Antifungal Activity and In Silico Studies on 2-Acylated Benzo- and Naphthohydroquinones
Abstract
:1. Introduction
2. Results
2.1. Antifungal Activity, Halo of Inhibition (HOI)
2.2. Determination of Minimal Inhibitory Concentration (MIC) Values
2.3. Antioxidant Capacity of Octanoylbenzohydroquinone 4
2.4. Molecular Docking of the Octanoylbenzohydroquinone 4
2.5. ADMET Profiles
3. Discussion
4. Materials and Methods
4.1. Synthesis of Acylhydroquinone Derivatives 3–16
4.2. Biological Evaluation
4.2.1. Strains
4.2.2. Antifungal Susceptibility Testing
4.3. Antioxidant Capacity Assays
4.3.1. FRAP Assay
4.3.2. ABTS•+ Free-Radical Scavenging Activity
4.3.3. DPPH• Free-Radical Scavenging Activity
4.4. In Silico Simulations and ADMET Prediction
4.4.1. Molecular Docking Calculations
4.4.2. Molecular Dynamic Simulations of Protein-Ligand Complex
4.4.3. Free Energy Calculations
4.4.4. ADMET Prediction
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Nucci, M.; Queiroz-Telles, F.; Alvarado-Matute, T.; Tiraboschi, I.N.; Cortes, J.; Zurita, J.; Guzman-Blanco, M.; Santolaya, M.E.; Thompson, L.; Sifuentes-Osornio, J.; et al. Epidemiology of candidemia in Latin America: A laboratory-based survey. PLoS ONE 2013, 8, e59373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badiee, P.; Hashemizadeh, Z. Opportunistic invasive fungal infections: Diagnosis & clinical management. Indian J. Med. Res. 2014, 139, 195–204. [Google Scholar] [PubMed]
- Paramythiotou, E.; Frantzeskaki, F.; Flevari, A.; Armaganidis, A.; Dimopoulos, G. Invasive fungal infections in the ICU: How to approach, how to treat. Molecules 2014, 19, 1085–1119. [Google Scholar] [CrossRef] [Green Version]
- Kaur, R.; Dhakad, M.S.; Goyal, R.; Bhalla, P.; Dewan, R. Spectrum of Opportunistic Fungal Infections in HIV/AIDS Patients in Tertiary Care Hospital in India. Can. J. Infect. Dis. Med. Microbiol. 2016, 2016, 2373424. [Google Scholar] [CrossRef] [PubMed]
- García-Vidal, C.; Lletí Salavert, M. Inmunopatología de las micosis invasivas por hongos filamentosos. Rev. Iberoam. Micol. 2016, 31, 19–28. [Google Scholar] [CrossRef]
- Castro, M.A.; Gamito, A.M.; Tangarife-Castaño, V.; Zapata, B.; del Corral, J.M.; Mesa-Arango, A.C.; Betancur-Galvis, L.; San Feliciano, A. Synthesis and antifungal activity of terpenyl-1,4-naphthoquinone and 1,4-anthracenedione derivatives. Eur. J. Med. Chem. 2013, 67, 19–27. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Diekema, D.J. Rare and Emerging Opportunistic Fungal Pathogens: Concern for Resistance beyond Candida albicans and Aspergillus fumigatus. J. Clin. Microbiol. 2004, 42, 4419–4431. [Google Scholar] [CrossRef] [Green Version]
- Ilkit, M.; Guzel, A.B. The epidemiology, pathogenesis, and diagnosis of vulvovaginal candidosis: A mycological perspective. Crit. Rev. Microbiol. 2011, 37, 250–261. [Google Scholar] [CrossRef]
- Cassone, A. Vulvovaginal Candida albicans infections: Pathogenesis, immunity and vaccine prospects. BJOG 2015, 122, 785–794. [Google Scholar] [CrossRef]
- Kiraz, N.; Dag, I.; Oz, Y.; Yamac, M.; Kiremitci, A.; Kasifoglu, N. Correlation between broth microdilution and disk diffusion methods for antifungal susceptibility testing of caspofungin, voriconazole, amphotericin B, itraconazole and fluconazole against Candida glabrata. J. Microbiol. Methods 2010, 82, 136–140. [Google Scholar] [CrossRef]
- Silva, S.; Negri, M.; Henriques, M.; Oliviera, R.; Williams, D.; Azeredo, J. Candida glabrata, Candida parapsilosis and Candida tropicalis: Biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol. Rev. 2012, 36, 288–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matheson, A.; Mazza, D. Recurrent vulvovaginal candidiasis: A review of guideline recommendations. Aust. N. Z. J. Obstet. Gynaecol. 2017, 57, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.A.; Anurag, A.; Fatima, Z.; Hameed, S. Natural Phenolic Compounds, A Potential Antifungal Agent. In Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education; Méndez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2013; pp. 1189–1195. [Google Scholar]
