New Structures, Spectrometric Quantification, and Inhibitory Properties of Cardenolides from Asclepias curassavica Seeds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation and Structure Elucidation
2.2. Quantification of Cardenolides
2.3. Na+/K+ ATPase (NKA) Inhibitory Activity
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Extraction and Isolation
3.3. Quantification of Cardenolides
3.4. Na+/K+ ATPase (NKA) Inhibitory Activity Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Erb, M.; Kliebenstein, D.J. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. Plant Physiol. 2020, 184, 39. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.A. Natural selection on common milkweed (Asclepias syriaca) by a community of specialized insect herbivores. Evol. Ecol. Res. 2005, 7, 651–667. [Google Scholar]
- Mauricio, R.; Rausher, M.D. Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense. Evolution 1997, 51, 1435–1444. [Google Scholar] [CrossRef] [PubMed]
- Futuyma, D.J.; Agrawal, A.A. Macroevolution and the biological diversity of plants and herbivores. Proc. Natl. Acad. Sci. USA 2009, 106, 18054–18061. [Google Scholar] [CrossRef] [Green Version]
- Whitehead, S.R.; Schneider, G.F.; Dybzinski, R.; Nelson, A.S.; Gelambi, M.; Jos, E.; Beckman, N.G. Fruits, frugivores, and the evolution of phytochemical diversity. Oikos 2022, 2. [Google Scholar] [CrossRef]
- Seiber, J.N.; Lee, S.M.; Benson, J.M. Cardiac glycosides (cardenolides) in species of Asclepias (Asclepiadaceae). In Handbook of Natural Toxins; Richard, F.K., Anthony, T.T., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1983; Volume 1, pp. 43–83. [Google Scholar]
- Agrawal, A.A.; Petschenka, G.; Bingham, R.A.; Weber, M.G.; Rasmann, S. Toxic cardenolides: Chemical ecology and coevolution of specialized plant-herbivore interactions. New Phytol. 2012, 194, 28–45. [Google Scholar] [CrossRef]
- Brower, L.P.; van Brower, J.; Corvino, J.M. Plant poisons in a terrestrial food chain. Proc. Natl. Acad. Sci. USA 1967, 57, 893–898. [Google Scholar] [CrossRef] [Green Version]
- Rasmann, S.; Agrawal, A.A. Latitudinal patterns in plant defense: Evolution of cardenolides, their toxicity and induction following herbivory. Ecol. Lett. 2011, 14, 476–483. [Google Scholar] [CrossRef]
- Agrawal, A.A.; Fishbein, M. Phylogenetic escalation and decline of plant defense strategies. Proc. Natl. Acad. Sci. USA 2008, 105, 10057–10060. [Google Scholar] [CrossRef] [Green Version]
- López-Goldar, X.; Hastings, A.; Züst, T.; Agrawal, A. Evidence for tissue-specific defence-offence interactions between milkweed and its community of specialized herbivores. Mol. Ecol. 2022, 31, 3254–3265. [Google Scholar] [CrossRef]
- Nelson, C.J.; Seiber, J.N.; Brower, L.P. Seasonal and intraplant variation of cardenolide content in the California milkweed, Asclepias eriocarpa, and implications for plant defense. J. Chem. Ecol. 1981, 7, 981–1010. [Google Scholar] [CrossRef]
