Optimization of an Ultra-Sonication Extraction Method for Major Compounds Found in Mondia whitei Using Design of Experiment
Abstract
:1. Introduction
2. Results and Discussion
2.1. Screening of the Extraction Factors Using Descriptive Screening Design
2.2. Optimization of the Extraction Factors Using Central Composite Design (CCD)
2.2.1. Effects of Solvent: Sample Ratio
2.2.2. Effects of Temperature
2.2.3. Effects of %Ethanol in Water
2.3. Testing the Predicted Optimum Conditions
3. Materials and Methods
3.1. Chemicals and Material
3.2. Instrumentation
3.3. Preparation of the Samples for Extraction
3.4. Experimental Design
3.5. Software
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- South African National Biodiversity. Available online: http://pza.sanbi.org/mondia-whitei (accessed on 4 December 2021).
- Oketch-Rabah, H.A. Mondia whitei, a medicinal plant from Africa with aphrodisiac and antidepressant properties: A review. J. Diet Suppl. 2012, 9, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Aremu, A.O.; Cheesman, L.; Finnie, J.F.; Van Staden, J. Mondia whitei (Apocynaceae): A review of its biological activities, conservation strategies and economic potential. S. Afr. J. Bot. 2011, 77, 960–971. [Google Scholar] [CrossRef] [Green Version]
- Balogun, F.O.; Tshabalala, N.T.; Ashafa, A.O. Antidiabetic Medicinal Plants Used by the Basotho Tribe of Eastern Free State: A Review. J. Diabetes Res. 2016, 2016, 4602820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patrick-Iwuanyanwu, K.C.; Nkpaa, K.W. Toxicity Effect of Sub-Chronic Oral Administration of Class Bitters®-A Polyherbal Formula on Serum Electrolytes and Hematological Indices in Male Wistar Albino Rats. J. Xenobiot. 2015, 5, 5369. [Google Scholar] [CrossRef]
- Watcho, P.; Zelefack, F.; Ngouela, S.; Nguelefack, T.B.; Ngouela, S.; Telefo, P.B.; Kamtchouing, P.; Tsamo, E.; Kamanyi, A. Effects of the Aqueous and Hexane Extracts of Mondia whitei o sexual behaviour and some fertility parameters of sexually inexperienced male rats. Afr. J. Tradit. CAM 2007, 4, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Gundidza, A.; Mmbengwa, G.M.; Magwa, V.M.; Ramalivhana, M.L.; Mukwevho, N.J.; Ndaradzi, N.T.; Samie, W. Aphrodisiac properties of some Zimbabwean medicinal plants formulations. Afr. J. Biotechnol. 2009, 8, 6402–6407. [Google Scholar]
- Watcho, P.; Donfack, M.M.; Zelefack, F.; Telesphore, A.; Nguelefack, B.; Kamtchouing, W.S.; Tsamo, P.; Kamanyi, E. Effects of the hexane extract of Mondia whitei on the reproductive organs of male rats. Afr. J. Tradit. CAM 2005, 2, 302–311. [Google Scholar] [CrossRef] [Green Version]
- Quasie, O.; Martey, O.N.K.; Nyarko, A.K.; Gbewonyo, W.S.K.; Okine, L.K.N. Modulation of penile erection in rabbits by Mondia whitei: Possible mechanism of action. Afr. J. Tradit. CAM 2010, 7, 241–252. [Google Scholar] [CrossRef] [Green Version]
