Green Extraction Techniques as Advanced Sample Preparation Approaches in Biological, Food, and Environmental Matrices: A Review
Abstract
:1. Introduction
2. Sample Preparation: A Key Step to Getting the Correct Data
3. Green Extraction (GreETs) Techniques
3.1. Miniaturized Sorbent-Based Techniques
3.1.1. Fabric-Phase Sorbent Extraction
3.1.2. Solid-Phase Extraction-Based Approaches
Solid-Phase Microextraction (SPME)
Microextraction in Packed Sorbent (MEPS)
Solid-Phase Dispersion Extraction (SPDE)
3.1.3. Stir-Bar Sorbent Extraction (SBSE)
3.1.4. Multisphere Adsorptive Microextraction (MSAμE)
3.2. Miniaturized LPE-Based Techniques
3.2.1. Single-Drop Microextraction (SDME)
3.2.2. Hollow-Fiber Liquid-Phase Microextraction (HF-LPME)
3.2.3. Dispersive Liquid–Liquid Microextraction (DLLME)
3.2.4. QuEChERS
3.2.5. Solidification of Floating Organic Drop Microextraction (SFOME)
3.2.6. UABE
3.3. Emergent Green Solvents: Ionic Liquids (ILs), DES, and NADES
3.4. Other Advanced Extraction Techniques
4. High-Resolution Analytical Techniques
5. Applications of Green Extraction Techniques to Different Fields
5.1. Biological Samples
5.2. Food Samples
5.3. Environmental Samples
6. Final Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- Fu, S.; Fan, J.; Hashi, Y.; Chen, Z. Determination of polycyclic aromatic hydrocarbons in water samples using online microextraction by packed sorbent coupled with gas chromatography-mass spectrometry. Talanta 2012, 94, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Delińska, K.; Yavir, K.; Kloskowski, A. Ionic liquids in extraction techniques: Determination of pesticides in food and environmental samples. TrAC Trends Anal. Chem. 2021, 143, 116396. [Google Scholar] [CrossRef]
- Casado, N.; Ganan, J.; Morante-Zarcero, S.; Sierra, I. New Advanced Materials and Sorbent-Based Microextraction Techniques as Strategies in Sample Preparation to Improve the Determination of Natural Toxins in Food Samples. Molecules 2020, 25, 702. [Google Scholar] [CrossRef] [Green Version]
- Kabir, A.; Furton, K.G. Fabric Phase Sorptive Extractors. U.S. Patent 20140274660A1, 18 September 2014. [Google Scholar]
- Kabir, A.; Samanidou, V. Fabric Phase Sorptive Extraction: A Paradigm Shift Approach in Analytical and Bioanalytical Sample Preparation. Molecules 2021, 26, 856. [Google Scholar] [CrossRef]
- Olia, A.E.A.; Mohadesi, A.; Feizy, J. Ochratoxin Determination in Food Samples by Fabric Phase Sorptive Extraction Coupled with High-Performance Liquid Chromatography Technique. 2022. Available online: https://www.researchsquare.com/article/rs-1478781/v1 (accessed on 1 May 2022).
- Arthur, C.L.; Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Billiard, K.M.; Dershem, A.R.; Gionfriddo, E. Implementing Green Analytical Methodologies Using Solid-Phase Microextraction: A Review. Molecules 2020, 25, 5297. [Google Scholar]
- Ribeiro, C.; Ribeiro, A.R.; Maia, A.S.; Goncalves, V.M.; Tiritan, M.E. New trends in sample preparation techniques for environmental analysis. Crit. Rev. Anal. Chem. 2014, 44, 142–185. [Google Scholar] [CrossRef]
- Filippou, O.; Bitas, D.; Samanidou, V. Green approaches in sample preparation of bioanalytical samples prior to chromatographic analysis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1043, 44–62. [Google Scholar] [CrossRef]
- Barker, S.A. Matrix solid phase dispersion (MSPD). J. Biochem. Biophys. Methods 2007, 70, 151–162. [Google Scholar] [CrossRef]
- Chang, Y.C.; Chen, D.H. Adsorption kinetics and thermodynamics of acid dyes on a carboxymethylated chitosan-conjugated magnetic nano-adsorbent. Macromol. Biosci. 2005, 5, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Bruzzoniti, M.C.; Sarzanini, C.; Costantino, G.; Fungi, M. Determination of herbicides by solid phase extraction gas chromatography-mass spectrometry in drinking waters. Anal. Chim. Acta 2006, 578, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, H.C.; Sheu, C.; Shi, F.K.; Li, D.T. Development of a titanium dioxide nanoparticle pipette-tip for the selective enrichment of phosphorylated peptides. J. Chromatogr. A 2007, 1165, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Berton, P.; Lana, N.B.; Ríos, J.M.; García-Reyes, J.F.; Altamirano, J.C. State of the art of environmentally friendly sample preparation approaches for determination of PBDEs and metabolites in environmental and biological samples: A critical review. Anal. Chim. Acta 2016, 905, 24–41. [Google Scholar] [CrossRef] [PubMed]
- Neng, N.R.; Silva, A.R.M.; Nogueira, J.M.F. Adsorptive micro-extraction techniques—Novel analytical tools for trace levels of polar solutes in aqueous media. J. Chromatogr. A 2010, 1217, 7303–7310. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.R.M.; Neng, N.R.; Nogueira, J.M.F. Multi-Spheres Adsorptive Microextraction (MSAμE)—Application of a Novel Analytical Approach for Monitoring Chemical Anthropogenic Markers in Environmental Water Matrices. Molecules 2019, 24, 931. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Dasgupta, P.K. Liquid Droplet. A Renewable Gas Sampling Interface. Anal. Chem. 1995, 67, 2042–2049. [Google Scholar] [CrossRef]
- Jeannot, M.; Przyjazny, A.; Kokosa, J. Single drop microextraction—Development, applications and future trends. J. Chromatogr. A 2009, 1217, 2326–2336. [Google Scholar] [CrossRef]
- Williams, D.B.G.; George, M.J.; Meyer, R.; Marjanovic, L. Bubbles in Solvent Microextraction: The Influence of Intentionally Introduced Bubbles on Extraction Efficiency. Anal. Chem. 2011, 83, 6713–6716. [Google Scholar] [CrossRef]
- Liu, W.; Lee, H.K. Continuous-Flow Microextraction Exceeding1000-Fold Concentration of Dilute Analytes. Anal. Chem. 2000, 72, 4462–4467. [Google Scholar] [CrossRef]
- Wijethunga, P.A.L.; Nanayakkara, Y.S.; Kunchala, P.; Armstrong, D.W.; Moon, H. On-Chip Drop-to-Drop Liquid Microextraction Coupled with Real-Time Concentration Monitoring Technique. Anal. Chem. 2011, 83, 1658–1664. [Google Scholar] [CrossRef] [PubMed]
- Pena, F.; Lavilla, I.; Bendicho, C. Immersed single-drop microextraction interfaced with sequential injection analysis for determination of Cr(VI) in natural waters by electrothermal-atomic absorption spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2008, 63, 498–503. [Google Scholar] [CrossRef]
- Pedersen-Bjergaard, S.; Rasmussen, K.E. Liquid− liquid− liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. Anal. Chem. 1999, 71, 2650–2656. [Google Scholar] [CrossRef] [PubMed]
- Madikizela, L.; Pakade, V.; Ncube, S.; Tutu, H.; Chimuka, L. Application of Hollow Fibre-Liquid Phase Microextraction Technique for Isolation and Pre-Concentration of Pharmaceuticals in Water. Membranes 2020, 10, 311. [Google Scholar] [CrossRef] [PubMed]
- Hrdlička, V.; Navrátil, T.; Barek, J. Application of hollow fibre based microextraction for voltammetric determination of vanillylmandelic acid in human urine. J. Electroanal. Chem. 2019, 835, 130–136. [Google Scholar] [CrossRef]
- Kazakova, J.; Villar-Navarro, M.; Pérez-Bernal, J.L.; Ramos-Payán, M.; Bello-López, M.Á.; Fernández-Torres, R. Urine and saliva biomonitoring by HF-LPME-LC/MS to assess dinitrophenols exposure. Microchem. J. 2021, 166, 106193. [Google Scholar] [CrossRef]
