Towards Asymmetrical Methylene Blue Analogues: Synthesis and Reactivity of 3-N′-Arylaminophenothiazines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of 3-N′-Arylaminophenothiazines
2.2. Synthesis of 3,7-di(N′-Arylamino)phenothiazines Containing Different Substituents in the 3 and 7 Positions
2.3. Quantum-Mechanical Calculations
2.4. Study of Photophysical Properties
3. Materials and Methods
3.1. Instruments and Methods
3.2. General Procedure for the Synthesis of the Compounds 10–16
3.2.1. 3-((4-(Ethoxycarbonyl)phenyl)amino)phenothiazin-5-ium triiodide (10)
3.2.2. 3-((2-(Methoxycarbonyl)phenyl)amino)phenothiazin-5-ium triiodide (11)
3.2.3. 3-((2-Ethoxy-2-oxoethyl)(phenyl)amino)phenothiazin-5-ium triiodide (12)
3.2.4. 3-((4-Nitrophenyl)amino)phenothiazin-5-ium triiodide (13)
3.2.5. 3-((4-Acetamidophenyl)amino)phenothiazin-5-ium triiodide (14)
3.2.6. 3-((3-Sulfophenyl)amino)phenothiazin-5-ium chloride (15)
3.2.7. 3-(Phenylamino)phenothiazin-5-ium triiodide (16)
3.3. Procedure for the Synthesis of 3-((4-ammoniophenyl)amino)phenothiazin-5-ium chloride (17)
3-((4-Ammoniophenyl)amino)phenothiazin-5-ium chloride (17)
3.4. General Procedure for the Synthesis of the Compounds 18–23
3.4.1. 3-((4-(Ethoxycarbonyl)phenyl)amino)-7-(phenylamino)phenothiazin-5-ium iodide (18)
3.4.2. 3-(Phenylamino)-7-((4-sulfophenyl)amino)phenothiazin-5-ium chloride (19)
3.4.3. 3-((4-Acetamidophenyl)amino)-7-(phenylamino)phenothiazin-5-ium iodide (20)
3.4.4. 3-((4-((Tert-butoxycarbonyl)amino)phenyl)amino)-7-(phenylamino)phenothiazin-5-ium iodide (21)
3.4.5. 3-((2-Ethoxy-2-oxoethyl)(phenyl)amino)-7-(phenylamino)phenothiazin-5-ium iodide (22)
3.4.6. 3-((2-(Methoxycarbonyl)phenyl)amino)-7-(phenylamino)phenothiazin-5-ium iodide (23)
3.5. Procedure for the Synthesis of 3-((4-carboxyphenyl)amino)-7-(phenylamino)phenothiazin-5-ium chloride (24)
3-((4-Carboxyphenyl)amino)-7-(phenylamino)phenothiazin-5-ium chloride (24)
3.6. Procedure for the Synthesis of 3-((4-ammoniophenyl)amino)-7-(phenylamino)phenothiazin-5-ium chloride (25)
3-((4-Ammoniophenyl)amino)-7-(phenylamino)phenothiazin-5-ium chloride (25)
3.7. The Density Functional Theory (DFT) Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Dharmaratne, P.; Sapugahawatte, D.N.; Wang, B.; Chan, C.L.; Lau, K.-M.; Lau, C.B.; Fung, K.P.; Ng, D.K.; Margaret, I.P. Contemporary Approaches and Future Perspectives of Antibacterial Photodynamic Therapy (APDT) against Methicillin-Resistant Staphylococcus Aureus (MRSA): A Systematic Review. Eur. J. Med. Chem. 2020, 200, 112341. [Google Scholar] [CrossRef] [PubMed]
- Lesar, A.; Mušković, M.; Begić, G.; Lončarić, M.; Tomić Linšak, D.; Malatesti, N.; Gobin, I. Cationic Porphyrins as Effective Agents in Photodynamic Inactivation of Opportunistic Plumbing Pathogen Legionella Pneumophila. IJMS 2020, 21, 5367. [Google Scholar] [CrossRef] [PubMed]
- Nizi, M.G.; Desantis, J.; Nakatani, Y.; Massari, S.; Mazzarella, M.A.; Shetye, G.; Sabatini, S.; Barreca, M.L.; Manfroni, G.; Felicetti, T.; et al. Antitubercular Polyhalogenated Phenothiazines and Phenoselenazine with Reduced Binding to CNS Receptors. Eur. J. Med. Chem. 2020, 201, 112420. [Google Scholar] [CrossRef] [PubMed]