- Patnam, R.; Kadali, S.S.; Koumaglo, K.H.; Roy, R. A chlorinated coumarinolignan from the African medicinal plant, Mondia whitei. Phytochemistry 2005, 66, 683–686. [Google Scholar] [CrossRef]
- Koorbanally, N.A.; Mulholland, D.A.; Crouch, N.R. Isolation of Isovanillin from aromatic roots of the medicinal African Liane Mondia whitei. J. Herbs Spices Med. Plants 2008, 7, 37–43. [Google Scholar] [CrossRef]
- Mukonyi, I.; Ndiege, K.W. 2-hydroxy-4-methoxybenzaldehyde: Aromatic taste modifying compound from Mondia whytei skeels. Bull. Chem. Soc. Ethiop. 2001, 15, 137–141. [Google Scholar]
- Wang, J.; Zhao, J.; Gao, H.; Zhou, L.; Liu, Z.; Chen, Y.; Sui, P. Antimicrobial and antioxidant activities of the root bark essential oil of Periploca sepium and its main component 2-hydroxy-4-methoxybenzaldehyde. Molecules 2010, 15, 5807–5817. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.Y.; Park, J.H.; Lee, M.J.; Lee, J.H.; Lee, H.S. Antimicrobial Effects of 7,8-Dihydroxy-6-Methoxycoumarin and 7-Hydroxy-6-Methoxycoumarin Analogues against Foodborne Pathogens and the Antimicrobial Mechanisms Associated with Membrane Permeability. J. Food Prot. 2017, 80, 1784–1790. [Google Scholar] [CrossRef]
- Izadiyan, P.; Hemmateenejad, B. Multi-response optimization of factors affecting ultrasonic assisted extraction from Iranian basil using central composite design. Food Chem. 2016, 190, 864–870. [Google Scholar] [CrossRef]
- Chen, X.; Ding, J.; Ji, D.; He, S.; Ma, H. Optimization of ultrasonic-assisted extraction conditions for bioactive components from coffee leaves using the Taguchi design and response surface methodology. J. Food Sci. 2020, 85, 1742–1751. [Google Scholar] [CrossRef]
- Wahid, Z.; Nadir, N. Improvement of One Factor at a Time Through Design of Experiments 1. World Appl. Sci. J. 2013, 21, 56–61. [Google Scholar]
- Jones, B.; Nachtsheim, C.J. Definitive screening designs with added two-level categorical factors. J. Qual. Technol. 2013, 45, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Chokwe, R.C.; Dube, S.; Nindi, M.M. Development of a Quantitative Method for Analysis of compounds found in Mondia whitei using HPLC-DAD. Molecules 2020, 25, 4451. [Google Scholar] [CrossRef]
- Hocharoen, L.; Noppiboon, S.; Kitsubun, P. Process Characterization by Definitive Screening Design Approach on DNA Vaccine Production. Bioeng. Biotechnol. 2020, 8, 1164. [Google Scholar] [CrossRef]
- Sulaiman, I.S.C.; Basri, M.; Masoumi, H.R.F.; Chee, W.J.; Efliza, S. Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of Clinacanthus nutans Lindau leaves by response surface methodology. Chem. Cent. J. 2017, 11, 54. [Google Scholar] [CrossRef]
- Belwal, T.; Pandey, A.; Bhatt, I.D.; Rawal, R.S. Optimized microwave assisted extraction (MAE) of alkaloids and polyphenols from Berberis roots using multiple-component analysis. Sci. Rep. 2020, 10, 917. [Google Scholar] [CrossRef] [PubMed]
Run Order | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature | 70 | 30 | 70 | 50 | 50 | 50 | 30 | 30 | 30 | 70 | 70 | 30 | 70 | 50 |