- Dominguez-Tello, A.; Dominguez-Alfaro, A.; Gómez-Ariza, J.L.; Arias-Borrego, A.; García-Barrera, T. Effervescence-assisted spiral hollow-fibre liquid-phase microextraction of trihalomethanes, halonitromethanes, haloacetonitriles, and haloketones in drinking water. J. Hazard. Mater. 2020, 397, 122790. [Google Scholar] [CrossRef]
- Piao, H.; Jiang, Y.; Li, X.; Ma, P.; Wang, X.; Song, D.; Sun, Y. Matrix solid-phase dispersion coupled with hollow fiber liquid phase microextraction for determination of triazine herbicides in peanuts. J. Sep. Sci. 2019, 42, 2123–2130. [Google Scholar] [CrossRef]
- Tajik, M.; Yamini, Y.; Esrafili, A.; Ebrahimpour, B. Automated hollow fiber microextraction based on two immiscible organic solvents for the extraction of two hormonal drugs. J. Pharm. Biomed. Anal. 2015, 107, 24–31. [Google Scholar] [CrossRef]
- Rezaee, M.; Yamini, Y.; Faraji, M. Evolution of dispersive liquid-liquid microextraction method. J. Chromatogr. A 2010, 1217, 2342–2357. [Google Scholar] [CrossRef]
- Anthemidis, A.N.; Ioannou, K.-I.G. On-line sequential injection dispersive liquid–liquid microextraction system for flame atomic absorption spectrometric determination of copper and lead in water samples. Talanta 2009, 79, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Anthemidis, A.N.; Ioannou, K.-I.G. Development of a sequential injection dispersive liquid–liquid microextraction system for electrothermal atomic absorption spectrometry by using a hydrophobic sorbent material: Determination of lead and cadmium in natural waters. Anal. Chim. Acta 2010, 668, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Anastassiades, M.; Lehotay, S.J.; Stajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berlioz-Barbier, A.; Baudot, R.; Wiest, L.; Gust, M.; Garric, J.; Cren-Olivé, C.; Buleté, A. MicroQuEChERS–nanoliquid chromatography–nanospray–tandem mass spectrometry for the detection and quantification of trace pharmaceuticals in benthic invertebrates. Talanta 2015, 132, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Kachhawaha, A.S.; Nagarnaik, P.M.; Jadhav, M.; Pudale, A.; Labhasetwar, P.K.; Banerjee, K. Optimization of a Modified QuEChERS Method for Multiresidue Analysis of Pharmaceuticals and Personal Care Products in Sewage and Surface Water by LC-MS/MS. J. AOAC Int. 2017, 100, 592–597. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.C.B.; Silva, A.S.; Rufino, J.L.; Pezza, H.R.; Pezza, L. Screening and determination of sulphonamide residues in bovine milk samples using a flow injection system. Food Chem. 2015, 166, 309–315. [Google Scholar] [CrossRef]
- Correia-Sa, L.; Norberto, S.; Delerue-Matos, C.; Calhau, C.; Domingues, V.F. Micro-QuEChERS extraction coupled to GC-MS for a fast determination of Bisphenol A in human urine. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1072, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Rial-Berriel, C.; Acosta-Dacal, A.; Zumbado, M.; Luzardo, O.P. Micro QuEChERS-based method for the simultaneous biomonitoring in whole blood of 360 toxicologically relevant pollutants for wildlife. Sci. Total Environ. 2020, 736, 139444. [Google Scholar] [CrossRef]
- Khalili Zanjani, M.R.; Yamini, Y.; Shariati, S.; Jönsson, J.A. A new liquid-phase microextraction method based on solidification of floating organic drop. Anal. Chim. Acta 2007, 585, 286–293. [Google Scholar] [CrossRef]
- Silva, L.K.; Rangel, J.H.G.; Brito, N.M.; Sousa, E.R.; Sousa, É.M.; Lima, D.L.D.; Esteves, V.I.; Freitas, A.S.; Silva, G.S. Solidified floating organic drop microextraction (SFODME) for the simultaneous analysis of three non-steroidal anti-inflammatory drugs in aqueous samples by HPLC. Anal. Bioanal. Chem. 2021, 413, 1851–1859. [Google Scholar] [CrossRef]
- Moghaddam, T.N.; Elhamirad, A.H.; Asl, M.R.S.; Noghabi, M.S. Pulsed electric field-assisted extraction of phenolic antioxidants from tropical almond red leaves. Chem. Pap. 2020, 74, 3957–3961. [Google Scholar] [CrossRef]
- Golpayegani, M.R.; Akramipour, R.; Fattahi, N. Sensitive determination of deferasirox in blood of patients with thalassemia using dispersive liquid-liquid microextraction based on solidification of floating organic drop followed by HPLC–UV. J. Pharm. Biomed. Anal. 2021, 193, 113735. [Google Scholar] [CrossRef] [PubMed]
- Dadfarnia, S.; Salmanzadeh, A.M.; Shabani, A.M.H. A novel separation/preconcentration system based on solidification of floating organic drop microextraction for determination of lead by graphite furnace atomic absorption spectrometry. Anal. Chim. Acta 2008, 623, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Gao, Y.; Zhang, Q.; Li, X.; Li, H. Cloud point extraction coupled with ultrasound-assisted back-extraction for determination of trace legacy and emerging brominated flame retardants in water using isotopic dilution high-performance liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. Talanta 2021, 224, 121713. [Google Scholar] [CrossRef]
- Canales, R.; Guiñez, M.; Bazán, C.; Reta, M.; Cerutti, S. Determining heterocyclic aromatic amines in aqueous samples: A novel dispersive liquid-liquid micro-extraction method based on solidification of floating organic drop and ultrasound assisted back extraction followed by UPLC-MS/MS. Talanta 2017, 174, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.; Ezzeldin, E.; Khalil, N.Y.; Alam, P.; Al-Rashood, K.A. UPLC-MS/MS determination of suvorexant in urine by a simplified dispersive liquid-liquid micro-extraction followed by ultrasound assisted back extraction from solidified floating organic droplets. J. Pharm. Biomed. Anal. 2019, 164, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Trujillo-Rodriguez, M.J.; Nan, H.; Varona, M.; Emaus, M.N.; Souza, I.D.; Anderson, J.L. Advances of Ionic Liquids in Analytical Chemistry. Anal. Chem. 2019, 91, 505–531. [Google Scholar] [CrossRef]
- Soares da Silva Burato, J.; Vargas Medina, D.A.; de Toffoli, A.L.; Vasconcelos Soares Maciel, E.; Mauro Lancas, F. Recent advances and trends in miniaturized sample preparation techniques. J. Sep. Sci. 2020, 43, 202–225. [Google Scholar] [CrossRef]
- Lu, D.; Liu, C.; Qin, M.; Deng, J.; Shi, G.; Zhou, T. Functionalized ionic liquids-supported metal organic frameworks for dispersive solid phase extraction of sulfonamide antibiotics in water samples. Anal. Chim. Acta 2020, 1133, 88–98. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; De la Guardia, M.; Andruch, V.; Vilková, M. Deep eutectic solvents vs ionic liquids: Similarities and differences. Microchem. J. 2020, 159, 105539. [Google Scholar] [CrossRef]
- Rocha, C.M.R.R.; Genisheva, Z.; Ferreira-Santos, P.; Rodrigues, R.; Vicente, A.A.; Teixeira, J.A.; Pereira, R.N. Electric field-based technologies for valorization of bioresources. Bioresour. Technol. 2018, 254, 325–339. [Google Scholar] [CrossRef] [Green Version]
- Wuethrich, A.; Haddad, P.R.; Quirino, J.P. The electric field—An emerging driver in sample preparation. TrAC Trends Anal. Chem. 2016, 80, 604–611. [Google Scholar] [CrossRef]
- Xu, R.; Lee, H.K. Application of electro-enhanced solid phase microextraction combined with gas chromatography–mass spectrometry for the determination of tricyclic antidepressants in environmental water samples. J. Chromatogr. A 2014, 1350, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Mousa, A.; Basheer, C.; Al-Arfaj, A.R. Application of electro-enhanced solid-phase microextraction for determination of phthalate esters and bisphenol A in blood and seawater samples. Talanta 2013, 115, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, C.C.; Orlando, R.M.; Rohwedder, J.J.; Reyes, F.G.; Rath, S. Electric field-assisted solid phase extraction and cleanup of ionic compounds in complex food matrices: Fluoroquinolones in eggs. Talanta 2016, 152, 498–503. [Google Scholar] [CrossRef]
