol. 2021, 18, 193–203. [Google Scholar] [CrossRef]
- Baseggio, A.M.; Kido, L.A.; Viganó, J.; Carneiro, M.J.; Lamas, C.D.A.; Martínez, J.; Marostica, M.R., Jr. Systemic antioxidant and anti-inflammatory effects of yellow passion fruit bagasse extract during prostate cancer progression. J. Food Biochem. 2021, 46, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Abdel Raoof, G.F.; Said, A.; Ismail, S. Assessment of the Chemical Composition, Antimicrobial Potential and Cytotoxic Activity of Eriobotrya japonica fruits. Egypt. J. Chem. 2021, 64, 3–4. [Google Scholar] [CrossRef]
- Paludo, M.C.; de Oliveira, S.B.P.; de Oliveira, L.F.; Colombo, R.C.; Gómez-Alonso, S.; Hermosín-Gutiérrez, I.; Godoy, H.T. Phenolic composition of peels from different Jaboticaba species determined by HPLC-DAD-ESI/MSn and antiproliferative activity in tumor cell lines. Curr. Plant Biol. 2022, 29, 100233. [Google Scholar] [CrossRef]
- Priam, F.; Marcelin, O.; Marcus, R.; Wijkhuisen, A.; Smith-Ravin, E.J. Evaluation of Anti-Cancer Effects of Lycopene extracted from Pink Guava Psidium guajava L. and its Combination with Apigenin or Resveratrol. Res Sq. 2021, 1–22. [Google Scholar] [CrossRef]
- Chilczuk, B.; Marciniak, B.; Kontek, R.; Materska, M. Diversity of the Chemical Profile and Biological Activity of Capsicum annuum L. Extracts in Relation to Their Lipophilicity. Molecules 2021, 26, 5215. [Google Scholar] [CrossRef]
- Zhou, W.; Liang, X.; Dai, P.; Chen, Y.; Zhang, Y.; Zhang, M.; Lin, X. Alteration of phenolic composition in lettuce (Lactuca sativa L.) by reducing nitrogen supply enhances its anti-proliferative effects on colorectal cancer cells. Int. J. Mol. Sci. 2019, 20, 4205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çetinkaya, S.; Çınar Ayan, İ.; Süntar, İ.; Dursun, H.G. The Phytochemical Profile and Biological Activity of Liquidambar orientalis Mill. var. orientalis via NF-κB and Apoptotic Pathways in Human Colorectal Cancer. Nutr. Cancer 2021, 74, 1457–1473. [Google Scholar] [CrossRef] [PubMed]
- Deveci, E.; Gülsen, T.Ç.; Karakurt, S.; Duru, M.E. Cytotoxic activities of methanol extract and compounds of Porodaedalea pini against colorectal cancer. Int. J. Second. Metab. 2021, 8, 40–48. [Google Scholar] [CrossRef]
- Albogami, S.; Hassan, A.M. Assessment of the Efficacy of Olive Leaf (Olea europaea L.) Extracts in the Treatment of Colorectal Cancer and Prostate Cancer Using In vitro Cell Models. Molecules 2021, 26, 4069. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.H.; Eom, T.; Park, J.Y.; Kim, H.J.; Nam, T.J. Dichloromethane fractions of Calystegia soldanella induce S phase arrest and apoptosis in HT 29 human colorectal cancer cells. Mol. Med. Rep. 2022, 25, 1–11. [Google Scholar] [CrossRef]
- Çınar Ayan, İ.; Çetinkaya, S.; Dursun, H.G.; Süntar, İ. Bioactive compounds of Rheum ribes L. and its anticancerogenic effect via induction of apoptosis and miR-200 family expression in human colorectal cancer cells. Nutr. Cancer 2021, 73, 1228–1243. [Google Scholar] [CrossRef]
- Xie, P.; Cecchi, L.; Bellumori, M.; Balli, D.; Giovannelli, L.; Huang, L.; Mulinacci, N. Phenolic Compounds and Triterpenes in Different Olive Tissues and Olive Oil By-Products, and Cytotoxicity on Human Colorectal Cancer Cells: The Case of Frantoio, Moraiolo and Leccino Cultivars (Olea europaea L.). Foods 2021, 10, 2823. [Google Scholar] [CrossRef]
- Mathew, N.S.; Kurrey, N.K.; Bettadaiah, B.K.; Negi, P.S. Anti-proliferative activity of Ensete superbum Roxb. Cheesman extract and its active principles on human colorectal cancer cell lines. J. Food Sci. 2021, 86, 5026–5040. [Google Scholar] [CrossRef]