Ethanol ratio | 100 | 100 | 40 | 70 | 100 | 70 | 70 | 40 | 40 | 40 | 100 | 100 | 70 | 40 |
Solvent volume | 3 | 5 | 4 | 3 | 5 | 3 | 1 | 3 | 5 | 1 | 1 | 1 | 5 | 5 |
Time | 60 | 20 | 40 | 40 | 60 | 40 | 60 | 20 | 60 | 20 | 20 | 40 | 20 | 60 |
Power | 0.01 | 0.03 | 0.05 | 0.03 | 0.05 | 0.03 | 0.05 | 0.05 | 0.01 | 0.05 | 0.05 | 0.01 | 0.01 | 0.01 |
Frequency | Low | Low | Low | High | High | High | Low | High | Low | Low | Low | High | High | High |
% Average recovery | 44.58 | 53.53 | 72.91 | 46.50 | 42.03 | 65.98 | 55.92 | 45.22 | 31.67 | 73.72 | 66.41 | 68.34 | 44.88 | 58.85 |
Run Order | % Ethanol | Temperature | Solvent: Sample Ratio | % Average Recovery |
---|---|---|---|---|
1 | 40 | 50 | 3 | 68.62 |
2 | 100 | 70 | 1 | 49.99 |
3 | 100 | 30 | 5 | 47.67 |
4 | 100 | 30 | 1 | 27.05 |
5 | 40 | 30 | 5 | 50.17 |
6 | 70 | 50 | 1 | 22.52 |
7 | 40 | 70 | 1 | 51.70 |
8 | 70 | 50 | 5 | 80.85 |
9 | 40 | 30 | 1 | 19.58 |
10 | 100 | 70 | 5 | 51.15 |
11 | 70 | 50 | 3 | 78.24 |
12 | 70 | 70 | 3 | 92.86 |
13 | 70 | 50 | 3 | 78.99 |
14 | 70 | 50 | 3 | 82.18 |
15 | 40 | 70 | 5 | 53.58 |
16 | 70 | 50 | 3 | 76.57 |
17 | 70 | 30 | 3 | 77.17 |
18 | 100 | 50 | 3 | 67.63 |
19 | 70 | 50 | 3 | 57.54 |
20 | 70 | 50 | 3 | 56.67 |
p-Value | Coefficient | |
---|---|---|
Linear | 0.016 | |
Square | 0.000 | |
2-way interaction | 0.303 | |
Constant | 0.000 | 72.07 |
%Ethanol | 0.996 | −0.002 |
Temperature | 0.018 | 7.76 |
Solvent | 0.013 | 8.26 |
%Ethanol*%Ethanol | 0.410 | 4.51 |
Temperature*Temperature | 0.040 | 12.39 |
Solvent*Solvent | 0.000 | −35.95 |
%Ethanol*Temperature | 0.719 | −1.14 |
%Ethanol*Solvent | 0.673 | −1.34 |
Temperature*Solvent | 0.079 | −6.02 |
Lack-of-fit | 0.969 | |
R2 | 90.10% | |
R2(adj) | 81.20% | |
R2(pred) | 76.65% |
Temperature | Ethanol Ratio | Solvent Volume | Time | Power | Frequency | |
---|---|---|---|---|---|---|
Low | 30 | 40 | 1 | 20 | 0.01 | Low |
High | 70 | 100 | 5 | 60 | 0.05 | High |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chokwe, R.C.; Dube, S.; Nindi, M.M. Optimization of an Ultra-Sonication Extraction Method for Major Compounds Found in Mondia whitei Using Design of Experiment. Molecules 2022, 27, 2836. https://doi.org/10.3390/molecules27092836
Chokwe RC, Dube S, Nindi MM. Optimization of an Ultra-Sonication Extraction Method for Major Compounds Found in Mondia whitei Using Design of Experiment. Molecules. 2022; 27(9):2836. https://doi.org/10.3390/molecules27092836
Chicago/Turabian StyleChokwe, Ramakwala Christinah, Simiso Dube, and Mathew Muzi Nindi. 2022. "Optimization of an Ultra-Sonication Extraction Method for Major Compounds Found in Mondia whitei Using Design of Experiment" Molecules 27, no. 9: 2836. https://doi.org/10.3390/molecules27092836
APA StyleChokwe, R. C., Dube, S., & Nindi, M. M. (2022). Optimization of an Ultra-Sonication Extraction Method for Major Compounds Found in Mondia whitei Using Design of Experiment. Molecules, 27(9), 2836. https://doi.org/10.3390/molecules27092836