Biological Activities of Lichen-Derived Monoaromatic Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Identification of 1–7
2.2. Aromatic Bromination to Produce Compounds 8a, 9a, 10a, and 10b
2.3. Alpha-Glucosidase Inhibitory Activity of Compounds 1–10, 8a, 9a, 10a, and 10b
2.4. Antimicrobial Activity of Compounds 1–10, 8a, 9a, 10a, and 10b
2.5. Molecular Docking Studies
3. Materials and Methods
3.1. Source of the Lichen Material P. cristiferum
3.2. Isolation of Compounds 1–7 from P. cristiferum
3.3. General Procedure to Synthesize Compounds 8a and 9a
3.4. General Procedure to Synthesize Compounds 10a and 10b
3.5. Alpha-Glucosidase Inhibition Assay
3.6. Antimicrobial Activity Assay
3.7. Molecular Docking Studies
3.8. Structure Elucidation of the Compounds
3.8.1. 3,5-Dihydroxybenzoic acid (1)
3.8.2. 3,5-Dihydroxybenzoate methyl (2)
3.8.3. 3,5-Dihydroxy-4-methylbenzoic acid (3)
3.8.4. 3,5-Dihydroxy-4-methoxylbenzoic acid (4)
3.8.5. 3-Hydroxyorcinol (5)
3.8.6. Atranol (6)
3.8.7. Methyl hematommate (7)
3.8.8. Methyl 5-bromo-β-orsellinate (8a)
3.8.9. Methyl 3,5-dibromo-orsellinate (9a)
3.8.10. 3-Bromo-D-montagnetol (10a)
3.8.11. 3,5-Dibromo-D-montagnetol (10b)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Duong, T.-H.; Hang, T.-X.-H.; Pogam, P.L.; Tran, T.-N.; Mac, D.-H.; Dinh, M.-H.; Sichaem, J. α-Glucosidase Inhibitory Depsidones from the Lichen Parmotrema tsavoense. Planta Med. 2020, 86, 776–781. [Google Scholar] [CrossRef] [PubMed]
- Duong, T.-H.; Nguyen, V.-K.; Sichaem, J.; Tran, T.-N.; Do, T.-H.; Pham, N.-K.-T.; Nguyen, T.-A.-T.; Nguyen, T.-H.-T.; Mai, D.-T.; Nguyen, N.-H.; et al. Reticulatin, a Novel C43-Spiroterpenoid from the Lichen Parmotrema reticulatum Growing in Vietnam. Nat. Prod. Res. 2021, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Devi, A.P.; Duong, T.-H.; Ferron, S.; Beniddir, M.A.; Dinh, M.-H.; Nguyen, V.-K.; Pham, N.-K.-T.; Mac, D.-H.; Boustie, J.; Chavasiri, W.; et al. Salazinic Acid-Derived Depsidones and Diphenylethers with α-Glucosidase Inhibitory Activity from the Lichen Parmotrema dilatatum. Planta Med. 2020, 86, 1216–1224. [Google Scholar] [CrossRef] [PubMed]
- Müller, K. Pharmaceutically Relevant Metabolites from Lichens. Appl. Microbiol. Biotechnol. 2001, 56, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Millot, M.; Girardot, M.; Dutreix, L.; Mambu, L.; Imbert, C. Antifungal and Anti-Biofilm Activities of Acetone Lichen Extracts against Candida albicans. Molecules 2017, 22, 651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boustie, J.; Tomasi, S.; Grube, M. Bioactive Lichen Metabolites: Alpine Habitats as an Untapped Source. Phytochem. Rev. 2011, 10, 287–307. [Google Scholar] [CrossRef]
- Pham, N.-K.-T.; Nguyen, H.T.; Dao, T.-B.-N.; Vu-Huynh, K.L.; Nguyen, T.-Q.-T.; Huynh, B.-L.-C.; Le, T.-D.; Nguyen, N.-H.; Nguyen, N.-H.; Duong, T.-H. Two New Phenolic Compounds from the Lichen Parmotrema cristiferum Growing in Vietnam. Nat. Prod. Res. 2021, 1–7. [Google Scholar] [CrossRef]