Method | Time | Solvent Usage | Cost | Instrument Cost | Sample Size | Efficiency | Polyphenols’ Yield | |
---|---|---|---|---|---|---|---|---|
Traditional | Soxhlet extraction | Moderate | Moderate | Moderate | High | Large | Low | Low |
Maceration | Long | Large | Moderate | Low | Large | Low | Moderate | |
Percolation | Moderate | Moderate | Moderate | Low | Large | Moderate | Moderate | |
Modern | UAE | Short | Little | Low | Low | <30 g | High | High |
MAE | Short | Little | Moderate | High | <10 g | High | High | |
SFE | Short | Little | High | High | <5 g | High | High |
Name of Fruit/Vegetable | Origin | Plant Part | Extraction Solvent | Active Classes/Compounds & Identification Method | Model | Findings | References |
---|---|---|---|---|---|---|---|
Sweet potato (Ipomoea batatas) | - | Leaf | Methanol | Anthocyanins | In vitro & in vivo | Active against all tested prostate cancer cell lines, with IC 50 values in the range of 145–315 μg/mL, reduced the growth and progression of prostate tumor xenografts by ∼69% in nude mice at 400 mg/kg. | [54] |
Pomegranate (Punica granatum) | United States | Fruit/juice | - | Punicalagin, ellagic acid, gallotannin | In vitro | Caused significant dose-dependent inhibition against the androgen-independent (LNCaP–AR) human prostate cancer cell line. | [55] |
Pomegranate (Punica granatum) | China | Peel | 60% ethanol | Punicalagin, ellagic acid, gallic acid | in vivo | High, medium, and low dosages of pomegranate peel inhibited tumor growth by 41.66, 36.57, and 31.89% percent, respectively, in tumor-bearing mice. | [56] |
Pomegranate (Punica granatum) | Brazil | Juice/peel | Aqueous | α-punicalagin, β-punicalagin, ellagic acid | In vitro | Pomegranate juice and peel extracts decreased prostate cancer cell growth, migration, and colony formation. | [57] |
Pomegranate (Punica granatum) | Tunisia | Fruits Peel Seed oil | Methanol | - | In vitro | The IC50 dosages for seeds oil, juice, and peel extracts against human prostate cancer cells (DU145) were 0.12, 0.36, and 0.42 mg/mL, respectively, and mediated by a pro-apoptotic mechanism. | [58] |
Potato (Solanum tuberosum) | United States | Tubers | 85% ethanol | Anthocyanins | In both LNCaP and PC-3 cells, potato (CO112F2-2 cultivar) extracts, and anthocyanin fraction at 5 g chlorogenic acid eq/mL were active, suppressed cell growth, and increased cyclin-dependent kinase inhibitor (p27) levels. | [59] | |
Bilberry (Vaccinium myrtillus) | Italy | Fruit | 80% methanol | Peonidin-3-glucoside, malvidin-3-galactoside, malvidin-3-glucoside, gallic acid, p-coumaric acid, chlorogenic acid, caffeic acid, catechin, epicatechin, phloridizin, myricetin, quercetin, | In vitro | Inhibited the proliferation of both hormone-dependent prostate cancer cells (LNCaP) and hormone-independent (PC3) cells in a concentration-dependent mode. Importantly, normal prostate epithelial cells (PrEC) were resistant. | [60] |
Sweet orange (Citrus sinensis) | Australia | Peel | Water | Citric acid | In vitro | In the presence of citrus peel water extract (CPEs), quiescent PC-3 and LNCaP cancer cells could not reach the S phase. Quiescent cancer cells treated with CPEs showed reduced DNA synthesis and apoptotic rates. | [61] |
Fig (Ficus carica) | Leaf | Turkey | n-hexane | - | In vitro | The n-hexane extracts exhibited dose-dependent cytotoxic effects on PC3 cells and induced almost 100% death at 1000 μg/mL. | [62] |