- Aperia, A. New roles for an old enzyme: Na+, K+-ATPase emerges as an interesting drug target. J. Intern. Med. 2007, 261, 44–52. [Google Scholar] [CrossRef]
- Köksoy, A.A. Na+/ K+-ATPase: A review. J. Ank. Med. Sch. 2002, 24, 73–82. [Google Scholar] [CrossRef]
- Petschenka, G.; Dobler, S. Target-site sensitivity in a specialized herbivore towards major toxic compounds of its host plant: The Na+/K+-ATPase of the oleander hawk moth (Daphnis nerii) is highly susceptible to cardenolides. Chemoecology 2009, 19, 235–239. [Google Scholar] [CrossRef]
- Bagrov, A.Y.; Shapiro, J.I.; Fedorova, O.V. Endogenous Cardiotonic Steroids: Physiology, Pharmacology, and Novel Therapeutic Targets. Pharmacol. Rev. 2009, 61, 9–38. [Google Scholar] [CrossRef]
- Blanco, G.; Mercer, R.W. Isozymes of the Na-K-ATPase: Heterogeneity in structure, diversity in function. Am. J. Physiol. Ren. Physiol. 1998, 275, 633–650. [Google Scholar] [CrossRef]
- Mobasheri, A.; Avila, J.; Cózar-Castellano, I.; Brownleader, M.D.; Trevan, M.; Francis, M.J.O.; Lamb, J.F.; Martín-Vasallo, P. Na+/K+-ATPase Isozyme diversity; comparative biochemistry and physiological implications of novel functional interactions. Biosci. Rep. 2000, 20, 51–91. [Google Scholar] [CrossRef]
- Agrawal, A.A.; Böröczky, K.; Haribal, M.; Hastings, A.P.; White, R.A.; Jiang, R.W.; Duplais, C. Cardenolides, toxicity, and the costs of sequestration in the coevolutionary interaction between monarchs and milkweeds. Proc. Natl. Acad. Sci. USA 2021, 118, 2024463118. [Google Scholar] [CrossRef]
- Malcolm, S.B.; Cockrell, B.J.; Brower, L.P. Cardenolide fingerprint of monarch butterflies reared on common milkweed, Asclepias syriaca L. J. Chem. Ecol. 1989, 15, 819–853. [Google Scholar] [CrossRef]
- Jones, P.L.; Petschenka, G.; Flacht, L.; Agrawal, A.A. Cardenolide intake, sequestration, and excretion by the Monarch Butterfly along gradients of plant toxicity and larval ontogeny. J. Chem. Ecol. 2019, 45, 264–277. [Google Scholar] [CrossRef]
- Stenoien, C.M.; Meyer, R.A.; Nail, K.R.; Zalucki, M.P.; Oberhauser, K.S. Does chemistry make a difference? Milkweed butterfly sequestered cardenolides as a defense against parasitoid wasps. Arthropod. Plant. Interact. 2019, 13, 835–852. [Google Scholar] [CrossRef]
- Cheung, H.T.A.; Nelson, C.J.; Watson, T.R. New glucoside conjugates and other cardenolide glycosides from the monarch butterfly reared on Asclepias fruticosa L. J. Chem. Soc. Perkin Trans. 1 1988, 7, 1851–1857. [Google Scholar] [CrossRef]
- Burdfield-Steel, E.R.; Shuker, D.M. The evolutionary ecology of the Lygaeidae. Ecol. Evol. 2014, 4, 2278–2301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaughan, F.A. Effect of gross cardiac glycoside content of seeds of common milkweed, Asclepias syriaca, on cardiac glycoside uptake by the milkweed bug Oncopeltus fasciatus. J. Chem. Ecol. 1979, 5, 89–100. [Google Scholar] [CrossRef]