- Boustie, J.; Grube, M. Lichens—A Promising Source of Bioactive Secondary Metabolites. Plant Genet. Resour. 2005, 3, 273–287. [Google Scholar] [CrossRef] [Green Version]
- Gomes, A.T.; Honda, N.K.; Roese, F.M.; Muzzi, R.M.; Sauer, L. Cytotoxic Activity of Orsellinates. Z. Für Nat. C 2006, 61, 653–657. [Google Scholar] [CrossRef]
- Bogo, D.; Matos, M.d.F.C.; Honda, N.K.; Pontes, E.C.; Oguma, P.M.; Santos, E.C.d.S.; de Carvalho, J.E.; Nomizo, A. In Vitro Antitumour Activity of Orsellinates. Z. Für Nat. C 2010, 65, 43–48. [Google Scholar] [CrossRef]
- Devi, A.P.; Duong, T.H.; Phan, H.-V.-T.; Nguyen, V.-K.; Chavasiri, W. Chemical Constituents of the Hexane Fraction of the Lichen Parmotrema dilatatum and Their α-Glucosidase Inhibition Activity. Chem. Nat. Compd. 2021, 57, 528–530. [Google Scholar] [CrossRef]
- Schmeda-Hirschmann, G.; Tapia, A.; Lima, B.; Pertino, M.; Sortino, M.; Zacchino, S.; de Arias, A.R.; Feresin, G.E. A New Antifungal and Antiprotozoal Depside from the Andean Lichen Protousnea poeppigii: A New Antifungal Depside from Protousnea poeppigii. Phytother. Res. 2008, 22, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Min, T.-J.; Bae, K.-G. Structure and antibiotic activities of phenolic compounds from Umbilicaria vellea. J. Korean J. Chem Soc. 1996, 40, 623–629. [Google Scholar]
- Ingólfsdóttir, K.; Gudmundsdóttir, G.F.; Ögmundsdóttir, H.M.; Paulus, K.; Haraldsdóttir, S.; Kristinsson, H.; Bauer, R. Effects of Tenuiorin and Methyl Orsellinate from the Lichen Peltigera leucophlebia on 5-/15-Lipoxygenases and Proliferation of Malignant Cell Lines in Vitro. Phytomedicine 2002, 9, 654–658. [Google Scholar] [CrossRef]
- Rama Krishna, B.; Ramakrishna, S.; Rajendra, S.; Madhusudana, K.; Mallavadhani, U.V. Synthesis of Some Novel Orsellinates and Lecanoric Acid Related Depsides as α-Glucosidase Inhibitors. J. Asian Nat. Prod. Res. 2019, 21, 101301027. [Google Scholar] [CrossRef]
- Lopes, T.I.B.; Coelho, R.G.; Yoshida, N.C.; Honda, N.K. Radical-Scavenging Activity of Orsellinates. Chem. Pharm. Bull. 2008, 56, 1551–1554. [Google Scholar] [CrossRef] [Green Version]
- Duong, T.H.; Huynh, B.L.C.; Chavasiri, W.; Chollet-Krugler, M.; Nguyen, V.K.; Nguyen, T.H.T.; Hansen, P.E.; Le Pogam, P.; Thüs, H.; Boustie, J.; et al. New Erythritol Derivatives from the Fertile Form of Roccella montagnei. Phytochemistry 2017, 137, 156–164. [Google Scholar] [CrossRef]
- Dao, T.-B.-N.; Nguyen, T.-M.-T.; Nguyen, V.-Q.; Tran, T.-M.-D.; Tran, N.-M.-A.; Nguyen, C.H.; Nguyen, T.-H.-T.; Nguyen, H.-H.; Sichaem, J.; Tran, C.-L.; et al. Flavones from Combretum quadrangulare Growing in Vietnam and Their Alpha-Glucosidase Inhibitory Activity. Molecules 2021, 26, 2531. [Google Scholar] [CrossRef]
- Pham, N.-K.-T.; Tran, N.-M.-A.; Truong Nguyen, H.; Pham, D.-D.; Nguyen, T.-Q.-T.; Nguyen, T.-H.-A.; Nguyen, H.-T.; Do, T.-H.; Nguyen, N.-H.; Duong, T.-H. Design, Modification, and Bio-Evaluation of Salazinic Acid Derivatives. Arab. J. Chem. 2022, 15, 103535. [Google Scholar] [CrossRef]
