Amaranth Seeds and Sprouts as Functional Ingredients for the Development of Dietary Fiber, Betalains, and Polyphenol-Enriched Minced Tilapia Meat Gels
Abstract
:1. Introduction
2. Results
2.1. Evaluation of the Nutritional Composition of Minced Tilapia Meat Gels Enriched with Amaranth Seed or Sprout Flours
2.2. Evaluation of the Polyphenol and Betalain Composition of Minced Tilapia Meat Gels Enriched with Amaranth Seed or Sprout Flours
2.3. Evaluation of the Total Antioxidant Capacity of Minced Tilapia Meat Gels Enriched with Amaranth Seed or Sprout Flours
2.4. Evaluation of the Techno-Functional Properties of Minced Tilapia Meat Gels Enriched with Amaranth Seed or Sprout Flours
3. Discussion
4. Materials and Methods
4.1. Amaranth Seed and Sprout Flours
4.2. Minced Tilapia Meat Gels Enriched with Amaranth Seed or Sprout Flours
4.3. Nutritional Composition
4.4. Polyphenols and Betalains Composition
4.4.1. Free Polyphenols Content
4.4.2. Free Flavonoids Content
4.4.3. Bound Polyphenols Content
4.4.4. Betalain Content
4.4.5. UPLC–QToF MSE Profile
4.5. Antioxidant Capacity
4.6. Techno-Functional Properties
4.6.1. Texture Profile Analysis (TPA)
4.6.2. Color Parameters
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jim, F.; Garamumhango, P.; Musara, C. Comparative analysis of nutritional value of Oreochromis niloticus (Linnaeus), Nile tilapia, meat from three different ecosystems. J. Food Qual. 2017, 2017, 6714347. [Google Scholar] [CrossRef] [Green Version]
- Desta, D.; Zello, G.A.; Alemayehu, F.; Estfanos, T.; Zatti, K.; Drew, M. Proximate analysis of Nile Tilapia, (Oreochromis niloticus), fish fillet harvested from farmers Pond and Lake Hawassa, Southern Ethiopia. Int. J. Res. Dev. Technol. 2019, 11, 94–99. [Google Scholar]
- Das, D.; Mir, N.A.; Chandla, N.K.; Singh, S. Combined effect of pH treatment and the extraction pH on the physicochemical, functional and rheological characteristics of amaranth (Amaranthus hypochondriacus) seed protein isolates. Food Chem. 2021, 353, 129466. [Google Scholar] [CrossRef] [PubMed]
- Das, A.K.; Nanda, P.K.; Madane, P.; Biswas, S.; Das, A.; Zhang, W.; Lorenzo, J.M. A comprehensive review on antioxidant dietary fibre enriched meat-based functional foods. Trends Food Sci. Technol. 2020, 99, 323–336. [Google Scholar] [CrossRef]
- Wan Rosli, W.I.; Solihah, M.A.; Aishah, M.; Nik Fakurudin, N.A.; Mohsin, S.S.J. Colour, textural properties, cooking characteristics and fibre content of chicken patty added with oyster mushroom (Pleurotus sajor-caju). Int. Food Res. J. 2011, 18, 621–627. [Google Scholar]
- Malav, O.P.; Sharma, B.D.; Kumar, R.R.; Talukder, S.; Ahmed, S.R.; Irshad, A. Antioxidant potential and quality characteristics of functional mutton patties incorporated with cabbage powder. Nutr. Food Sci. 2015, 45, 542–563. [Google Scholar] [CrossRef]
- Mantihal, S.; Azmi Hamsah, A.; Mohd Zaini, H.; Mantanjun, P.; Pindi, W. Quality characteristics of functional chicken patties incorporated with round cabbage powder. J. Food Process. Preserv. 2021, 45, e16099. [Google Scholar] [CrossRef]