- Moore, L.V.; Scudder, G.G.E. Selective sequestration of milkweed (Asclepias sp.) cardenolides in Oncopeltus fasciatus (Dallas) (Hemiptera: Lygaeidae). J. Chem. Ecol. 1985, 11, 667–687. [Google Scholar] [CrossRef]
- Isman, M.B.; Duffey, S.S.; Scudder, G.G.E. Variation in cardenolide content of the lygaeid bugs, Oncopeltus fasciatus and Lygaeus kalmii kalmii and of their milkweed hosts (Asclepias spp.) in central California. J. Chem. Ecol. 1977, 3, 613–624. [Google Scholar] [CrossRef]
- Holzinger, F.; Wink, M. Mediation of cardiac glycoside insensitivity in the monarch butterfly (Danaus plexippus): Role of an amino acid substitution in the ouabain binding site of Na+/K+-ATPase. J. Chem. Ecol. 1996, 22, 1921–1937. [Google Scholar] [CrossRef]
- Holzinger, F.; Frick, C.; Wink, M. Molecular basis for the insensitivity of the Monarch (Danaus plexippus) to cardiac glycosides. FEBS Lett. 1992, 314, 477–480. [Google Scholar] [CrossRef] [Green Version]
- Taverner, A.M.; Yang, L.; Barile, Z.J.; Lin, B.; Peng, J.; Pinharanda, A.P.; Rao, A.S.; Roland, B.P.; Talsma, A.D.; Wei, D.; et al. Adaptive substitutions underlying cardiac glycoside insensitivity in insects exhibit epistasis in vivo. Elife 2019, 8, e48224. [Google Scholar] [CrossRef]
- Petschenka, G.; Agrawal, A.A. Milkweed butterfly resistance to plant toxins is linked to sequestration, not coping with a toxic diet. Proc. R. Soc. B Biol. Sci. 2015, 282, 20151865. [Google Scholar] [CrossRef] [Green Version]
- Petschenka, G.; Fandrich, S.; Sander, N.; Wagschal, V.; Boppré, M.; Dobler, S. Stepwise evolution of resistance to toxic cardenolides via genetic substitutions in the Na+/K+ATP ase of milkweed butterflies (lepidoptera: Danaini). Evolution 2013, 67, 2753–2761. [Google Scholar] [CrossRef]
- Petschenka, G.; Halitschke, R.; Züst, T.; Roth, A.; Stiehler, S.; Tenbusch, L.; Hartwig, C.; Moreno Gámez, J.F.; Trusch, R.; Deckert, J.; et al. Sequestration of defenses against predators drives specialized host plant associations in preadapted milkweed bugs (Heteroptera: Lygaeinae). Am. Nat. 2022, 199, E211–E228. [Google Scholar] [CrossRef]
- Woods, E.C.; Hastings, A.P.; Turley, N.E.; Heard, S.B.; Agrawal, A.A. Adaptive geographical clines in the growth and defense of a native plant. Ecol. Monogr. 2012, 82, 149–168. [Google Scholar] [CrossRef] [Green Version]
- Malcolm, S.B. Milkweeds, monarch butterflies and the ecological significance of cardenolides. Chemoecology 1994, 5, 101–117. [Google Scholar] [CrossRef]
- Scudder, G.G.E.; Meredith, J. The permeability of the midgut of three insects to cardiac glycosides. J. Insect Physiol. 1982, 28, 689–694. [Google Scholar] [CrossRef]
- Malcolm, S.B. Cardenolide-mediated interactions between plants and herbivores. In Herbivores: Their Interactions with Secondary Plant Metabolites; Gerald, A.R., May, R.B., Eds.; Academic Press Inc.: London, UK, 1991; Volume 1, pp. 251–296. [Google Scholar]
- Krishna, A.B. Plant Cardenolides in Therapeutics. Int. J. Indig. Med. Plants 2015, 48, 1871–1896. [Google Scholar]