- Wang, M.; Jiang, N.; Wang, Y.; Jiang, D.; Feng, X. Characterization of Phenolic Compounds from Early and Late Ripening Sweet Cherries and Their Antioxidant and Antifungal Activities. J. Agric. Food Chem. 2017, 65, 5413–5420. [Google Scholar] [CrossRef] [PubMed]
- Adjdir, S.; Benariba, N.; El Haci, I.A.; Ouffai, K.; Bekkara, F.A.; Djaziri, R. Antioxidant activity and phenolic compounds identification of Micromeria inodora (Desf.) Benth. from Western Algeria. Nat. Prod. Res. 2021, 35, 2963–2966. [Google Scholar] [CrossRef] [PubMed]
- Grati, W.; Samet, S.; Bouzayani, B.; Ayachi, A.; Treilhou, M.; Téné, N.; Mezghani-Jarraya, R. HESI-MS/MS Analysis of Phenolic Compounds from Calendula aegyptiaca Fruits Extracts and Evaluation of Their Antioxidant Activities. Molecules 2022, 27, 2314–2327. [Google Scholar] [CrossRef]
- Sunassee, S.N.; Davies-Coleman, M.T. Cytotoxic and antioxidant marine prenylated quinones and hydroquinones. Nat. Prod. Rep. 2012, 29, 513–535. [Google Scholar] [CrossRef]
- Danelutte, A.P.; Lago, J.H.G.; Young, M.C.M.; Kato, M.J. Antifungal flavanones and prenylated hydroquinones from Piper crassinervium Kunth. Phytochemistry 2003, 64, 555–559. [Google Scholar] [CrossRef]
- Alvarez, C.; Alvarez, R.; Corchete, P.; Pérez-Melero, C.; Peláez, R.; Medarde, M. Synthesis and biological activity of naphthalene analogues of phenstatins: Naphthylphenstatins. Bioorg. Med. Chem. Lett. 2007, 17, 3417–3420. [Google Scholar] [CrossRef]
- Gutiérrez, E.; Benites, J.; Valderrama, J.A.; Buc Calderon, P.; Verrax, J.; Nova, E.; Villanelo, F.; Maturana, D.; Escobar, C.; Lagos, R.; et al. Binding of dihydroxynaphthyl aryl ketones to tubulin colchicine site inhibits microtubule assembly. Biochem. Biophys. Res. Commun. 2015, 466, 418–425. [Google Scholar] [CrossRef]
- Baginski, M.; Czub, J. Amphotericin B and Its New Derivatives–Mode of Action. Curr. Drug Metab. 2009, 10, 459–469. [Google Scholar] [CrossRef]
- Jaradat, N.; Khasati, A.; Hawi, M.; Qadi, M.; Amer, J.; Hawash, M. In vitro Antitumor, Antibacterial, and Antifungal Activities. of Phenylthio-Ethyl Benzoate Derivatives. Arab. J. Sci. Eng. 2020, 46, 5339–5344. [Google Scholar] [CrossRef]
- Al-Maharik, N.; Jaradat, N.; Bassalat, N.; Hawash, M.; Zaid, H. Isolation, Identification and Pharmacological Effects of Mandragora autumnalis Fruit Flavonoids Fraction. Molecules 2022, 27, 1046–1065. [Google Scholar] [CrossRef] [PubMed]
- Jaradat, N.; Khasati, A.; Hawi, M.; Hawash, M.; Shekfeh, S.; Qneibi, M.; Eid, A.M.; Arar, M.; Qaoud, M.T. Antidiabetic, antioxidant, and anti-obesity effects of phenylthio-ethyl benzoate derivatives, and molecular docking study regarding α-amylase enzyme. Sci. Rep. 2022, 12, 3108–3117. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.P.; Videira, A. Mitochondrial type II NAD(P)H dehydrogenases in fungal cell death. Microb. Cell 2015, 2, 68–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antos-Krzeminska, N.; Jarmuszkiewicz, W. Alternative Type II NAD(P)H Dehydrogenases in the Mitochondria of Protists and Fungi. Protist 2019, 170, 21–37. [Google Scholar] [CrossRef]
- Halgren, T. New Method for Fast and Accurate Binding-site Identification and Analysis. Chem. Biol. Drug Des. 2007, 69, 146–148. [Google Scholar] [CrossRef]
- Halgren, T.A. Identifying and Characterizing Binding Sites and Assessing Druggability. J. Chem. Inf. Model. 2009, 49, 377–389. [Google Scholar] [CrossRef]
- Schrödinger Release 2017-1: Maestro; Schrödinger, LLC.: New York, NY, USA, 2017.