Red cabbage (Brassica oleracea var. capitata f. rubra) | Shoot juice | Poland | 70% methanol | Gallic acid, 4-hydroxybenzoic acid, syringic acid, Chlorogenic acid, caffeic acid, p-coumaric acid, ferulic acid, sinapic acid, catechin, epicatechin, naringin, rutin, kaempferol, myricetin | In vitro | Red cabbage juice more efficiently inhibited the proliferation of prostate cancer cell lines DU145 and LNCaP than shoot extract. | [63] |
Feijoa (Acca sellowiana) | Fruits | New Zealand | Aqueous ethanol | Gallic acid, catechin, ellagic acid, quercetin | In vitro | The extracts demonstrated anti-proliferative action against the LNCaP cell line by inducing caspase-dependent death. | [64] |
Jungle geranium (Ixora coccinea) | Fruits | India | Methanol | Sinapic acid, myricetin | In vitro | Fruit extract exhibited an anticancer effect against LNCaP. FGC cells, with an IC50 of 34.09 mg/mL. | [65] |
Cocoa beans (Theobroma cacao) | Husk | Korea | Ethyl acetate and butanol fraction | Catechin, epicatechin, procyanidin B | In vitro | Both fractions triggered apoptosis and DNA fragmentation in PC3 and DU145 cells at 200 g/mL. | [66] |
Yellow passion fruit (P. edulis Sims) | Residues | Brazil | 75% ethanol | Piceatannol, scirpusin-B, dicaffeoylquinic acid, citric acid, catechin | In vitro | Notable alterations in systemic parameters were verified during prostate cancer progression. | [67] |
Loquat (Eriobotrya japonica) | Fruit | Egypt | 70% methanol | Gallic acid, chlorogenic acid, caffeic acid, ellagic acid, ferulic acid, syringic acid catechin, vanillin, naringenin | In vitro | Fruit extract exerted notable inhibition against the prostate cancer cell line (PC-3) with an IC50 of 35 μg/mL. | [68] |
Jaboticaba (Plinia cauliflora) | Fruit | Brazil | Ethanol | Cyanidin-3-glycoside, delphinidin-3-glycoside, quercetin, myricetin ellagic acid | In vitro | Extracts exhibited a significant decrease in cellular proliferation against DU-145 tumor cells. | [69] |
Pink guava (Psidium guajava) | Fruit | France | - | Apigenin, lycopene, resveratrol | In vitro | The combination of lycopene-apigenin exerted more potent anticancer activity against LNCaP cells than that of lycopene-resveratrol and the separate effect of the biomolecules. | [70] |
Sweet & hot pepper (Capsicum annuum) | Fruit | - | Ethanol | Gallic acid, gentisic, capsiate, methyl cinnamate, capsidiol luteolin, capsaicin, dihydrocapsaicin, capsianoside I methyl | In vitro | Sweet pepper aqueous fraction displayed higher anticancer activity (IC50 of 51 mg/mL) than 40% methanol fraction of hot pepper (IC50 of 56 mg/mL) against the prostate tumor cell line (PC-3). | [71] |
Name of Fruit/Vegetable | Origin | Plant Part | Extraction Solvent | Active classes/Compounds & Identification Method | Model | Findings | Reference |
---|---|---|---|---|---|---|---|
Red pigmented lettuce (Lactuca sativa) | China | Seeds | Ethanol | Caftaric acid, chlorogenic acid, caffeic acid, coumaroylquinic acid, chicoric acid, dicaffeoylquinic acid luteolin, quercetin; HPLC | In vitro | Phenolic extracts from lettuce grown under low nitrogen conditions (LP) exhibited better anti-proliferative effects against Caco-2 cells by interfering with the cell cycle and inducing apoptosis, compared with those from the lettuce supplied with adequate nitrogen. | [72] |
Oriental sweet gum (Liquidambar orientalis Mill. var. orientalis) | Turkey | Leaves | Methanol | Quercetin 3-glucoside, chlorogenic acid, pyrogallol, epigallocatechin gallate, apigenin 7-O-glucoside, gallic acid, genistin, luteolin, kaempferol | In vitro | The leaf methanol extract (LM) of L. orientalis showed the highest cytotoxic activity in the HCT-116 (IC50 27.80 μg/mL) and HT-29 (IC50 43.13 μg/mL) cell lines. | [73] |