- Petschenka, G.; Fei, C.S.; Araya, J.J.; Schröder, S.; Timmermann, B.N.; Agrawal, A.A. Relative selectivity of plant cardenolides for Na+/K+-ATPases from the Monarch Butterfly and non-resistant insects. Front. Plant Sci. 2018, 9, 1424. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.R.; Tian, H.Y.; Tan, Y.F.; Chung, T.Y.; Sun, X.H.; Xia, X.; Ye, W.C.; Middleton, D.A.; Fedosova, N.; Esmann, M.; et al. Structures, chemotaxonomic significance, cytotoxic and Na+/K+-ATPase inhibitory activities of new cardenolides from Asclepias curassavica. Org. Biomol. Chem. 2014, 12, 8919–8929. [Google Scholar] [CrossRef]
- Agrawal, A.A.; Espinosa del Alba, L.; López-Goldar, X.; Hastings, A.P.; White, R.A.; Halitschke, R.; Dobler, S.; Petschenka, G.; Duplais, C. Functional evidence supports adaptive plant chemical defense along a geographical cline. Proc. Natl. Acad. Sci. USA 2022, 119, e2205073119. [Google Scholar] [CrossRef]
- Warashina, T.; Noro, T. Steroidal Glycosides from the Roots of Asclepias curassavica. Chem. Pharm. Bull. 2008, 56, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Li, J.-Z.; Liu, H.-Y.; Lin, Y.-J.; Hao, X.-J.; Ni, W.; Chen, C.-X. Six new C21 steroidal glycosides from Asclepias curassavica L. Steroids 2008, 73, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-Z.; Qing, C.; Chen, C.-X.; Hao, X.-J.; Liu, H.-Y. Cytotoxicity of cardenolides and cardenolide glycosides from Asclepias curassavica. Bioorg. Med. Chem. Lett. 2009, 19, 1956–1959. [Google Scholar] [CrossRef] [PubMed]
- Abe, F.; Mori, Y.; Yamauchi, T. Cardenolide glycosides from the seeds of Asclepias curassavica. Chem. Pharm. Bull. 1992, 40, 2917–2920. [Google Scholar] [CrossRef] [Green Version]
- Ji, A.-J.; Ma, Q.; Kong, M.-Y.; Li, L.-Y.; Chen, X.-L.; Liu, Z.-Q.; Wu, J.-J.; Zhang, R.R. Two cardenolide glycosides from the seed fairs of Asclepias curassavica and their cytotoxic activities. Chin. J. Nat. Med. 2022, 20, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Gopal Ravi, B.; Grace Guardian, M.E.; Dickman, R.; Wang, Z.Q. Profiling and structural analysis of cardenolides in two species of Digitalis using liquid chromatography coupled with high-resolution mass spectrometry. J. Chromatogr. A 2020, 1618, 460903. [Google Scholar] [CrossRef]
- Münger, L.H.; Boulos, S.; Nyström, L. UPLC-MS/MS based identification of dietary steryl glucosides by investigation of corresponding free sterols. Front. Chem. 2018, 6, 342. [Google Scholar] [CrossRef]
- Kiuchi, F.; Fukao, Y.; Maruyama, T.; Obata, T.; Tanaka, M.; Sasaki, T.; Mirage, M.; Haque, M.E.; Tsuda, Y. Cytotoxic principles of a Bangladeshi crude drug, akond mul (roots of Calotropis gigantea L.). Chem. Pharm. Bull. 1998, 46, 528–530. [Google Scholar] [CrossRef] [Green Version]
- Hunger, A.; Reichstein, T. Die Konstitution von Gofrusid und Frugosid. Glykoside und Aglykone 98. Mitteilung. Helv. Chim. Acta 1952, 35, 1073–1103. [Google Scholar] [CrossRef]