- Huang, C.; Seip, K.F.; Gjelstad, A.; Pedersen-Bjergaard, S. Electromembrane extraction for pharmaceutical and biomedical analysis-Quo vadis. J. Pharm. Biomed. Anal. 2015, 113, 97–107. [Google Scholar] [CrossRef]
- Gomes-Dias, J.S.; Romaní, A.; Teixeira, J.A.; Rocha, C.M.R.R. Valorization of Seaweed Carbohydrates: Autohydrolysis as a Selective and Sustainable Pretreatment. ACS Sustain. Chem. Eng. 2020, 8, 17143–17153. [Google Scholar] [CrossRef]
- Nowak, P.M.; Wietecha-Posłuszny, R.; Pawliszyn, J. White Analytical Chemistry: An approach to reconcile the principles of Green Analytical Chemistry and functionality. TrAC Trends Anal. Chem. 2021, 138, 116223. [Google Scholar] [CrossRef]
- Chemat, F.; Fabiano-Tixier, A.S.; Vian, M.A.; Allaf, T.; Vorobiev, E. Solvent-free extraction of food and natural products. TrAC, Trends Anal. Chem. 2015, 71, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Khiltash, S.; Heydari, R.; Ramezani, M. Graphene oxide/polydopamine-polyacrylamide nanocomposite as a sorbent for dispersive micro-solid phase extraction of diazinon from environmental and food samples and its determination by HPLC-UV detection. Int. J. Environ. Anal. Chem. 2021. [Google Scholar] [CrossRef]
- Barbosa-Pereira, L.; Guglielmetti, A.; Zeppa, G. Pulsed Electric Field Assisted Extraction of Bioactive Compounds from Cocoa Bean Shell and Coffee Silverskin. Food Bioprocess Technol. 2018, 11, 818–835. [Google Scholar] [CrossRef]
- Gazioglu, I.; Zengin, O.S.; Tartaglia, A.; Locatelli, M.; Furton, K.G.; Kabir, A. Determination of polycyclic aromatic hydrocarbons in nutritional supplements by fabric phase sorptive extraction (FPSE) with high-performance liquid chromatography (HPLC) with fluorescence detection. Anal. Lett. 2021, 54, 1683–1696. [Google Scholar] [CrossRef]
- Hrynko, I.; Łozowicka, B.; Kaczyński, P. Development of precise micro analytical tool to identify potential insecticide hazards to bees in guttation fluid using LC-ESI-MS/MS. Chemosphere 2021, 263, 128143. [Google Scholar] [CrossRef] [PubMed]
- Izcara, S.; Casado, N.; Morante-Zarcero, S.; Sierra, I. A miniaturized QuEChERS method combined with ultrahigh liquid chromatography coupled to tandem mass spectrometry for the analysis of pyrrolizidine alkaloids in oregano samples. Foods 2020, 9, 1319. [Google Scholar] [CrossRef]
- Chen, D.; Miao, H.; Zhao, Y.; Wu, Y. A simple liquid chromatography-high resolution mass spectrometry method for the determination of glyphosate and aminomethylphosphonic acid in human urine using cold-induced phase separation and hydrophilic pipette tip solid-phase extraction. J. Chromatogr. A 2019, 1587, 73–78. [Google Scholar] [CrossRef]
- Atirah Mohd Nazir, N.; Raoov, M.; Mohamad, S. Spent tea leaves as an adsorbent for micro-solid-phase extraction of polycyclic aromatic hydrocarbons (PAHs) from water and food samples prior to GC-FID analysis. Microchem. J. 2020, 159, 105581. [Google Scholar] [CrossRef]
- Moufid, M.; Hofmann, M.; El Bari, N.; Tiebe, C.; Bartholmai, M.; Bouchikhi, B. Wastewater monitoring by means of e-nose, VE-tongue, TD-GC-MS, and SPME-GC-MS. Talanta 2021, 221, 121450. [Google Scholar] [CrossRef]
- Prata, M.; Ribeiro, A.; Figueirinha, D.; Rosado, T.; Oppolzer, D.; Restolho, J.; Araújo, A.R.T.S.; Costa, S.; Barroso, M.; Gallardo, E. Determination of opiates in whole blood using microextraction by packed sorbent and gas chromatography-tandem mass spectrometry. J. Chromatogr. A 2019, 1602, 1–10. [Google Scholar] [CrossRef]
- Altunay, N.; Elik, A.; Gürkan, R. Monitoring of some trace metals in honeys by flame atomic absorption spectrometry after ultrasound assisted-dispersive liquid liquid microextraction using natural deep eutectic solvent. Microchem. J. 2019, 147, 49–59. [Google Scholar] [CrossRef]
- Shirkhanloo, H.; Khaleghi Abbasabadi, M.; Hosseini, F.; Faghihi Zarandi, A. Nanographene oxide modified phenyl methanethiol nanomagnetic composite for rapid separation of aluminum in wastewaters, foods, and vegetable samples by microwave dispersive magnetic micro solid-phase extraction. Food Chem. 2021, 347, 129042. [Google Scholar] [CrossRef]
- Nyaba, L.; Nomngongo, P.N. Determination of trace metals in vegetables and water samples using dispersive ultrasound-assisted cloud point-dispersive µ-solid phase extraction coupled with inductively coupled plasma optical emission spectrometry. Food Chem. 2020, 322, 126749. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, S. Solid-phase microextraction in biomedical analysis. J. Chromatogr. A 2000, 902, 167–194. [Google Scholar] [CrossRef]
- Souza-Silva, E.A.; Jiang, R.F.; Rodriguez-Lafuente, A.; Gionfriddo, E.; Pawliszyn, J. A critical review of the state of the art of solid-phase microextraction of complex matrices I. Environmental analysis. TrAC Trends Anal. Chem. 2015, 71, 224–235. [Google Scholar] [CrossRef]
- Roszkowska, A.; Miękus, N.; Bączek, T. Application of solid-phase microextraction in current biomedical research. J. Sep. Sci. 2019, 42, 285–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, C.L.; Perestrelo, R.; Capelinha, F.; Tomás, H.; Câmara, J.S. An integrative approach based on GC–qMS and NMR metabolomics data as a comprehensive strategy to search potential breast cancer biomarkers. Metabolomics 2021, 17, 72. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.-G.; Chen, W.-S.; Cheng, H.-L.; Zeng, X.-Q.; Zhu, Y. Three-dimensional ionic liquid-ferrite functionalized graphene oxide nanocomposite for pipette-tip solid phase extraction of 16 polycyclic aromatic hydrocarbons in human blood sample. J. Chromatogr. A 2018, 1552, 1–9. [Google Scholar] [CrossRef]
- Lari, A.; Esmaeili, N.; Ghafari, H. Ionic liquid functionlized on multiwall carbon nanotubes for nickel and lead determination in human serum and urine samples by micro solid-phase extraction. Anal. Methods Environ. Chem. J. 2021, 4, 72–85. [Google Scholar] [CrossRef]
- Lioupi, A.; Kabir, A.; Furton, K.G.; Samanidou, V. Fabric phase sorptive extraction for the isolation of five common antidepressants from human urine prior to HPLC-DAD analysis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1118–1119, 171–179. [Google Scholar] [CrossRef]
- Musteata, F.M. Recent progress in in-vivo sampling and analysis. TrAC Trends Anal. Chem. 2013, 45, 154–168. [Google Scholar] [CrossRef]
- Cudjoe, E.; Bojko, B.; de Lannoy, I.; Saldivia, V.; Pawliszyn, J. Solid-phase microextraction: A complementary in vivo sampling method to microdialysis. Angew. Chem. Int. Ed. Engl. 2013, 52, 12124–12126. [Google Scholar] [CrossRef]
- Samanidou, V.; Filippou, O.; Marinou, E.; Kabir, A.; Furton, K.G. Sol-gel-graphene-based fabric-phase sorptive extraction for cow and human breast milk sample cleanup for screening bisphenol A and residual dental restorative material before analysis by HPLC with diode array detection. J. Sep. Sci. 2017, 40, 2612–2619. [Google Scholar] [CrossRef] [PubMed]