- Brown, B.J.; Deng, Z.; Karplus, P.A.; Massey, V. On the active site of Old Yellow Enzyme: Role of histidine 191 and asparagine 194. J. Biol. Chem. 1998, 273, 32753–32762. [Google Scholar] [CrossRef] [Green Version]
- Ekowati, J.; Diyah, N.W.; Nofianti, K.A.; Hamid, I.S. Molecular Docking of Ferulic Acid Derivatives on P2Y12 Receptor and their ADMET Prediction. J. Math. Fundam. Sci. 2018, 50, 203–219. [Google Scholar] [CrossRef]
- Angelis, I.D.; Turco, L. Caco-2 Cells as a Model for Intestinal Absorption. Curr. Protoc. Toxicol. 2011, 47, 20–26. [Google Scholar] [CrossRef]
- Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. admetSAR: A Comprehensive Source and Free Tool for Assessment of Chemical ADMET Properties. J. Chem. Inf. Model. 2012, 52, 3099–3105. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef] [PubMed]
- Nau, R.; Sorgel, F.; Eiffert, H. Penetration of Drugs through the Blood-Cerebrospinal Fluid/Blood-Brain Barrier for Treatment of Central Nervous System Infections. Clin. Microbiol. Rev. 2010, 23, 858–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Backman, J.T.; Filppula, A.M.; Niemi, M.; Neuvonen, P.J. Role of Cytochrome P450 2C8 in Drug Metabolism and Interactions. Pharmacol. Rev. 2016, 68, 168–241. [Google Scholar] [CrossRef]
- Chaaban, I.; El Khawass, E.S.; Mahran, M.; Abd El Razik, H.; El Salamouni, N.; Abdel, A. Synthesis and biological evaluation of novel benzoquinones as potential antimicrobial agents. Med. Chem. Res. 2013, 22, 842–851. [Google Scholar] [CrossRef]
- Chaaban, I.; El Khawass, E.S.; Mahran, M.; Abd El Razik, H.; El Salamouni, N.; Abdel, A. Synthesis and biological evaluation of novel hydroquinone dimethyl ethers as potential anticancer and antimicrobial agents. Med. Chem. Res. 2013, 22, 3760–3778. [Google Scholar] [CrossRef]
- Liu, H.L.; Wang, Q.Z. Synthesis and Antimicrobial Activities of 2,5-Substituent Hydroquinone Derivatives. Asian J. Chem. 2014, 26, 5165–5167. [Google Scholar] [CrossRef]
- Amani, A.M. Synthesis, Characterization and Antibacterial and Antifungal Evaluation of Some Para-Quinone Derivatives. Drug. Res. 2014, 64, 420–423. [Google Scholar] [CrossRef]
- Munoz, P.; Sánchez-Somolinos, M.; Alcalá, L.; Rodríguez-Créixems, M.; Peláez, T.; Bouza, E. Candida krusei fungemia: Antifungal susceptibility and clinical presentation of an uncommon entity during 15 years in a single general hospital. J. Antimicrob. Chemother. 2005, 55, 188–193. [Google Scholar] [CrossRef]
- Pfaller, M.; Diekema, D.; Gibbs, D.; Newell, V.; Nagy, E.; Dobiasova, S.; Rinaldi, M.; Barton, R.; Veselov, A. Candida krusei, a Multidrug-Resistant Opportunistic Fungal Pathogen: Geographic and Temporal Trends from the ARTEMIS DISK Antifungal Surveillance Program, 2001 to 2005. J. Clin. Microbiol. 2008, 46, 515–521. [Google Scholar] [CrossRef] [Green Version]
- Benites, J.; Ríos, D.; Díaz, P.; Valderrama, J.A. The solar-chemical photo-Friedel–Crafts heteroacylation of 1,4-quinones. Tetrahedron Lett. 2011, 52, 609–611. [Google Scholar] [CrossRef]
- Chapeland-Leclerc, F.; Hennequin, C.; Papon, N.; Girard, A.; Socié, G.; Ribaud, P.; Lacroix, C. Acquisition of Flucytosine, Azole, and Caspofungin Resistance in Candida glabrata Bloodstream Isolates Serially Obtained from a Hematopoietic Stem Cell Transplant Recipient. Antimicrob. Agents Chemother. 2009, 54, 1360–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CLSI. Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, 2nd ed.; Approved Standard, CLSI Document M38-A2; Clinical and Laboratory Standars Institute: Wayne, PA, USA, 2008. [Google Scholar]