- Bernardes, L.S.C.; Zani, C.L.; Carvalho, I. Trypanosomatidae Diseases: From the Current Therapy to the Efficacious Role of Trypanothione Reductase in Drug Discovery. CMC 2013, 20, 2673–2696. [Google Scholar] [CrossRef] [PubMed]
- Calderón, M.; Weitzel, T.; Rodriguez, M.F.; Ciapponi, A. Methylene Blue for Treating Malaria. Cochrane Database Syst. Rev. 2017, 2017, CD012837. [Google Scholar] [CrossRef]
- De Oliveira-Silva, T.; Alvarenga, L.H.; Lima-Leal, C.; Godoy-Miranda, B.; Carribeiro, P.; Suzuki, L.C.; Simões Ribeiro, M.; Tiemy Kato, I.; Pavani, C.; Prates, R.A. Effect of Photodynamic Antimicrobial Chemotherapy on Candida Albicans in the Presence of Glucose. Photodiagn. Photodyn. Ther. 2019, 27, 54–58. [Google Scholar] [CrossRef]
- Posso, M.C.; Domingues, F.C.; Ferreira, S.; Silvestre, S. Development of Phenothiazine Hybrids with Potential Medicinal Interest: A Review. Molecules 2022, 27, 276. [Google Scholar] [CrossRef] [PubMed]
- Jhou, A.-J.; Chang, H.-C.; Hung, C.-C.; Lin, H.-C.; Lee, Y.-C.; Liu, W.; Han, K.-F.; Lai, Y.-W.; Lin, M.-Y.; Lee, C.-H. Chlorpromazine, an Antipsychotic Agent, Induces G2/M Phase Arrest and Apoptosis via Regulation of the PI3K/AKT/MTOR-Mediated Autophagy Pathways in Human Oral Cancer. Biochem. Pharmacol. 2021, 184, 114403. [Google Scholar] [CrossRef]
- Otręba, M.; Kośmider, L. In Vitro Anticancer Activity of Fluphenazine, Perphenazine and Prochlorperazine. A Review. J. Appl. Toxicol. 2020, 41, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Gopi, C.; Dhanaraju, M.D. Recent Progress in Synthesis, Structure and Biological Activities of Phenothiazine Derivatives. Ref. J. Chem. 2019, 9, 95–126. [Google Scholar] [CrossRef]
- Wainwright, M.; McLean, A. Rational Design of Phenothiazinium Derivatives and Photoantimicrobial Drug Discovery. Dyes Pigment. 2017, 136, 590–600. [Google Scholar] [CrossRef]
- May, L.; Müller, T.J.J. Dithieno[1,4]thiazines and Bis[1]benzothieno[1,4]thiazines—Organometallic Synthesis and Functionalization of Electron Density Enriched Congeners of Phenothiazine. Molecules 2020, 25, 2180. [Google Scholar] [CrossRef] [PubMed]
- Rout, Y.; Ekbote, A.; Misra, R. Recent Development on the Synthesis, Properties and Applications of Luminescent Oxidized Phenothiazine Derivatives. J. Mater. Chem. C 2021, 9, 7508–7531. [Google Scholar] [CrossRef]
- Poddar, M.; Gautam, P.; Rout, Y.; Misra, R. Donor–Acceptor Phenothiazine Functionalized BODIPYs. Dyes Pigment. 2017, 146, 368–373. [Google Scholar] [CrossRef]
- Li, W.; Shen, C.; Wu, Z.; Wang, Y.; Ma, D.; Wu, Y. Pyridine Functionalized Phenothiazine Derivatives as Low-Cost and Stable Hole-Transporting Material for Perovskite Solar Cells. Mater. Today Energy 2022, 23, 100903. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, T.-Y.; Bai, W.-F.; Bai, C.-G. Design, Synthesis and Evaluation of Novel Phenothiazine Derivatives as Inhibitors of Breast Cancer Stem Cells. Eur. J. Med. Chem. 2019, 183, 111692. [Google Scholar] [CrossRef] [PubMed]