- Kabir, A.; Furton, K.G.; Tinari, N.; Grossi, L.; Innosa, D.; Macerola, D.; Tartaglia, A.; Di Donato, V.; D’Ovidio, C.; Locatelli, M. Fabric phase sorptive extraction-high performance liquid chromatography-photo diode array detection method for simultaneous monitoring of three inflammatory bowel disease treatment drugs in whole blood, plasma and urine. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1084, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, M.; Tinari, N.; Grassadonia, A.; Tartaglia, A.; Macerola, D.; Piccolantonio, S.; Sperandio, E.; D’Ovidio, C.; Carradori, S.; Ulusoy, H.I.; et al. FPSE-HPLC-DAD method for the quantification of anticancer drugs in human whole blood, plasma, and urine. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1095, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Taraboletti, A.; Goudarzi, M.; Kabir, A.; Moon, B.H.; Laiakis, E.C.; Lacombe, J.; Ake, P.; Shoishiro, S.; Brenner, D.; Fornace, A.J., Jr.; et al. Fabric Phase Sorptive Extraction-A Metabolomic Preprocessing Approach for Ionizing Radiation Exposure Assessment. J. Proteome Res. 2019, 18, 3020–3031. [Google Scholar] [CrossRef]
- Manousi, N.; Plastiras, O.E.; Deliyanni, E.A.; Zachariadis, G.A. Green Bioanalytical Applications of Graphene Oxide for the Extraction of Small Organic Molecules. Molecules 2021, 26, 2790. [Google Scholar] [CrossRef]
- Asgharinezhad, A.A.; Ebrahimzadeh, H. Poly(2-aminobenzothiazole)-coated graphene oxide/magnetite nanoparticles composite as an efficient sorbent for determination of non-steroidal anti-inflammatory drugs in urine sample. J. Chromatogr. A 2016, 1435, 18–29. [Google Scholar] [CrossRef]
- Lamei, N.; Ezoddin, M.; Ardestani, M.S.; Abdi, K. Dispersion of magnetic graphene oxide nanoparticles coated with a deep eutectic solvent using ultrasound assistance for preconcentration of methadone in biological and water samples followed by GC–FID and GC–MS. Anal. Bioanal. Chem. 2017, 409, 6113–6121. [Google Scholar] [CrossRef]
- Taghvimi, A.; Hamishehkar, H.; Ebrahimi, M. Magnetic nano graphene oxide as solid phase extraction adsorbent coupled with liquid chromatography to determine pseudoephedrine in urine samples. J. Chromatogr. B-Anal. Technol. Biomed. Life Sci. 2016, 1009, 66–72. [Google Scholar] [CrossRef]
- Barati, A.; Kazemi, E.; Dadfarnia, S.; Shabani, A.M.H. Synthesis/characterization of molecular imprinted polymer based on magnetic chitosan/graphene oxide for selective separation/preconcentration of fluoxetine from environmental and biological samples. J. Ind. Eng. Chem. 2017, 46, 212–221. [Google Scholar] [CrossRef]
- Peng, J.; Tian, H.R.; Du, Q.Z.; Hui, X.H.; He, H. A regenerable sorbent composed of a zeolite imidazolate framework (ZIF-8), Fe3O4 and graphene oxide for enrichment of atorvastatin and simvastatin prior to their determination by HPLC. Mikrochim. Acta 2018, 185, 141. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, D.; Meng, X.; Shi, Y.; Wang, R.; Xiao, D.; He, H. Solid phase extraction based on porous magnetic graphene oxide/beta-cyclodextrine composite coupled with high performance liquid chromatography for determination of antiepileptic drugs in plasma samples. J. Chromatogr. A 2017, 1524, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Yuvali, D.; Narin, I.; Soylak, M.; Yilmaz, E. Green synthesis of magnetic carbon nanodot/graphene oxide hybrid material (Fe3O4@C-nanodot@GO) for magnetic solid phase extraction of ibuprofen in human blood samples prior to HPLC-DAD determination. J. Pharm. Biomed. Anal. 2020, 179, 113001. [Google Scholar] [CrossRef] [PubMed]
- Mabrouk, M.M.; Soliman, S.M.; El-Agizy, H.M.; Mansour, F.R. Ultrasound-assisted dispersive liquid–liquid microextraction for determination of three gliflozins in human plasma by HPLC/DAD. J. Chromatogr. B 2020, 1136, 121932. [Google Scholar] [CrossRef] [PubMed]
- Ghoraba, Z.; Aibaghi, B.; Soleymanpour, A. Ultrasound-assisted dispersive liquid-liquid microextraction followed by ion mobility spectrometry for the simultaneous determination of bendiocarb and azinphos-ethyl in water, soil, food and beverage samples. Ecotoxicol. Environ. Saf. 2018, 165, 459–466. [Google Scholar] [CrossRef]
- Kaykhaii, M.; Yavari, E.; Sargazi, G.; Ebrahimi, A.K. Highly Sensitive Determination of Bisphenol A in Bottled Water Samples by HPLC after Its Extraction by a Novel Th-MOF Pipette-Tip Micro-SPE. J. Chromatogr. Sci. 2020, 58, 373–382. [Google Scholar] [CrossRef]
- Alipanahpour Dil, E.; Asfaram, A.; Goudarzi, A.; Zabihi, E.; Javadian, H. Biocompatible chitosan-zinc oxide nanocomposite based dispersive micro-solid phase extraction coupled with HPLC-UV for the determination of rosmarinic acid in the extracts of medical plants and water sample. Int. J. Biol. Macromol. 2020, 154, 528–537. [Google Scholar] [CrossRef]
- Sereshti, H.; Toloutehrani, A.; Nodeh, H.R. Determination of cholecalciferol (vitamin D3) in bovine milk by dispersive micro-solid phase extraction based on the magnetic three-dimensional graphene-sporopollenin sorbent. J. Chromatogr. B 2020, 1136, 121907. [Google Scholar] [CrossRef]
- Mousavi, K.Z.; Yamini, Y.; Karimi, B.; Seidi, S.; Khorasani, M.; Ghaemmaghami, M.; Vali, H. Imidazolium-based mesoporous organosilicas with bridging organic groups for microextraction by packed sorbent of phenoxy acid herbicides, polycyclic aromatic hydrocarbons and chlorophenols. Microchim. Acta 2019, 186, 239. [Google Scholar] [CrossRef]
- Teixeira, R.A.; Dinali, L.A.F.; Silva, C.F.; de Oliveira, H.L.; da Silva, A.T.M.; Nascimento, C.S.; Borges, K.B. Microextraction by packed molecularly imprinted polymer followed by ultra-high performance liquid chromatography for determination of fipronil and fluazuron residues in drinking water and veterinary clinic wastewater. Microchem. J. 2021, 168, 106405. [Google Scholar] [CrossRef]
- Dinali, L.A.F.; de Oliveira, H.L.; Teixeira, L.S.; de Souza Borges, W.; Borges, K.B. Mesoporous molecularly imprinted polymer core@shell hybrid silica nanoparticles as adsorbent in microextraction by packed sorbent for multiresidue determination of pesticides in apple juice. Food Chem. 2021, 345, 128745. [Google Scholar] [CrossRef]
- Aresta, A.; Cotugno, P.; Zambonin, C. Determination of ciprofloxacin, enrofloxacin, and marbofloxacin in bovine urine, serum, and milk by microextraction by a packed sorbent coupled to ultra-high performance liquid chromatography. Anal. Lett. 2019, 52, 790–802. [Google Scholar] [CrossRef]
- Florez, D.H.Â.; de Oliveira, H.L.; Borges, K.B. Polythiophene as highly efficient sorbent for microextraction in packed sorbent for determination of steroids from bovine milk samples. Microchem. J. 2020, 153, 104521. [Google Scholar] [CrossRef]
- Jiang, Y.; Qin, Z.; Song, X.; Piao, H.; Li, J.; Wang, X.; Song, D.; Ma, P.; Sun, Y. Facile preparation of metal organic framework-based laboratory semi-automatic micro-extraction syringe packed column for analysis of parabens in vegetable oil samples. Microchem. J. 2020, 158, 105200. [Google Scholar] [CrossRef]
- Paris, A.; Gaillard, J.L.; Ledauphin, J. Rapid extraction of polycyclic aromatic hydrocarbons in apple: Ultrasound-assisted solvent extraction followed by microextraction by packed sorbent. Food Anal. Methods 2019, 12, 2194–2204. [Google Scholar] [CrossRef]
- Teixeira, L.S.; Silva, C.F.; de Oliveira, H.L.; Dinali, L.A.F.; Nascimento, C.S.; Borges, K.B. Microextraction by packed molecularly imprinted polymer to selectively determine caffeine in soft and energy drinks. Microchem. J. 2020, 158, 105252. [Google Scholar] [CrossRef]