Porodaedalea pini (Phellinus pini) | Turkey | Aerial parts | Methanol | Ergosta-7,24(28)-dien-3β-ol, pinoresinol,4-(3,4-dihydroxyphenyl)but-3-en2-one; FT-IR, 1D-NMR, 2D-NMR spectroscopy techniques | In vitro | P. pini methanol extract exerted the best cytotoxic activity, with the lowest IC50 value on DLD-1 (IC50: 25.33 ± 0.29 µg/mL), as compared to isolated compounds. | [74] |
Olive (Olea europaea) | Saudi Arabia | Leaves | Water | Gallic acid, chlorogenic acid, catechin, methyl gallate, caffeic acid, syringic acid, pyro catechol, rutin, ellagic acid, coumaric acid, vanillin, ferulic acid, naringenin, taxifolin, cinnamic acid, kaempferol; HPLC | In vitro | Inhibited the proliferation of colorectal (HT29) and prostate cancer (PC3), migration, DNA fragmentation, cell cycle arrest at the S phase, production of reactive oxygen species (ROS), and altered gene expression. | [75] |
Sea Bindweed (Calystegia soldanella) | Korea | Ethanol (dichloromethane fraction) | Hydroxybenzoic acid, hydrosinapinic acid, coumaric acid, quercetin | In vitro | repressed HT-29 cell viability, while inducing apoptosis through mitochondrial membrane potential regulation and S-phase arrest. | [76] | |
Syrian rhubarb (Rheum ribes) | Turkey | Roots | Methanol | pyrogallol gallic acid, salicylic acid, 3,4-dihydroxybenzoic acid, epigallocatechin, pyrocatechol, epigallocatehin, taxifolin, 4-O-methyl-gallate, ferulic acid, epigallocatechin gallate, daidzein, baicalein, 2-hydroxyxanthone, cis-resveratrol, aloin A, luteolin, chrysin, galangin, epicatechin, procyanidin B2, genistin, formononetin, apigenin, genistein, quercetin-3-O- glucoside, quercetin, rutin, kaempferol-7-O-glucoside, prunetin, emodin, herbacetin | In vitro | Caused a significant increase in the expressions of miR-200a/b/c and miR-141, and suppressed BCL-2, ZEB1, and GATA4 expressions. | [77] |
Olive (Olea europaea) | Italy | Branch | 90% ethanol | Oleuropein, oleuropein diglucoside taxifolin, taxifolin glucoside, comselogoside isobar; HPLC-DAD-MS | In vitro | The most significant inhibition on the cell’s proliferation was induced by the branch dry extract (IC50 88.25μg/mL). | [78] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, N.; Qamar, M.; Yuan, Y.; Nazir, Y.; Wilairatana, P.; Mubarak, M.S. Dietary Polyphenols: Extraction, Identification, Bioavailability, and Role for Prevention and Treatment of Colorectal and Prostate Cancers. Molecules 2022, 27, 2831. https://doi.org/10.3390/molecules27092831
Ahmad N, Qamar M, Yuan Y, Nazir Y, Wilairatana P, Mubarak MS. Dietary Polyphenols: Extraction, Identification, Bioavailability, and Role for Prevention and Treatment of Colorectal and Prostate Cancers. Molecules. 2022; 27(9):2831. https://doi.org/10.3390/molecules27092831
Chicago/Turabian StyleAhmad, Naveed, Muhammad Qamar, Ye Yuan, Yasir Nazir, Polrat Wilairatana, and Mohammad S. Mubarak. 2022. "Dietary Polyphenols: Extraction, Identification, Bioavailability, and Role for Prevention and Treatment of Colorectal and Prostate Cancers" Molecules 27, no. 9: 2831. https://doi.org/10.3390/molecules27092831
APA StyleAhmad, N., Qamar, M., Yuan, Y., Nazir, Y., Wilairatana, P., & Mubarak, M. S. (2022). Dietary Polyphenols: Extraction, Identification, Bioavailability, and Role for Prevention and Treatment of Colorectal and Prostate Cancers. Molecules, 27(9), 2831. https://doi.org/10.3390/molecules27092831