- Rout, Y.; Montanari, C.; Pasciucco, E.; Misra, R.; Carlotti, B. Tuning the Fluorescence and the Intramolecular Charge Transfer of Phenothiazine Dipolar and Quadrupolar Derivatives by Oxygen Functionalization. J. Am. Chem. Soc. 2021, 143, 9933–9943. [Google Scholar] [CrossRef]
- Al Zahrani, N.A.; El-Shishtawy, R.M.; Elaasser, M.M.; Asiri, A.M. Synthesis of Novel Chalcone-Based Phenothiazine Derivatives as Antioxidant and Anticancer Agents. Molecules 2020, 25, 4566. [Google Scholar] [CrossRef]
- Ronco, T.; Aragao, F.M.; Saaby, L.; Christensen, J.B.; Permin, A.; Williams, A.R.; Thamsborg, S.M.; Olsen, R.H. A New Phenothiazine Derivate Is Active against Clostridioides Difficile and Shows Low Cytotoxicity. PLoS ONE 2021, 16, e0258207. [Google Scholar] [CrossRef]
- Buene, A.F.; Almenningen, D.M. Phenothiazine and Phenoxazine Sensitizers for Dye-Sensitized Solar Cells—An Investigative Review of Two Complete Dye Classes. J. Mater. Chem. C 2021, 9, 11974–11994. [Google Scholar] [CrossRef]
- Mercier, M.J.; Dumont, P.A. Influence of the Electron-Donating Properties on the Psychotropic Activity of Phenothiazine Derivatives. J. Pharm. Pharmacol. 1972, 24, 706–712. [Google Scholar] [CrossRef] [PubMed]
- Pereţeanu, I.S.; Müller, T.J.J. Synthesis and Electronic Properties of 3,7-Dianilino Substituted N-Hexyl Phenothiazines. Org. Biomol. Chem. 2013, 11, 5127. [Google Scholar] [CrossRef] [PubMed]
- Kuzin, Y.I.; Padnya, P.L.; Stoikov, I.I.; Gorbatchuk, V.V.; Stoikov, D.I.; Khadieva, A.I.; Evtugyn, G.A. Electrochemical Behavior of the Monomeric and Polymeric Forms of N-Phenyl-3-(Phenylimino)-3H-Phenothiazin-7-Amine. Electrochim. Acta 2020, 345, 136195. [Google Scholar] [CrossRef]
- Khadieva, A.; Mostovaya, O.; Padnya, P.; Kalinin, V.; Grishaev, D.; Tumakov, D.; Stoikov, I. Arylamine Analogs of Methylene Blue: Substituent Effect on Aggregation Behavior and DNA Binding. IJMS 2021, 22, 5847. [Google Scholar] [CrossRef] [PubMed]
- Kuzin, Y.I.; Khadieva, A.I.; Padnya, P.L.; Khannanov, A.A.; Kutyreva, M.P.; Stoikov, I.I.; Evtugyn, G.A. Electrochemistry of New Derivatives of Phenothiazine: Electrode Kinetics and Electropolymerization Conditions. Electrochim. Acta 2021, 375, 137985. [Google Scholar] [CrossRef]
- Khadieva, A.I.; Gorbachuk, V.V.; Stoikov, I.I. Synthesis and Supramolecular Self-Assembly of Phenothiazine Functionalized by Carboxyphenyl Fragments. Russ. Chem. Bull. 2020, 69, 333–338. [Google Scholar] [CrossRef]
- Khadieva, A.; Gorbachuk, V.; Shurpik, D.; Stoikov, I. Synthesis of Tris-Pillar[5]Arene and Its Association with Phenothiazine Dye: Colorimetric Recognition of Anions. Molecules 2019, 24, 1807. [Google Scholar] [CrossRef] [Green Version]
- Khadieva, A.I.; Gorbachuk, V.V.; Evtugyn, G.A.; Belyakova, S.V.; Latypov, R.R.; Drobyshev, S.V.; Stoikov, I.I. Phenyliminophenothiazine Based Self-Organization of Polyaniline Nanowires and Application as Redox Probe in Electrochemical Sensors. Sci. Rep. 2019, 9, 417. [Google Scholar] [CrossRef] [Green Version]