- Casado, N.; Perestrelo, R.; Silva, C.L.; Sierra, I.; Câmara, J.S. Comparison of high-throughput microextraction techniques, MEPS and μ-SPEed, for the determination of polyphenols in baby food by ultrahigh pressure liquid chromatography. Food Chem. 2019, 292, 14–23. [Google Scholar] [CrossRef]
- Kalogiouri, N.P.; Manousi, N.; Rosenberg, E.; Zachariadis, G.A.; Paraskevopoulou, A.; Samanidou, V. Exploring the volatile metabolome of conventional and organic walnut oils by solid-phase microextraction and analysis by GC-MS combined with chemometrics. Food Chem. 2021, 363, 130331. [Google Scholar] [CrossRef]
- Zhao, C.C.; Eun, J.B. Characterization of volatile compounds and physicochemical properties of hongeo using headspace solid-phase microextraction and gas chromatography-mass spectrometry during fermentation. Food Biosci. 2021, 44, 101379. [Google Scholar] [CrossRef]
- Majithia, D.; Metrani, R.; Dhowlaghar, N.; Crosby, K.M.; Patil, B.S. Assessment and classification of volatile profiles in melon breeding lines using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Plants 2021, 10, 2166. [Google Scholar] [CrossRef]
- Thomas, C.F.; Zeh, E.; Dörfel, S.; Zhang, Y.; Hinrichs, J. Studying dynamic aroma release by headspace-solid phase microextraction-gas chromatography-ion mobility spectrometry (HS-SPME-GC-IMS): Method optimization, validation, and application. Anal. Bioanal. Chem. 2021, 413, 2577–2586. [Google Scholar] [CrossRef]
- Zianni, R.; Mentana, A.; Campaniello, M.; Chiappinelli, A.; Tomaiuolo, M.; Chiaravalle, A.E.; Marchesani, G. An investigation using a validated method based on HS-SPME-GC-MS detection for the determination of 2-dodecylcyclobutanone and 2-tetradecylcyclobutanone in X-ray irradiated dairy products. LWT 2022, 153, 112466. [Google Scholar] [CrossRef]
- He, X.; Majid, B.; Zhang, H.; Liu, W.; Limmer, M.A.; Burken, J.G.; Shi, H. Green analysis: Rapid-throughput analysis of volatile contaminants in plants by freeze-thaw-equilibration sample preparation and SPME-GC-MS analysis. J. Agric. Food. Chem. 2021, 69, 5428–5434. [Google Scholar] [CrossRef] [PubMed]
- Passos, C.P.; Petronilho, S.; Serodio, A.F.; Neto, A.C.M.; Torres, D.; Rudnitskaya, A.; Nunes, C.; Kukurova, K.; Ciesarova, Z.; Rocha, S.M.; et al. HS-SPME Gas Chromatography Approach for Underivatized Acrylamide Determination in Biscuits. Foods 2021, 10, 2183. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.; Yang, P.; Pang, R.; Lu, X.; Xiao, J.; Li, S.; Zhang, H.; Zhao, J. Ionogel-based ionic liquid coating for solid-phase microextraction of organophosphorus pesticides from wine and juice samples. Food Anal. Methods 2018, 11, 270–281. [Google Scholar] [CrossRef]
- Perestrelo, R.; Silva, C.L.; Algarra, M.; Câmara, J.S. Evaluation of the occurrence of phthalates in plastic materials used in food packaging. Appl. Sci. 2021, 11, 2130. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Xu, L. A rapid method for analyzing synthetic phenolic antioxidants in food grade lubricant samples based on headspace solid-phase microextracion coupled with gas chromatography-mass spectrometer. Food Anal. Methods 2021, 14, 2524–2533. [Google Scholar] [CrossRef]
- Mejía-Carmona, K.; Lanças, F.M. Modified graphene-silica as a sorbent for in-tube solid-phase microextraction coupled to liquid chromatography-tandem mass spectrometry. Determination of xanthines in coffee beverages. J. Chromatogr. A 2020, 1621, 461089. [Google Scholar] [CrossRef]
- Peng, L.Q.; Zhang, Y.; Yan, T.C.; Gu, Y.X.; Zi, X.; Cao, J. Carbonized biosorbent assisted matrix solid-phase dispersion microextraction for active compounds from functional food. Food Chem. 2021, 365, 130545. [Google Scholar] [CrossRef]
- Gomez-Mejia, E.; Mikkelsen, L.H.; Rosales-Conrado, N.; Leon-Gonzalez, M.E.; Madrid, Y. A combined approach based on matrix solid-phase dispersion extraction assisted by titanium dioxide nanoparticles and liquid chromatography to determine polyphenols from grape residues. J. Chromatogr. A 2021, 1644, 462128. [Google Scholar] [CrossRef]
- Segatto, M.L.; Zanotti, K.; Zuin, V.G. Microwave-assisted extraction and matrix solid-phase dispersion as green analytical chemistry sample preparation techniques for the valorisation of mango processing waste. Curr. Res. Chem. Biol. 2021, 1, 100007. [Google Scholar] [CrossRef]
- Qian, Z.; Wu, Z.; Li, C.; Tan, G.; Hu, H.; Li, W. A green liquid chromatography method for rapid determination of ergosterol in edible fungi based on matrix solid-phase dispersion extraction and a core-shell column. Anal. Methods 2020, 12, 3327–3343. [Google Scholar] [CrossRef] [PubMed]
- Martín-Girela, I.; Albero, B.; Tiwari, B.K.; Miguel, E.; Aznar, R. Screening of contaminants of emerging concern in microalgae food supplements. Separations 2020, 7, 28. [Google Scholar] [CrossRef]
- Souza, M.R.R.; Jesus, R.A.; Costa, J.A.S.; Barreto, A.S.; Navickiene, S.; Mesquita, M.E. Applicability of metal–organic framework materials in the evaluation of pesticide residues in egg samples of chicken (Gallus gallus domesticus). J. Consum. Prot. Food Saf. 2021, 16, 83–91. [Google Scholar] [CrossRef]
- Liang, T.; Gao, L.; Qin, D.; Chen, L. Determination of sulfonylurea herbicides in grain samples by matrix solid-phase dispersion with mesoporous structured molecularly imprinted polymer. Food Anal. Methods 2019, 12, 1938–1948. [Google Scholar] [CrossRef]
- Narimani-Sabegh, S.; Noroozian, E. Magnetic solid-phase extraction and determination of ultra-trace amounts of antimony in aqueous solutions using maghemite nanoparticles. Food Chem. 2019, 287, 382–389. [Google Scholar] [CrossRef]
- Boon, Y.H.; Mohamad Zain, N.N.; Mohamad, S.; Osman, H.; Raoov, M. Magnetic poly(beta-cyclodextrin-ionic liquid) nanocomposites for micro-solid phase extraction of selected polycyclic aromatic hydrocarbons in rice samples prior to GC-FID analysis. Food Chem. 2019, 278, 322–332. [Google Scholar] [CrossRef]
- Chen, J.Y.; Cao, S.R.; Xi, C.X.; Chen, Y.; Li, X.L.; Zhang, L.; Wang, G.M.; Chen, Y.L.; Chen, Z.Q. A novel magnetic β-cyclodextrin modified graphene oxide adsorbent with high recognition capability for 5 plant growth regulators. Food Chem. 2018, 239, 911–919. [Google Scholar] [CrossRef]
- Rahimi, A.; Zanjanchi, M.A.; Bakhtiari, S.; Dehsaraei, M. Selective determination of caffeine in foods with 3D-graphene based ultrasound-assisted magnetic solid phase extraction. Food Chem. 2018, 262, 206–214. [Google Scholar] [CrossRef]
- Mesa, R.; Kabir, A.; Samanidou, V.; Furton, K.G. Simultaneous determination of selected estrogenic endocrine disrupting chemicals and bisphenol A residues in whole milk using fabric phase sorptive extraction coupled to HPLC-UV detection and LC-MS/MS. J. Sep. Sci. 2019, 42, 598–608. [Google Scholar] [CrossRef]
- Ubeda, S.; Aznar, M.; Nerín, C.; Kabir, A. Fabric phase sorptive extraction for specific migration analysis of oligomers from biopolymers. Talanta 2021, 233, 122603. [Google Scholar] [CrossRef]
- Guedes-Alonso, R.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J.; Kabir, A.; Furton, K.G. Fabric phase sorptive extraction of selected steroid hormone residues in commercial raw milk followed by ultra-high-performance liquid chromatography–tandem mass spectrometry. Foods 2021, 10, 343. [Google Scholar] [CrossRef] [PubMed]