- CLSI. Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts, 2nd ed.; Approved Guideline, CLSI Document M44-A2; Clinical and Laboratory Standars Institute: Wayne, PA, USA, 2009. [Google Scholar]
- CLSI. Method for Antifungal Disk Diffusion Susceptibility Testing of Nondermatophyte Filamentous Fungi; Approved Guideline, CLSI Document M51-A; Clinical and Laboratory Standars Institute: Wayne, PA, USA, 2010. [Google Scholar]
- CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 4th ed.; CLSI Standard M27; Clinical and Laboratory Standars Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Benzie, I.; Strain, J. The Ferric Reducing Ability of Plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Molyneux, P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. SJST 2004, 26, 211–219. [Google Scholar]
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; et al. A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, G.A.; Friesner, R.A.; Tirado-Rives, J.; Jorgensen, W.L. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on pep- tides. J. Phys. Chem. B 2001, 105, 6474–6487. [Google Scholar] [CrossRef]
- Bowers, K.J.; Chow, E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D.; et al. Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. In Proceedings of the ACM/IEEE Conference on Supercomputing (SC06), Tampa, FL, USA, 11–17 November 2006. [Google Scholar]
- Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; et al. Calculating Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and Continuum Models. Acc. Chem. Res. 2000, 33, 889–897. [Google Scholar] [CrossRef]
- Navarro-Retamal, C.; Gaete-Eastman, C.; Herrera, R.; Caballero, J.; Alzate-Morales, J.H. Structural and Affinity Determinants in the Interaction between Alcohol Acyltransferase from F. x ananassa and Several Alcohol Substrates: A Computational Study. PLoS ONE 2016, 11, e0153057. [Google Scholar] [CrossRef]
- Navarro-Retamal, C.; Caballero, J. Energetic differences between non-domain-swapped and domain-swapped chain connectivities in the K2P potassium channel TRAAK. RSC Adv. 2018, 8, 26610–26618. [Google Scholar] [CrossRef] [Green Version]
Compounds | R | Candida albicans A8 | Candida glabrata 2001 | Candida krusei 118 | Aspergillus fumigatus 280 | Aspergillus fumigatus 2H | Aspergillus terreus | Acremonium kiliense | Rhizopus oryzae |
---|---|---|---|---|---|---|---|---|---|
2–ABHQ | |||||||||
3 | C5H11 | 23 | 24 | 14 | 11 | 15 | 14 | - | 7 |
4 | C7H15 | 13 | 13 | 11 | 19 | 19 | 15 | 20 | 8 |
5 | Ph | 14 | 17 | 10 | <7 | <7 | <7 | <7 | <7 |
6 | CH = CHPh | 9 | - | - | - | - | - | - | - |
7 | 2-thienyl | 5 | 7 | 9 | - | - | 12 | 7 | - |
8 | 2-furyl | - | - | 8 | - | - | - | - | - |
2–ANHQ | |||||||||
9 | CH3 | 9 | 11 | 9 | - | - | - | - | - |
10 | C5H11 | - | - | - | - | - | - | - | - |
11 | C7H15 | - | - | - | - | - | - | - | - |
12 | Ph | 11 | 19 | 15 | - | 9 | - | - | 7 |
13 | CH = CHPh | 11 | - | 11 | - | <7 | - | - | - |
14 | 4-OH-3-MeOPh | 10 | 15 | 14 | - | - | - | - | - |
15 | 2-thienyl | 15 | 15 | 15 | - | 7 | - | - | - |