- Verma, A.K.; Rajkumar, V.; Banerjee, R.; Biswas, S.; Das, A.K. Guava (Psidium guajava L.) powder as an antioxidant dietary fibre in sheep meat nuggets. Asian-Australas. J. Anim. Sci. 2013, 26, 886–895. [Google Scholar] [CrossRef] [Green Version]
- Madane, P.; Das, A.K.; Pateiro, M.; Nanda, P.K.; Bandyopadhyay, S.; Jagtap, P.; Barba, F.J.; Shewalkar, A.; Maity, B.; Lorenzo, J.M. Drumstick (Moringa oleifera) flower as an antioxidant dietary fibre in chicken meat nuggets. Foods 2019, 8, 307. [Google Scholar] [CrossRef] [Green Version]
- Solari-Godiño, A.; Pérez-Jiménez, J.; Saura-Calixto, F.; Borderías, A.J.; Moreno, H.M. Anchovy mince (Engraulis ringens) enriched with polyphenol-rich grape pomace dietary fibre: In vitro polyphenols bioaccessibility, antioxidant and physico-chemical properties. Food Res. Int. 2017, 102, 639–646. [Google Scholar] [CrossRef] [Green Version]
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Genotypic diversity in vegetable amaranth for antioxidant, nutrient and agronomic traits. Indian J. Genet. Plant Breed. 2017, 77, 173–176. [Google Scholar] [CrossRef]
- Perales-Sánchez, J.X.; Reyes-Moreno, C.; Gómez-Favela, M.A.; Milán-Carrillo, J.; Cuevas-Rodríguez, E.O.; Valdez-Ortiz, A.; Gutiérrez-Dorado, R. Increasing the antioxidant activity, total phenolic and flavonoid contents by optimizing the germination conditions of amaranth seeds. Plant Foods Hum. Nutr. 2014, 69, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Lemmens, E.; Moroni, A.V.; Pagand, J.; Heirbaut, P.; Ritala, A.; Karlen, Y.; Lê, K.-A.; Van de Broeck, H.C.; Brouns, F.J.P.H.; De Brier, N.; et al. Impact of cereal seed sprouting on its nutritional and technological properties: A critical review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 305–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chauhan, A.; Saxena, D.C.; Singh, S. Total dietary fibre and antioxidant activity of gluten free cookies made from raw and germinated amaranth (Amaranthus spp.) flour. LWT-Food Sci. Technol. 2015, 63, 939–945. [Google Scholar] [CrossRef]
- Popoola, O.O. Phenolic compounds composition and in vitro antioxidant activity of Nigerian Amaranthus viridis seed as affected by autoclaving and germination. Measur. Foods 2022, 6, 100028. [Google Scholar] [CrossRef]
- Causin, H.F.; Bordón, D.A.; Burrieza, H. Salinity tolerance mechanisms during germination and early seedling growth in Chenopodium quinoa wild. genotypes with different sensitivity to saline stress. Environ. Exp. Bot. 2020, 172, 103995. [Google Scholar] [CrossRef]
- Bedrníček, J.; Kadlec, J.; Laknerová, I.; Mráz, J.; Samková, E.; Petrášková, E.; Hasoňová, L.; Vácha, F.; Kron, V.; Smetana, P. Onion peel powder as an antioxidant-rich material for sausages prepared from mechanically separated fish meat. Antioxidants 2020, 9, 974. [Google Scholar] [CrossRef]
- Cortez-Trejo, M.C.; Loarca-Piña, G.; Figueroa-Cárdenas, J.D.; Manríquez, J.; Mendoza, S. Gel properties of acid-induced gels obtained at room temperature and based on common bean proteins and xanthan gum. Food Hydrocoll. 2022, 132, 107873. [Google Scholar] [CrossRef]
- Verma, A.K.; Rajkumar, V.; Kumar, S. Effect of amaranth and quinoa seed flour on rheological and physicochemical properties of goat meat nuggets. J. Food Sci. Technol. 2019, 56, 5027–5035. [Google Scholar] [CrossRef]