- Agadellis, E.; Tartaglia, A.; Locatelli, M.; Kabir, A.; Furton, K.G.; Samanidou, V. Mixed-mode fabric phase sorptive extraction of multiple tetracycline residues from milk samples prior to high performance liquid chromatography-ultraviolet analysis. Microchem. J. 2020, 159, 105437. [Google Scholar] [CrossRef]
- Campone, L.; Celano, R.; Piccinelli, A.L.; Pagano, I.; Cicero, N.; Sanzo, R.D.; Carabetta, S.; Russo, M.; Rastrelli, L. Ultrasound assisted dispersive liquid-liquid microextraction for fast and accurate analysis of chloramphenicol in honey. Food Res. Int. 2019, 115, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.Z.; Sun, R.T.; Yu, C.M.; Tao, Y.; Yan, Y. Novel hydrophobic deep eutectic solvents for ultrasound-assisted dispersive liquid-liquid microextraction of trace non-steroidal anti-inflammatory drugs in water and milk samples. Microchem. J. 2021, 170, 106686. [Google Scholar] [CrossRef]
- Bernardi, G.; Kemmerich, M.; Adaime, M.B.; Prestes, O.D.; Zanella, R. Miniaturized QuEChERS method for determination of 97 pesticide residues in wine by ultra-high performance liquid chromatography coupled with tandem mass spectrometry. Anal. Methods 2020, 12, 2682–2692. [Google Scholar] [CrossRef] [PubMed]
- Kamal El-Deen, A.; Shimizu, K. Modified μ-QuEChERS coupled to diethyl carbonate-based liquid microextraction for PAHs determination in coffee, tea, and water prior to GC–MS analysis: An insight to reducing the impact of caffeine on the GC–MS measurement. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1171, 122555. [Google Scholar] [CrossRef]
- Casado, N.; Perestrelo, R.; Silva, C.L.; Sierra, I.; Câmara, J.S. An improved and miniaturized analytical strategy based on μ-QuEChERS for isolation of polyphenols. A powerful approach for quality control of baby foods. Microchem. J. 2018, 139, 110–118. [Google Scholar] [CrossRef]
- Abreu, D.C.P.; Botrel, B.M.C.; Bazana, M.J.F.; e Rosa, P.V.; Sales, P.F.; Marques, M.d.S.; Saczk, A.A. Development and comparative analysis of single-drop and solid-phase microextraction techniques in the residual determination of 2-phenoxyethanol in fish. Food Chem. 2019, 270, 487–493. [Google Scholar] [CrossRef]
- Saraji, M.; Javadian, S. Single-drop microextraction combined with gas chromatography-electron capture detection for the determination of acrylamide in food samples. Food Chem. 2019, 274, 55–60. [Google Scholar] [CrossRef]
- Jain, A.; Soni, S.; Verma, K.K. Combined liquid phase microextraction and fiber-optics-based cuvetteless micro-spectrophotometry for sensitive determination of ammonia in water and food samples by the indophenol reaction. Food Chem. 2021, 340, 128156. [Google Scholar] [CrossRef]
- Ma, Z.; Zhao, T.; Cui, S.; Zhao, X.; Fan, Y.; Song, J. Determination of ethyl carbamate in wine by matrix modification-assisted headspace single-drop microextraction and gas chromatography—mass spectrometry technique. Food Chem. 2021, 373, 131573. [Google Scholar] [CrossRef] [PubMed]
- Qi, T.; Xu, M.; Yao, Y.; Chen, W.; Xu, M.; Tang, S.; Shen, W.; Kong, D.; Cai, X.; Shi, H.; et al. Gold nanoprism/Tollens’ reagent complex as plasmonic sensor in headspace single-drop microextraction for colorimetric detection of formaldehyde in food samples using smartphone readout. Talanta 2020, 220, 121388. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Deb, M.K. Modified silver nanoparticles-enhanced single drop microextraction of tartrazine in food samples coupled with diffuse reflectance Fourier transform infrared spectroscopic analysis. Anal. Methods 2019, 11, 3552–3562. [Google Scholar] [CrossRef]
- Neri, T.S.; Rocha, D.P.; Munoz, R.A.A.; Coelho, N.M.M.; Batista, A.D. Highly sensitive procedure for determination of Cu(II) by GF AAS using single-drop microextraction. Microchem. J. 2019, 147, 894–898. [Google Scholar] [CrossRef]
- Tavakoli, M.; Jamali, M.R.; Nezhadali, A. Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction (DLLME) Based on Solidification of Floating Organic Drop Using a Deep Eutectic Solvent for Simultaneous Preconcentration and Determination of Nickel and Cobalt in Food and Water Samples. Anal. Lett. 2021, 54, 2863–2873. [Google Scholar] [CrossRef]
- Shirani, M.; Akbari-adergani, B.; Shahdadi, F.; Faraji, M.; Akbari, A. A Hydrophobic Deep Eutectic Solvent-Based Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction for Determination of β-Lactam Antibiotics Residues in Food Samples. Food Anal. Methods 2021, 15, 391–400. [Google Scholar] [CrossRef]
- Mardani, A.; Torbati, M.; Farajzadeh, M.A.; Mohebbi, A.; Alizadeh, A.A.; Afshar Mogaddam, M.R. Development of temperature-assisted solidification of floating organic droplet-based dispersive liquid–liquid microextraction performed during centrifugation for extraction of organochlorine pesticide residues in cocoa powder prior to GC-ECD. Chem. Pap. 2021, 75, 1691–1700. [Google Scholar] [CrossRef]
- Pataro, G.; Carullo, D.; Ferrari, G. Effect of PEF pre-treatment and extraction temperature on the recovery of carotenoids from tomato wastes. Chem. Eng. Trans. 2019, 75, 139–144. [Google Scholar] [CrossRef]
- Dong, Z.Y.; Wang, H.H.; Li, M.Y.; Liu, W.; Zhang, T.H. Optimization of high-intensity pulsed electric field-assisted extraction of procyanidins from Vitis amurensis seeds using response surface methodology. E3S Web Conf. 2020, 189, 02029. [Google Scholar] [CrossRef]
- Mahn, A.; Comett, R.; Segura-Ponce, L.A.; Díaz-Álvarez, R.E. Effect of pulsed electric field-assisted extraction on recovery of sulforaphane from broccoli florets. J. Food Process Eng. 2021, e13837. [Google Scholar] [CrossRef]
- Santos, P.H.; Kammers, J.C.; Silva, A.P.; Oliveira, J.V.; Hense, H. Antioxidant and antibacterial compounds from feijoa leaf extracts obtained by pressurized liquid extraction and supercritical fluid extraction. Food Chem. 2021, 344, 128620. [Google Scholar] [CrossRef] [PubMed]
- Santos, O.V.; Lorenzo, N.D.; Souza, A.L.G.; Costa, C.E.F.; Conceição, L.R.V.; Lannes, S.C.d.S.; Teixeira-Costa, B.E. CO2 supercritical fluid extraction of pulp and nut oils from Terminalia catappa fruits: Thermogravimetric behavior, spectroscopic and fatty acid profiles. Food Res. Int. 2021, 139, 109814. [Google Scholar] [CrossRef] [PubMed]
- Fornereto Soldan, A.C.; Arvelos, S.; Watanabe, É.O.; Hori, C.E. Supercritical fluid extraction of oleoresin from Capsicum annuum industrial waste. J. Clean. Prod. 2021, 297, 126593. [Google Scholar] [CrossRef]
- Arturo-Perdomo, D.; Mora, J.P.J.; Ibáñez, E.; Cifuentes, A.; Hurtado-Benavides, A.; Montero, L. Extraction and Characterization of the Polar Lipid Fraction of Blackberry and Passion Fruit Seeds Oils Using Supercritical Fluid Extraction. Food Anal. Methods 2021, 14, 2026–2037. [Google Scholar] [CrossRef]
- Jha, A.K.; Sit, N. Comparison of response surface methodology (RSM) and artificial neural network (ANN) modelling for supercritical fluid extraction of phytochemicals from Terminalia chebula pulp and optimization using RSM coupled with desirability function (DF) and genetic. Ind. Crops Prod. 2021, 170, 113769. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, Y.; Wang, L.; Yin, W.; Liang, J. Antioxidant activity and subcritical water extraction of anthocyanin from raspberry process optimization by response surface methodology. Food Bioscience 2021, 44, 101394. [Google Scholar] [CrossRef]