- Tamoto, A.; Aratani, N.; Yamada, H. Photophysical Properties and Structural Analysis of Modified Methylene Blues as near Infrared Dyes. J. Photochem. Photobiol. A Chem. 2018, 358, 441–446. [Google Scholar] [CrossRef]
- Zhu, H.; Cheng, P.; Chen, P.; Pu, K. Recent Progress in the Development of Near-Infrared Organic Photothermal and Photodynamic Nanotherapeutics. Biomater. Sci. 2018, 6, 746–765. [Google Scholar] [CrossRef]
- Baranov, V.N.; Ginzburg, O.F.; Nekhoroshev, A.A. Oxidative condensation of phenothiazine with aromatic amines. J. Org. Chem. USSR 1991, 27, 1778–1782. [Google Scholar]
- Strekowski, L.; Hou, D.-F.; Wydra, R.L.; Schinazi, R.F. A Synthetic Route to 3-(Dialkylamino)Phenothiazin-5-Ium Salts and 3,7-Disubstituted Derivatives Containing Two Different Amino Groups. J. Heterocycl. Chem. 1993, 30, 1693–1695. [Google Scholar] [CrossRef]
- Spagnul, C.; Greenman, J.; Wainwright, M.; Kamil, Z.; Boyle, R.W. Synthesis, Characterization and Biological Evaluation of a New Photoactive Hydrogel against Gram-Positive and Gram-Negative Bacteria. J. Mater. Chem. B 2016, 4, 1499–1509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorman, S.; Bell, A.; Griffiths, J.; Roberts, D.; Brown, S. The Synthesis and Properties of Unsymmetrical 3,7-Diaminophenothiazin-5-Ium Iodide Salts: Potential Photosensitisers for Photodynamic Therapy. Dyes Pigment. 2006, 71, 153–160. [Google Scholar] [CrossRef]
- Felgenträger, A.; Maisch, T.; Dobler, D.; Späth, A. Hydrogen Bond Acceptors and Additional Cationic Charges in Methylene Blue Derivatives: Photophysics and Antimicrobial Efficiency. BioMed Res. Int. 2013, 2013, 482167. [Google Scholar] [CrossRef]
- Delport, A.; Harvey, B.H.; Petzer, A.; Petzer, J.P. Methylene Blue Analogues with Marginal Monoamine Oxidase Inhibition Retain Antidepressant-like Activity. ACS Chem. Neurosci. 2018, 9, 2917–2928. [Google Scholar] [CrossRef]
- New, O.M.; Dolphin, D. Design and Synthesis of Novel Phenothiazinium Photosensitiser Derivatives. Eur. J. Org. Chem. 2009, 2009, 2675–2686. [Google Scholar] [CrossRef]
- De Crozals, G.; Farre, C.; Sigaud, M.; Fortgang, P.; Sanglar, C.; Chaix, C. Methylene Blue Phosphoramidite for DNA Labelling. Chem. Commun. 2015, 51, 4458–4461. [Google Scholar] [CrossRef]
- Wilson, B.; Fernández, M.-J.; Lorente, A.; Grant, K.B. Syntheses and DNA Photocleavage by Mono- and Bis-Phenothiazinium–Piperazinexylene Intercalators. Tetrahedron 2008, 64, 3429–3436. [Google Scholar] [CrossRef]
- Morkovnik, A.S.; Dobaeva, N.M.; Okhlobystin, O.Y. Cation-Radical Oxidation Step in the Nitration of Phenothiazine with Nitric Acid. Chem. Heterocycl. Compd. 1981, 17, 904–906. [Google Scholar] [CrossRef]
- Herbstein, F.H.; Schwotzer, W. Crystal Structures of Polyiodide Salts and Molecular Complexes. 7. Interaction of Thiones with Molecular Diiodine. The Crystal Structures of Dithizone-Diiodine, Ethylenethiourea-Bis(Diiodine), Bis(Ethylenethiourea)-Tris(Diiodine), Bis(Dithizone)-Heptakis(Diiodine), and 1-(1-Imidazolin-2-Yl)-2-Thioxoimidazolidinium Triiodide-(Ethylenethiourea-Diiodine). J. Am. Chem. Soc. 1984, 106, 2367–2373. [Google Scholar] [CrossRef]