- Özer, C.O.; Secen, S.M. Effects of quinoa flour on lipid and protein oxidation in raw and cooked beef burger during long term frozen storage. Food Sci. Technol. 2018, 38, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Pellegrini, M.; Lucas-Gonzalez, R.; Sayas-Barberá, E.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Quinoa (Chenopodium quinoa Willd) paste as partial fat replacer in the development of reduced fat cooked meat product type pâté: Effect on quality and safety. CyTa J. Food 2018, 16, 1079–1088. [Google Scholar] [CrossRef]
- López, D.N.; Galante, M.; Raimundo, G.; Spelzini, D.; Boeris, V. Functional properties of amaranth, quinoa and chia proteins and the biological activities of their hydrolyzates. Food Res. Int. 2019, 116, 419–429. [Google Scholar] [CrossRef] [PubMed]
- García Fillería, S.F.; Tironi, V.A. Application of amaranth protein isolate and hydrolysate on a reduced salt fish restructured product: Antioxidant properties, textural and microbiological effects. Int. J. Food Sci. Technol. 2015, 50, 1452–1460. [Google Scholar] [CrossRef]
- Alves, M.C.; Paula, M.M.D.O.; Costa, C.G.C.D.; Sales, L.A.; Lago, A.M.T.; Pimenta, C.J.; Gomes, M.E.D.S. Restructured fish cooked ham: Effects of the use of carrageenan and transglutaminase on textural properties. J. Aquat. Food Prod. Technol. 2021, 30, 451–461. [Google Scholar] [CrossRef]
- Atashkar, M.; Hojjatoleslamy, M.; Sedaghat Boroujeni, L. The influence of fat substitution with κ-carrageenan, konjac, and tragacanth on the textural properties of low-fat sausage. Food Sci. Nutr. 2018, 6, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Condés, M.C.; Añón, M.C.; Dufresne, A.; Mauri, A.N. Composite and nanocomposite films based on amaranth biopolymers. Food Hydrocoll. 2018, 74, 159–167. [Google Scholar] [CrossRef]
- Felisberto, M.H.F.; Galvão, M.T.E.L.; Picone, C.S.F.; Cunha, R.L.; Pollonio, M.A.R. Effect of prebiotic ingredients on the rheological properties and microstructure of reduced-sodium and low-fat meat emulsions. LWT-Food Sci. Technol. 2015, 60, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Paredes-Lopez, O.; Mora-Escobedo, R. Germination of amaranth seeds: Effects on nutrient composition and color. J. Food Sci. 1989, 54, 761–762. [Google Scholar] [CrossRef]
- Martínez-Maldonado, M.A.; Velazquez, G.; de León, J.A.R.; Borderías, A.J.; Moreno, H.M. Effect of high pressure processing on heat-induced gelling capacity of blue crab (Callinectes sapidus) meat. Innov. Food Sci. Emerg. Technol. 2020, 59, 102253. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2002. [Google Scholar]
- Solari-Godiño, A.; Lindo-Rojas, I.; Pandia-Estrada, S. Determination of phenolic compounds and evaluation of antioxidant capacity of two grapes residues (Vitis vinifera) of varieties dried: Quebranta (red) and Torontel (white). Cogent Food Agric. 2020, 3, 1361599. [Google Scholar] [CrossRef]
- Kumar, S.S.; Manoj, P.; Shetty, N.P.; Prakash, M.; Giridhar, P. Characterization of major betalain pigments-gomphrenin, betanin and isobetanin from Basella rubra L. fruit and evaluation of efficacy as a natural colourant in product (ice cream) development. J. Food Sci. Technol. 2015, 52, 4994–5002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Method Enzymol. 1999, 299, 152–178. [Google Scholar]