- Pangestuti, R.; Haq, M.; Rahmadi, P.; Chun, B.-s. Nutritional Value and Biofunctionalities of Two Edible Green Seaweeds (Ulva lactuca and Caulerpa racemosa) from Indonesia by Subcritical Water Hydrolysis. Mar. Drugs 2021, 19, 578. [Google Scholar] [CrossRef]
- Hwang, H.J.; Kim, H.J.; Ko, M.J.; Chung, M.S. Recovery of hesperidin and narirutin from waste Citrus unshiu peel using subcritical water extraction aided by pulsed electric field treatment. Food Sci. Biotechnol. 2021, 30, 217–226. [Google Scholar] [CrossRef]
- Pinto, D.; Vieira, E.F.; Peixoto, A.F.; Freire, C.; Freitas, V.; Costa, P.; Delerue-Matos, C.; Rodrigues, F. Optimizing the extraction of phenolic antioxidants from chestnut shells by subcritical water extraction using response surface methodology. Food Chem. 2021, 334, 127521. [Google Scholar] [CrossRef]
- Jamaludin, R.; Kim, D.S.; Salleh, L.M.; Lim, S.B. Kinetic study of subcritical water extraction of scopoletin, alizarin, and rutin from morinda citrifolia. Foods 2021, 10, 2260. [Google Scholar] [CrossRef]
- Rodrigues, L.A.; Matias, A.A.; Paiva, A. Recovery of antioxidant protein hydrolysates from shellfish waste streams using subcritical water extraction. Food Bioprod. Process. 2021, 130, 154–163. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, L.; Chen, J.; Du, X.; Lu, Z.; Wang, X.; Yi, Y.; Shan, Y.; Liu, B.; Zhou, Y.; et al. Systematic evaluation of a series of pectic polysaccharides extracted from apple pomace by regulation of subcritical water conditions. Food Chem. 2022, 368, 130833. [Google Scholar] [CrossRef] [PubMed]
- Darvishnejad, M.; Ebrahimzadeh, H. Graphitic carbon nitride-reinforced polymer ionic liquid nanocomposite: A novel mixed-mode sorbent for microextraction in packed syringe. Int. J. Environ. Anal. Chem. 2020, 1–14. [Google Scholar] [CrossRef]
- Saraji, M.; Jafari, M.T.; Amooshahi, M.M. Sol-gel/nanoclay composite as a sorbent for microextraction in packed syringe combined with corona discharge ionization ion mobility spectrometry for the determination of diazinon in water samples. J. Sep. Sci. 2018, 41, 493–500. [Google Scholar] [CrossRef]
- Moradi, E.; Mehrani, Z.; Ebrahimzadeh, H. Gelatin/sodium triphosphate hydrogel electrospun nanofiber mat as a novel nanosorbent for microextraction in packed syringe of La3+ and Tb3+ ions prior to their determination by ICP-OES. React. Funct. Polym. 2020, 153, 104627. [Google Scholar] [CrossRef]
- Taghani, A.; Goudarzi, N.; Bagherian, G.A.; Arab Chamjangali, M.; Amin, A.H. Application of nanoperlite as a new natural sorbent in the preconcentration of three organophosphorus pesticides by microextraction in packed syringe coupled with gas chromatography and mass spectrometry. J. Sep. Sci. 2018, 41, 2245–2252. [Google Scholar] [CrossRef]
- Matin, P.; Ayazi, Z.; Jamshidi-Ghaleh, K. Montmorillonite reinforced polystyrene nanocomposite supported on cellulose as a novel layered sorbent for microextraction by packed sorbent for determination of fluoxetine followed by spectrofluorimetry based on multivariate optimisation. Int. J. Environ. Anal. Chem. 2020, 1–16. [Google Scholar] [CrossRef]
- Arcoleo, A.; Bianchi, F.; Careri, M. A sensitive microextraction by packed sorbent-gas chromatography-mass spectrometry method for the assessment of polycyclic aromatic hydrocarbons contamination in Antarctic surface snow. Chemosphere 2021, 282, 131082. [Google Scholar] [CrossRef]
- Amiri, A.; Chahkandi, M.; Targhoo, A. Synthesis of nano-hydroxyapatite sorbent for microextraction in packed syringe of phthalate esters in water samples. Anal. Chim. Acta 2017, 950, 64–70. [Google Scholar] [CrossRef]
- Vera, J.; Fernandes, V.C.; Correia-Sá, L.; Mansilha, C.; Delerue-Matos, C.; Domingues, V.F. Occurrence of Selected Known or Suspected Endocrine-Disrupting Pesticides in Portuguese Surface Waters Using SPME-GC-IT/MS. Separations 2021, 8, 81. [Google Scholar] [CrossRef]
- Saliu, F.; Montano, S.; Hoeksema, B.W.; Lasagni, M.; Galli, P. A non-lethal SPME-LC/MS method for the analysis of plastic-associated contaminants in coral reef invertebrates. Anal. Methods 2020, 12, 1935–1942. [Google Scholar] [CrossRef]
- Terzaghi, E.; Falakdin, P.; Fattore, E.; Di Guardo, A. Estimating temporal and spatial levels of PAHs in air using rain samples and SPME analysis: Feasibility evaluation in an urban scenario. Sci. Total Environ. 2021, 762, 144184. [Google Scholar] [CrossRef] [PubMed]
- El-Sheikh, A.H.; Al-Quse, R.W.; El-Barghouthi, M.I.; Al-Masri, F.S. Derivatization of 2-chlorophenol with 4-amino-anti-pyrine: A novel method for improving the selectivity of molecularly imprinted solid phase extraction of 2-chlorophenol from water. Talanta 2010, 83, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Anirudhan, T.S.; Alexander, S. Multiwalled carbon nanotube based molecular imprinted polymer for trace determination of 2,4-dichlorophenoxyaceticacid in natural water samples using a potentiometric method. Appl. Surf. Sci. 2014, 303, 180–186. [Google Scholar] [CrossRef]
- Shaikh, H.; Memon, N.; Bhanger, M.I.; Nizamani, S.M.; Denizli, A. Core-shell molecularly imprinted polymer-based solid-phase microextraction fiber for ultra trace analysis of endosulfan I and II in real aqueous matrix through gas chromatography-micro electron capture detector. J. Chromatogr. A 2014, 1337, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Pan, M.; Fang, G.; Jing, W.; He, S.; Wang, S. An ionic liquid modified dummy molecularly imprinted polymer as a solid-phase extraction material for the simultaneous determination of nine organochlorine pesticides in environmental and food samples. Anal. Methods 2013, 5, 6128–6134. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, S.; She, Y.; Zhang, C.; Zheng, L.; Jin, M.; Shao, H.; Jin, F.; Du, X.; Wang, J. Subcritical water extraction combined with molecular imprinting technology for sample preparation in the detection of triazine herbicides. J. Chromatogr. A 2017, 1515, 17–22. [Google Scholar] [CrossRef]
- Stoeckelhuber, M.; Müller, C.; Vetter, F.; Mingo, V.; Lötters, S.; Wagner, N.; Bracher, F. Determination of Pesticides Adsorbed on Arthropods and Gastropods by a Micro-QuEChERS Approach and GC–MS/MS. Chromatographia 2017, 80, 825–829. [Google Scholar] [CrossRef]
- Kurth, D.; Krauss, M.; Schulze, T.; Brack, W. Measuring the internal concentration of volatile organic compounds in small organisms using micro-QuEChERS coupled to LVI-GC-MS/MS. Anal. Bioanal. Chem. 2017, 409, 6041–6052. [Google Scholar] [CrossRef]
- Mehravar, A.; Feizbakhsh, A.; Sarafi, A.H.M.; Konoz, E.; Faraji, H. Deep eutectic solvent-based headspace single-drop microextraction of polycyclic aromatic hydrocarbons in aqueous samples. J. Chromatogr. A 2020, 1632, 461618. [Google Scholar] [CrossRef]
- Kiszkiel-Taudul, I.; Starczewska, B. Single drop microextraction coupled with liquid chromatography-tandem mass spectrometry (SDME-LC-MS/MS) for determination of ranitidine in water samples. Microchem. J. 2019, 145, 936–941. [Google Scholar] [CrossRef]
- Nunes, L.S.; Korn, M.G.A.; Lemos, V.A. A novel direct-immersion single-drop microextraction combined with digital colorimetry applied to the determination of vanadium in water. Talanta 2021, 224, 121893. [Google Scholar] [CrossRef] [PubMed]
- Werner, J. Low Density Ionic Liquid-Based Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction for the Preconcentration of Trace Aromatic Amines in Waters. J. Anal. Chem. 2021, 76, 1182–1188. [Google Scholar] [CrossRef]