- Fei, Z.; Bobbink, F.D.; Păunescu, E.; Scopelliti, R.; Dyson, P.J. Influence of Elemental Iodine on Imidazolium-Based Ionic Liquids: Solution and Solid-State Effects. Inorg. Chem. 2015, 54, 10504–10512. [Google Scholar] [CrossRef] [PubMed]
- Piela, L. Population Analysis. Ideas Quantum Chem. 2014, e143–e147. [Google Scholar] [CrossRef]
- Mantsch, H.H.; Dehler, J. π-Electronic Structure and Reactivity of Phenoxazine (1), Phenothiazine (2), and Phenoxthiin (3). Can. J. Chem. 1969, 47, 3173–3178. [Google Scholar] [CrossRef] [Green Version]
- Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V.G.; Gao, J.; Rega, N.; et al. Gaussian 09, Revision E.01; Gaussian, Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
Compounds | Hirshfeld Charges | ||
---|---|---|---|
S | C(3) | C(7) | |
1 | 0.247 | 0.028 | 0.028 |
10 | 0.186 | 0.104 | 0.009 |
11 | 0.179 | 0.101 | 0.006 |
12 | 0.179 | 0.105 | 0.006 |
13 | 0.194 | 0.104 | 0.013 |
14 | 0.179 | 0.100 | 0.007 |
15 | 0.192 | 0.105 | 0.011 |
16 | 0.184 | 0.104 | 0.008 |
Dye | λ (nm) | Energy (eV) | Oscillator Strength (au) | Configuration * | % | λexp (nm) | |
---|---|---|---|---|---|---|---|
16 | 534.8 | 2.318 | 0.4389 | 68 | 497.0 | ||
HOMO → LUMO | |||||||
450.5 | 2.752 | 0.3170 | 68 | ||||
HOMO-1 → LUMO | |||||||
372.8 | 3.326 | 0.0916 | 68 | 365.4 | |||
HOMO-3 → LUMO | |||||||
273.4 | 4.535 | 0.1928 | 62 | 287.4 | |||
HOMO-6 → LUMO | |||||||
22 | 546.4 | 2.269 | 1.2452 | 70 | 533.8 | ||
HOMO → LUMO | |||||||
308.9 | 4.014 | 0.0329 | 52 | 301.8 | |||
HOMO-6 → LUMO | |||||||
284.3 | 4.316 | 0.1303 | 46 | 286.4 | |||
HOMO-9 → LUMO | |||||||
273.5 | 4.533 | 0.6594 | 41 | ||||
HOMO → LUMO+4 | |||||||
263.9 | 4.697 | 0.5330 | 38 | ||||
HOMO-1 → LUMO+1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khadieva, A.; Rayanov, M.; Shibaeva, K.; Piskunov, A.; Padnya, P.; Stoikov, I. Towards Asymmetrical Methylene Blue Analogues: Synthesis and Reactivity of 3-N′-Arylaminophenothiazines. Molecules 2022, 27, 3024. https://doi.org/10.3390/molecules27093024
Khadieva A, Rayanov M, Shibaeva K, Piskunov A, Padnya P, Stoikov I. Towards Asymmetrical Methylene Blue Analogues: Synthesis and Reactivity of 3-N′-Arylaminophenothiazines. Molecules. 2022; 27(9):3024. https://doi.org/10.3390/molecules27093024
Chicago/Turabian StyleKhadieva, Alena, Mansur Rayanov, Ksenia Shibaeva, Alexandr Piskunov, Pavel Padnya, and Ivan Stoikov. 2022. "Towards Asymmetrical Methylene Blue Analogues: Synthesis and Reactivity of 3-N′-Arylaminophenothiazines" Molecules 27, no. 9: 3024. https://doi.org/10.3390/molecules27093024
APA StyleKhadieva, A., Rayanov, M., Shibaeva, K., Piskunov, A., Padnya, P., & Stoikov, I. (2022). Towards Asymmetrical Methylene Blue Analogues: Synthesis and Reactivity of 3-N′-Arylaminophenothiazines. Molecules, 27(9), 3024. https://doi.org/10.3390/molecules27093024