- Keller, M.; Reichstein, T. Gofrusid, ein Krystallisiertes Glykosid aus den Samen von Gomphocarpus fructicosus (L.) R. Br. Helv. Chim. Acta 1949, 32, 1607–1612. [Google Scholar] [CrossRef]
- Hernández-Quiroz, T.; Soriano-García, M.; Rodríguez-Romero, A.; Valencia, C.; Hernandez, L.; Aguirre-García, F. [2α(2S,3S,4R,6R),3β,5α]-14-Hydroxy-19-oxo-3,2-[(tetrahydro-3,4-dihydroxy-6-methyl-2H-pyran-2,3-diyl)bis(oxy)]card-20(22)-enolide dihydrate (calactin), C29H39O9.2H2O, a cardenolide from Asclepias linaria. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1994, 50, 935–938. [Google Scholar] [CrossRef]
- Nishio, S.; Blum, M.S.; Silverton, J.V.; Highet, R.J. Structure of humistratin: A novel cardenolide from the sandhill milkweed Asclepias humistrata. J. Org. Chem. 1982, 47, 2154–2157. [Google Scholar] [CrossRef]
- Pederson, P.J.; Cai, S.; Carver, C.; Powell, D.R.; Risinger, A.L.; Grkovic, T.; O’Keefe, B.R.; Mooberry, S.L.; Cichewicz, R.H. Triple-Negative breast cancer cells exhibit differential sensitivity to cardenolides from Calotropis gigantea. J. Nat. Prod. 2020, 83, 2269–2280. [Google Scholar] [CrossRef] [PubMed]
- El-Seedi, H.R.; Khalifa, S.A.M.; Taher, E.A.; Farag, M.A.; Saeed, A.; Gamal, M.; Hegazy, M.E.F.; Youssef, D.; Musharraf, S.G.; Alajlani, M.M.; et al. Cardenolides: Insights from chemical structure and pharmacological utility. Pharmacol. Res. 2019, 141, 123–175. [Google Scholar] [CrossRef] [PubMed]
- Naha, N.; Lee, H.Y.; Jo, M.J.; Chung, B.C.; Kim, S.H.; Kim, M.O. Rare sugar D-allose induces programmed cell death in hormone refractory prostate cancer cells. Apoptosis 2008, 13, 1121–1134. [Google Scholar] [CrossRef]
- Meneses-Sagrero, S.E.; Rascón-Valenzuela, L.A.; García-Ramos, J.C.; Vilegas, W.; Arvizu-Flores, A.A.; Sotelo-Mundo, R.R.; Robles-Zepeda, R.E. Calotropin and corotoxigenin 3-O-glucopyranoside from the desert milkweed Asclepias subulata inhibit the Na+/K+-ATPase activity. PeerJ 2022, 10, e13524. [Google Scholar] [CrossRef]
- Richards, L.A.; Dyer, L.A.; Forister, M.L.; Smilanich, A.M.; Dodson, C.D.; Leonard, M.D.; Jeffrey, C.S. Phytochemical diversity drives plant-insect community diversity. Proc. Natl. Acad. Sci. USA 2015, 112, 10973–10978. [Google Scholar] [CrossRef] [Green Version]
- Salazar, D.; Lokvam, J.; Mesones, I.; Pilco, M.V.; Milagros, J.; Zuñiga, A.; De Valpine, P.; Fine, P.V.A. Origin and maintenance of chemical diversity in a species-rich tropical tree lineage. Nat. Ecol. Evol. 2018, 2, 983–990. [Google Scholar] [CrossRef]
- Volf, M.; Segar, S.T.; Miller, S.E.; Isua, B.; Sisol, M.; Aubona, G.; Šimek, P.; Moos, M.; Laitila, J.; Kim, J.; et al. Community structure of insect herbivores is driven by conservatism, escalation and divergence of defensive traits in Ficus. Ecol. Lett. 2018, 21, 83–92. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2022. Available online: https://www.R-project.org/ (accessed on 1 October 2022).