- Yang, S.; Liu, H.; Hu, K.; Deng, Q.; Wen, X. Investigation of thermospray flame furnace atomic absorption spectrometric determination of cadmium combined with ultrasound-assisted dispersive liquid-liquid microextraction. Int. J. Environ. Anal. Chem. 2022, 102, 443–455. [Google Scholar] [CrossRef]
- Ali, J.; Tuzen, M.; Citak, D.; Uluozlu, O.D.; Mendil, D.; Kazi, T.G.; Afridi, H.I. Separation and preconcentration of trivalent chromium in environmental waters by using deep eutectic solvent with ultrasound-assisted based dispersive liquid-liquid microextraction method. J. Mol. Liq. 2019, 291, 111299. [Google Scholar] [CrossRef]
- Shojaei, S.; Shojaei, S.; Nouri, A.; Baharinikoo, L. Application of chemometrics for modeling and optimization of ultrasound-assisted dispersive liquid–liquid microextraction for the simultaneous determination of dyes. npj Clean Water 2021, 4, 23. [Google Scholar] [CrossRef]
- Xizhi, S.; Sun, A.-l.; Wang, Q.-h.; Hengel, M.; Shibamoto, T. Rapid Multi-Residue Analysis of Herbicides with Endocrine-Disrupting Properties in Environmental Water Samples Using Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction and Gas Chromatography–Mass Spectrometry. Chromatographia 2018, 81, 1071–1083. [Google Scholar] [CrossRef]
- Wang, X.M.; Du, T.T.; Wang, J.; Kou, H.X.; Du, X.Z. Determination of polybrominated biphenyls in environmental water samples by ultrasound-assisted dispersive liquid-liquid microextraction followed by high-performance liquid chromatography. Microchem. J. 2019, 148, 85–91. [Google Scholar] [CrossRef]
- Xinya, L.; Liu, C.; Qian, H.; Qu, Y.; Zhang, S.; Lu, R.; Gao, H.; Zhou, W. Ultrasound-assisted dispersive liquid-liquid microextraction based on a hydrophobic deep eutectic solvent for the preconcentration of pyrethroid insecticides prior to determination by high-performance liquid chromatography. Microchem. J. 2019, 146, 614–621. [Google Scholar] [CrossRef]
- Rahimi Moghadam, M.; Zargar, B.; Rastegarzadeh, S. Determination of Tetracycline Using Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Droplet Followed by HPLC-UV System. J. AOAC Int. 2021, 104, 999–1004. [Google Scholar] [CrossRef]
- Fayaz, S.M.; Abdoli, M.A.; Baghdadi, M.; Karbasi, A. Ag removal from e-waste using supercritical fluid: Improving efficiency and selectivity. Int. J. Environ. Stud. 2021, 78, 459–473. [Google Scholar] [CrossRef]
- Falsafi, Z.; Raofie, F.; Kazemi, H.; Ariya, P.A. Simultaneous extraction and fractionation of petroleum biomarkers from tar balls and crude oils using a two-step sequential supercritical fluid extraction. Mar. Pollut. Bull. 2020, 159, 111484. [Google Scholar] [CrossRef] [PubMed]
- Meskar, M.; Sartaj, M.; Infante Sedano, J.A. Assessment and comparison of PHCs removal from three types of soils (sand, silt loam and clay) using supercritical fluid extraction. Environ. Technol. 2019, 40, 3040–3053. [Google Scholar] [CrossRef] [PubMed]
- Tita, G.J.; Navarrete, A.; Martin, A.; Cocero, M.J. Model assisted supercritical fluid extraction and fractionation of added-value products from tobacco scrap. J. Supercrit. Fluids 2021, 167, 105046. [Google Scholar] [CrossRef]
- Lie, J.; Tanda, S.; Liu, J.-C. Subcritical Water Extraction of Valuable Metals from Spent Lithium-Ion Batteries. Molecules 2020, 25, 2166. [Google Scholar] [CrossRef]
- Taki, G.; Islam, M.N.; Park, S.-J.; Park, J.-H. Optimization of operating parameters to remove and recover crude oil from contaminated soil using subcritical water extraction process. Environ. Eng. Res. 2018, 23, 175–180. [Google Scholar] [CrossRef]
- Kang, S.J.; Sun, Y.H.; Qiao, M.Y.; Li, S.L.; Deng, S.H.; Guo, W.; Li, J.S.; He, W.T. The enhancement on oil shale extraction of FeCl3 catalyst in subcritical water. Energy 2022, 238, 121763. [Google Scholar] [CrossRef]
- Zohar, M.; Matzrafi, M.; Abu-Nassar, J.; Khoury, O.; Gaur, R.Z.; Posmanik, R. Subcritical water extraction as a circular economy approach to recover energy and agrochemicals from sewage sludge. J. Environ. Manag. 2021, 285, 112111. [Google Scholar] [CrossRef]
Extraction Procedure | Advantages | Disadvantages |
---|---|---|
SPME | Alternative to SPE A limited number of steps Reduced sample amount Reuse of the polymeric phase Environmentally friendly Short extraction time | Potential contamination of the SPME needle |
µSPE | Alternative of LLE Simplicity of automation Suitable for large scale Low sorbent Low solvent volume | Requires stirring Possibility of low recoveries |
MEPS | Low solvent volume Low sample amount Fast and easy to use Economical Fully automated for online procedure | Requires a wide range of optimization steps |
MSPE | Environmentally friendly A limited number of steps Low amount of sorbent material Reuse of sorbent material Short extraction time | Requires vortex/shaker/magnetic stirrerSelection of suitable sorbent |
MSDP | Environmentally friendly A limited number of steps Quick Simple | Requires anhydrous sorbents activated at high temperatures |
FPSE | Efficient Fast extraction Low volume of solvents High preconcentration factor | Low sorbent capacity Long sample preparation time |
DLLME | Economical High recovery Low sample amount Low extraction time Low solvent volume | Low selectivity Requires centrifugation |
SFOME | Environmentally friendly High enrichment factor economical Low volume of solvents Simplicity of automation | Requires a wide range of optimization steps |
μQuEChERS | Economical Efficient clean-up by dSPE Low solvent consumption | Labor intensive Difficult to automate Emulsion formation |
SFE | Environmentally friendly No required solvents Low operating temperatures (40–80 °C) Fast and high yield | Very expensive Complex equipment operating at high pressures High power consumption |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Câmara, J.S.; Perestrelo, R.; Berenguer, C.V.; Andrade, C.F.P.; Gomes, T.M.; Olayanju, B.; Kabir, A.; M. R. Rocha, C.; Teixeira, J.A.; Pereira, J.A.M. Green Extraction Techniques as Advanced Sample Preparation Approaches in Biological, Food, and Environmental Matrices: A Review. Molecules 2022, 27, 2953. https://doi.org/10.3390/molecules27092953
Câmara JS, Perestrelo R, Berenguer CV, Andrade CFP, Gomes TM, Olayanju B, Kabir A, M. R. Rocha C, Teixeira JA, Pereira JAM. Green Extraction Techniques as Advanced Sample Preparation Approaches in Biological, Food, and Environmental Matrices: A Review. Molecules. 2022; 27(9):2953. https://doi.org/10.3390/molecules27092953
Chicago/Turabian StyleCâmara, José S., Rosa Perestrelo, Cristina V. Berenguer, Carolina F. P. Andrade, Telma M. Gomes, Basit Olayanju, Abuzar Kabir, Cristina M. R. Rocha, José António Teixeira, and Jorge A. M. Pereira. 2022. "Green Extraction Techniques as Advanced Sample Preparation Approaches in Biological, Food, and Environmental Matrices: A Review" Molecules 27, no. 9: 2953. https://doi.org/10.3390/molecules27092953
APA StyleCâmara, J. S., Perestrelo, R., Berenguer, C. V., Andrade, C. F. P., Gomes, T. M., Olayanju, B., Kabir, A., M. R. Rocha, C., Teixeira, J. A., & Pereira, J. A. M. (2022). Green Extraction Techniques as Advanced Sample Preparation Approaches in Biological, Food, and Environmental Matrices: A Review. Molecules, 27(9), 2953. https://doi.org/10.3390/molecules27092953