16 | 2-furyl | - | 10 | 11 | - | - | - | - | - |
Compounds | R | Candida albicans A8 | Candida glabrata 2001 | Candida krusei 118 | Aspergillus fumigatus 280 | Aspergillus fumigatus 2H | Aspergillus terreus | Acremonium kiliense | Rhizopus oryzae |
---|---|---|---|---|---|---|---|---|---|
2–ABHQ | |||||||||
3 | C5H11 | 16 | 16 | 4 | 16 | 64 | 16 | 16 | 32 |
4 | C7H15 | 8 | 4 | 2 | 8 | 16 | 8 | 8 | 4 |
5 | Ph | >64 | >64 | >64 | NA | NA | NA | NA | NA |
2–ANHQ | |||||||||
12 | Ph | >64 | 32 | 4 | - | >64 | - | >64 | >64 |
14 | 4-OH-3-MeOPh | >64 | >64 | 64 | NA | NA | NA | NA | NA |
15 | 2-thienyl | >64 | 16 | 8 | >64 | 32 | - | 32 | 32 |
Control | Amphotericin B | 0.5 | 0.5 | 1 | 1 | 0.5 | 1 | 2 | 1 |
Compound | FRAP (mM TEAC) | ABTS•+ IC50 (mM) | DPPH IC50 (mM) |
---|---|---|---|
4 | 0.30 ± 0.16 | 0.120 ± 0.02 | 0.130 ± 0.02 |
Quercetin | <0.05 ± 0.001 | 0.018 ± 0.01 | 0.027 ± 0.01 |
Trolox® | - | 0.012 ± 0.03 | 0.010 ± 0.02 |
Compound | dG_Covalent | dG_Lipo | dG_vdW | dG_Hbond | dG_Coulomb | dG_Solv | dG_Bind |
---|---|---|---|---|---|---|---|
4 | 2.54 ± 2.97 | −18.64 ± 5.22 | −36.78 ± 10.21 | −1.54 ± 0.77 | −17.99 ± 6.95 | 22.78 ± 6.15 | −52.18 ± 15.23 |
Property | Model Name | Predicted Value | Units | |
---|---|---|---|---|
4 | Amph B * | |||
Absorption | Caco2 permeability Intestinal absorption (human) Skin Permeability | 1.308 91.101 −3.125 | −0.597 0 −2.735 | log Papp in 10−6 cm/s % Absorbed log Kp |
Distribution | VDss (human) BBB permeability CNS permeability | 0.492 0.27 −2.386 | −0.37 −2.508 −3.718 | log L/Kg log BB log PS |
Metabolism | CYP2D6 inhibitor CYP3A4 inhibitor | No No | No No | Yes/No Yes/No |
Excretion | Total Clearance Renal OCT2 substrate | 1.22 No | −1.495 No | log mL/min/Kg Yes/No |
Toxicity | Oral Rat Acute Toxicity (LD50) Oral Rat Chronic Toxicity Hepatotoxicity | 1.968 2.766 No | 2.518 2.049 No | mol/Kg log mg/Kg_bw/day Yes/No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ríos, D.; Valderrama, J.A.; Quiroga, G.; Michea, J.; Salas, F.; Duarte, E.Á.; Venegas-Casanova, E.A.; Jara-Aguilar, R.; Navarro-Retamal, C.; Calderon, P.B.; et al. Antifungal Activity and In Silico Studies on 2-Acylated Benzo- and Naphthohydroquinones. Molecules 2022, 27, 3035. https://doi.org/10.3390/molecules27093035
Ríos D, Valderrama JA, Quiroga G, Michea J, Salas F, Duarte EÁ, Venegas-Casanova EA, Jara-Aguilar R, Navarro-Retamal C, Calderon PB, et al. Antifungal Activity and In Silico Studies on 2-Acylated Benzo- and Naphthohydroquinones. Molecules. 2022; 27(9):3035. https://doi.org/10.3390/molecules27093035
Chicago/Turabian StyleRíos, David, Jaime A. Valderrama, Gonzalo Quiroga, Jonathan Michea, Felipe Salas, Eduardo Álvarez Duarte, Edmundo A. Venegas-Casanova, Rafael Jara-Aguilar, Carlos Navarro-Retamal, Pedro Buc Calderon, and et al. 2022. "Antifungal Activity and In Silico Studies on 2-Acylated Benzo- and Naphthohydroquinones" Molecules 27, no. 9: 3035. https://doi.org/10.3390/molecules27093035
APA StyleRíos, D., Valderrama, J. A., Quiroga, G., Michea, J., Salas, F., Duarte, E. Á., Venegas-Casanova, E. A., Jara-Aguilar, R., Navarro-Retamal, C., Calderon, P. B., & Benites, J. (2022). Antifungal Activity and In Silico Studies on 2-Acylated Benzo- and Naphthohydroquinones. Molecules, 27(9), 3035. https://doi.org/10.3390/molecules27093035