- Petschenka, G.; Offe, J.K.; Dobler, S. Physiological screening for target site insensitivity and localization of Na+/K+-ATPase in cardenolide-adapted Lepidoptera. J. Insect Physiol. 2012, 58, 607–612. [Google Scholar] [CrossRef]
Position | 1 | 2 | 3 | 4 | ||||
---|---|---|---|---|---|---|---|---|
δH | δC | δH | δC | δH | δC | δH | δC | |
1 | 2.15 β brd (13.4) 0.81 α dd (13.4, 11.1) | 30.7 CH2 | 2.23 br, 0.89 br | 30.6 CH2 | 2.45 β dd (12.6, 4.4) 1.19 α brt (12.6) | 34.4 CH2 | 2.15 α dt (13.5, 3.1) 0.83 α brt (13.4) | 30.5 CH2 |
2 | 1.85 brd, (11.1), 1.35 br | 29.1 CH2 | 1.92 br, 1.43 br | 29.2 CH2 | 3.91 β br | 69.1 CH | 1.86 br, 1.37 br | 28.9 CH2 |
3 | 3.77 m | 79.1 CH | 3.85 m | 79.1 CH | 4.02 α td (10.6, 4.0) | 72.1 CH | 3.78 α m | 79.0 CH |
4 | 1.72 brd (12.2), 1.31 br | 34.0 CH2 | 1.81 br, 1.41 br | 34.0 CH2 | 1.76 α br, 1.31 β br | 32.6 CH2 | 1.72 α br, 1.31 β q (12.2) | 33.8 CH2 |
5 | 1.19 brt (11.5) | 43.7 CH | 1.28 br | 43.8 CH | 1.70 α br | 42.2 CH | 1.20 α br | 43.8 CH |
6 | 1.26 m, 1.26 m | 27.3 CH2 | 1.34 m, 1.34 m | 27.4 CH2 | 2.16 m, 1.57 m | 26.1 CH2 | 1.25 m, 1.25 m | 27.3 CH2 |
7 | 1.88 m, 1.07 m | 26.9 CH2 | 1.96 m, 1.16 m | 26.9 CH2 | 1.90 β m, 1.74 α m | 26.9 CH2 | 1.86 m, 1.06 m | 27.1 CH2 |
8 | 1.63 br | 41.2 CH | 1.71 br | 41.3 CH | 1.72 β br | 41.8 CH | 1.63 β br | 40.6 CH |
9 | 1.00 br | 49.1 CH | 1.08 br | 48.9 CH | 1.64 α br | 46.9 CH | 1.02 α brt (13.8) | 45.3 CH |
10 | - | 38.7 C | - | 38.7 C | - | 53.3 C | - | 38.6 C |
11 | 1.55 m, 1.33 m | 22.5 CH2 | 1.64 m, 1.42 m | 22.5 CH2 | 1.73 α m, 1.12 β m | 21.5 CH2 | 1.76 α m, 1.46 β q (12.5) | 30.6 CH2 |
12 | 1.44 m, 1.33 m | 39.7 CH2 | 1.53 m, 1.42 m | 39.7 CH2 | 1.53 m, 1.46 m | 37.2 CH2 | 3.32 α dd (12.2, 1.7) | 74.7 CH |
13 | - | 49.8 C | - | 49.5 C | - | 48.3 C | - | 55.8 C |
14 | - | 86.3 C | - | 85.7 C | - | 82.1 C | - | 86.4 C |
15 | 2.09 m, 1.63 m | 31.7 CH2 | 2.17 m, 1.72 m | 31.8 CH2 | 4.66 α brd (8.4) | 71.8 CH | 1.88 α m, 1.67 β m | 31.7 CH2 |
16 | 2.09 m, 1.73 m | 26.5 CH2 | 2.19 m, 1.82 m | 26.6 CH2 | 2.68 m, 1.66 m | 36.0 CH2 | 2.10 m, 1.79 m | 26.8 CH2 |
17 | 2.81 α br | 50.2 CH | 2.89 α br | 50.2 CH | 2.77 α dd (9.8, 4.9) | 47.3 CH | 3.20 br | 45.4 CH |
18 | 0.82 β s | 15.2 CH3 | 0.91 β s | 15.3 CH3 | 0.85 β s | 16.1 CH3 | 0.73 β s | 8.9 CH3 |
19 | 3.82, br 3.67 br | 59.0 CH2 | 3.90 br, 3.76 br | 59.0 CH2 | 10.10 s | 213.1 CH | 3.81 d (12.2) 3.68 d (12.2) | 58.6 CH2 |
20 | - | 178.5 C | - | 178.2 C | - | 177.6 C | - | 178.4 C |