- Ingólfsdóttir, K.; Bloomfield, S.F.; Hylands, P.J. In Vitro Evaluation of the Antimicrobial Activity of Lichen Metabolites as Potential Preservatives. Antimicrob. Agents Chemother. 1985, 28, 289–292. [Google Scholar] [CrossRef] [Green Version]
- Zong, Y.; Bice, T.W.; Ton-That, H.; Schneewind, O.; Narayana, S.V.L. Crystal Structures of Staphylococcus aureus Sortase A and Its Substrate Complex. J. Biol. Chem. 2004, 279, 31383–31389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barker, M.K.; Rose, D.R. Specificity of Processing α-Glucosidase I Is Guided by the Substrate Conformation. J. Biol. Chem. 2013, 288, 13563–13574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | IC50 (µg/mL) |
---|---|
1 | 112.3 ± 0.7 |
2 | 157.9 ± 2.1 |
3 | 24.0 ± 0.8 |
4 | 171.1 ± 2.9 |
5 | 97.3 ± 1.3 |
6 | >300 |
7 | 61.8 ± 0.4 |
8 | >300 |
9 | >300 |
10 | >300 |
8a | 166.7 ± 2.8 |
9a | 156.2 ± 2.9 |
10a | 133.9 ± 4.5 |
10b | 129.5 ± 2.0 |
Acarbose | 317.0 ± 3.1 |
Compound | Inhibition Zone (mm) 50 µg/mL | ||
---|---|---|---|
Staphylococcus aureus | Acinetobacter baumannii | Enterococcus faecium | |
1 | - | - | - |
2 | - | - | - |
3 | - | - | - |
4 | - | - | - |
5 | - | - | - |
6 | - | - | - |
7 | - | - | - |
8 | 18 | 16 | 13 |
9 | 13 | - | - |
10 | - | - | - |
8a | 12 | - | - |
9a | 29 | - | - |
10a | - | - | 13 |
10b | - | - | - |
Apramycin | 21 | 20 | 21 |
Compound | Docking (kcal/mol) | Binding Energy Based IC50 Values (kcal/mol) | No of H-Bond | Residues | No of Hydrophobic Interactions | Residues |
---|---|---|---|---|---|---|
3-4j5t | −4.2 | −5.3 | 4 | Asn453, Gly566, Trp710, Asp392 | 2 | Trp391 |
5-4j5t | −4.0 | −4.3 | 4 | Leu563, Asp568, Trp710 | 2 | Trp391, Arg428 |
7-4j5t | −5.7 | −4.8 | 5 | Asp392, Trp391, Gly566, Trp710, Glu771 | 3 | Asp392, Glu771 |
Acarbose-4j5t | −6.65 | −5.16 | 12 | Trp391, Asp392, Arg428, Glu429, Asp568, Leu563, Gly566, Glu771 | 1 | Asp568 |
9a-1t2p | −4.9 | −6.7 | 5 | Asn114, Thr180, Val168 | 6 | Gln172, Leu169, Ile199, Val168 |
Apramycin-1t2p | −5.89 | −5.50 | 5 | Asn 114, Ser116, Arg197, Thr180 | 1 | GLn105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Do, T.-H.; Duong, T.-H.; Nguyen, H.T.; Nguyen, T.-H.; Sichaem, J.; Nguyen, C.H.; Nguyen, H.-H.; Long, N.P. Biological Activities of Lichen-Derived Monoaromatic Compounds. Molecules 2022, 27, 2871. https://doi.org/10.3390/molecules27092871
Do T-H, Duong T-H, Nguyen HT, Nguyen T-H, Sichaem J, Nguyen CH, Nguyen H-H, Long NP. Biological Activities of Lichen-Derived Monoaromatic Compounds. Molecules. 2022; 27(9):2871. https://doi.org/10.3390/molecules27092871
Chicago/Turabian StyleDo, Thanh-Hung, Thuc-Huy Duong, Huy Truong Nguyen, Thi-Hien Nguyen, Jirapast Sichaem, Chuong Hoang Nguyen, Huu-Hung Nguyen, and Nguyen Phuoc Long. 2022. "Biological Activities of Lichen-Derived Monoaromatic Compounds" Molecules 27, no. 9: 2871. https://doi.org/10.3390/molecules27092871
APA StyleDo, T. -H., Duong, T. -H., Nguyen, H. T., Nguyen, T. -H., Sichaem, J., Nguyen, C. H., Nguyen, H. -H., & Long, N. P. (2022). Biological Activities of Lichen-Derived Monoaromatic Compounds. Molecules, 27(9), 2871. https://doi.org/10.3390/molecules27092871