21 | 4.99 d (18.8) 4.93 d (18.8) | 75.2 CH2 | 5.06 d (18.7) 5.00 d (18.7) | 75.1 CH2 | 5.09 d (18.3) 5.02 d (18.3) | 75.0 CH2 | 4.95 br, 4.95 br | 75.1 CH2 |
22 | 5.89 s | 115.9 CH | 5.98 s | 115.7 CH | 6.02 s | 116.2 CH | 5.92 s | 116.2 CH |
23 | - | 179.3 C | - | 178.9 C | - | 178.2 C | - | 178.5 C |
1′ | 4.77 d (8.3) | 98.0 CH | 4.87 d (8.2) | 97.8 CH | 4.63 s | 94.8 CH | 4.51 α d (7.8) | 100.3 CH |
2′ | 3.32 dd (8.3, 3) | 70.2 CH | 3.43 dd (8.7, 2.7) | 70.0 CH | - | 91.6 C | 3.14 β brt (8.7) | 73.1 CH |
3′ | 4.09 t (3) | 71.3 CH | 4.45 t (3.1) | 70.9 CH | 3.95 br | 81.5 CH | 3.39 α t (9.3) | 75.8 CH |
4′ | 3.53 dd (10, 3) | 66.9 CH | 3.78 dd (10, 2.7) | 76.2 CH | 2.13 β br, 1.71 α br | 37.1 CH2 | 3.29 β t (9.3) | 69.6 CH |
5′ | 3.68 brddd (10.6, 1.5) | 73.6 CH | 3.88 brd (10.3, 2.2) | 72.4 CH | 3.82 β q (5.8) | 68.7 CH | 3.36 α ddd (9.3, 5.8, 1.7) | 75.9 CH |
6′ | 3.82 dd (12.0, 1.5) 3.61 dd, (12.0, 6.0) | 61.2 CH2 | 3.90 brd (12.1) 3.76 dd (12.5, 4.2) | 60.6 CH2 | 1.29 α d (6.3) | 19.8 CH3 | 3.82 dd (1.7, 12.2) 3.63 dd (5.8, 12.2) | 60.7 CH2 |
1” | 4.56 d (7.9) | 103.6 CH | 4.64 d (7.7) | 104 CH | ||||
2” | 3.32 brt (8.9) | 73.2 CH | 3.37 t (9.1) | 73.4 CH | ||||
3” | 3.48 t (9.2) | 75.7 CH | 3.51 t (9.1) | 75.5 CH | ||||
4” | 3.42 br | 69.3 CH | 3.43 br | 69.4 CH | ||||
5” | 3.44 br | 75.7 CH | 3.44 br | 75.8 CH | ||||
6” | 3.90,br, 3.76 br | 60.6 CH2 | 3.90 dd (12.2, 1.5) 3.74 dd (12.2, 5.7) | 60.2 CH2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubiano-Buitrago, P.; Pradhan, S.; Paetz, C.; Rowland, H.M. New Structures, Spectrometric Quantification, and Inhibitory Properties of Cardenolides from Asclepias curassavica Seeds. Molecules 2023, 28, 105. https://doi.org/10.3390/molecules28010105
Rubiano-Buitrago P, Pradhan S, Paetz C, Rowland HM. New Structures, Spectrometric Quantification, and Inhibitory Properties of Cardenolides from Asclepias curassavica Seeds. Molecules. 2023; 28(1):105. https://doi.org/10.3390/molecules28010105
Chicago/Turabian StyleRubiano-Buitrago, Paola, Shrikant Pradhan, Christian Paetz, and Hannah M. Rowland. 2023. "New Structures, Spectrometric Quantification, and Inhibitory Properties of Cardenolides from Asclepias curassavica Seeds" Molecules 28, no. 1: 105. https://doi.org/10.3390/molecules28010105
APA StyleRubiano-Buitrago, P., Pradhan, S., Paetz, C., & Rowland, H. M. (2023). New Structures, Spectrometric Quantification, and Inhibitory Properties of Cardenolides from Asclepias curassavica Seeds. Molecules, 28(1), 105. https://doi.org/10.3390/molecules28010105