- Oomah, B.D.; Cardador-Martínez, A.; Loarca-Piña, G. Phenolics and antioxidative activities in common beans (Phaseolus vulgaris L). J. Sci. Food Agric. 2005, 85, 935–942. [Google Scholar] [CrossRef]
- Quatrin, A.; Pauletto, R.; Maurer, L.H.; Minuzzi, N.; Nichelle, S.M.; Carvalho, J.F.C.; Maróstica, M.R.; Rodriguez, E.; Bochi, V.C.; Emanuelli, T. Characterization and quantification of tannins, flavonols, anthocyanins and matrix-bound polyphenols from jaboticaba fruit peel: A comparison between Myrciaria trunciflora and M. jaboticaba. J. Food Compost Anal. 2019, 78, 59–74. [Google Scholar] [CrossRef]
- Reynoso-Camacho, R.; Rodríguez-Villanueva, L.D.; Sotelo-González, A.M.; Ramos-Gómez, M.; Pérez-Ramírez, I.F. Citrus decoction by-product represents a rich source of carotenoid, phytosterol, extractable and non-extractable polyphenols. Food Chem. 2021, 350, 129239. [Google Scholar] [CrossRef]
- Del Pino-García, R.; García-Lomillo, J.; Rivero-Pérez, M.D.; González-SanJosé, M.L.; Muñiz, P. Adaptation and validation of QUick, easy, new, CHEap, and reproducible (QUENCHER) antioxidant capacity assays in model products obtained from residual wine pomace. J. Agric. Food Chem. 2015, 63, 6922–6931. [Google Scholar] [CrossRef] [PubMed]
Minced Tilapia Meat Gel | Nutritional Composition 1 | |||||
---|---|---|---|---|---|---|
Protein | Lipids | Carbohydrates 2 | Crude Fiber | Ash | Moisture | |
Control (0%) | 15.15 ± 0.15a | 1.44 ± 0.01a | 1.96 ± 0.15e | 1.35 ± 0.02e | 3.41 ± 0.14a | 78.03 ± 0.16a |
+2% amaranth seed flour | 14.99 ± 0.16a | 1.00 ± 0.02b | 4.14 ± 0.04d | 1.69 ± 0.01e | 2.91 ± 0.06b | 76.95 ± 0.04ab |
+4% amaranth seed flour | 14.96 ± 0.14a | 1.19 ± 0.05b | 5.59 ± 0.55c | 2.04 ± 0.01d | 2.93 ± 0.04b | 74.89 ± 0.73b |
+6% amaranth seed flour | 14.91 ± 0.21a | 0.66 ± 0.02c | 7.49 ± 0.23b | 2.15 ± 0.06d | 3.37 ± 0.01a | 74.02 ± 0.07b |
+10% amaranth seed flour | 15.27 ± 0.22a | 0.67 ± 0.00c | 9.61 ± 0.55a | 2.36 ± 0.06cd | 3.18 ± 0.09a | 71.29 ± 0.24c |
+2% amaranth sprout flour | 15.21 ± 0.11a | 0.79 ± 0.02c | 4.19 ± 0.09d | 2.69 ± 0.01c | 2.82 ± 0.02b | 76.99 ± 0.01ab |
+4% amaranth sprout flour | 15.20 ± 0.23a | 1.05 ± 0.04b | 6.14 ± 1.05c | 3.31 ± 0.01b | 2.71 ± 0.04b | 74.90 ± 0.82b |
+6% amaranth sprout flour | 14.72 ± 0.04a | 1.01 ± 0.05b | 7.62 ± 0.05b | 3.88 ± 0.04ab | 2.91 ± 0.05b | 72.68 ± 0.11c |
+10% amaranth sprout flour | 15.67 ± 0.27a | 1.11 ± 0.03b | 8.90 ± 0.57a | 4.34 ± 0.01a | 3.56 ± 0.16a | 71.41 ± 0.28c |
Minced Tilapia Meat Gel | Polyphenols | Betalains | |||||
---|---|---|---|---|---|---|---|
Free Polyphenols 1 | Free Flavonoids 2 | Free Proantocyanidins 3 | Bound Polyphenols 1 | Betacyanins 4 | Betaxanthins 5 | Betalamic Acid | |
Control (0%) | 150.08 ± 7.51a | 51.77 ± 0.80c | 3.30 ± 0.28c | 261.64 ± 13.77a | 0.13 ± 0.01f | 0.04 ± 3 × 10−3e | 0.08 ± 0.00f |
+2% amaranth seed flour | 146.78 ± 7.67a | 59.58 ± 4.18bc | 5.87 ± 0.40b | 276.02 ± 12.56a | 0.10 ± 0.00f | 0.06 ± 2 × 10−3e | 0.12 ± 0.01f |
+4% amaranth seed flour | 137.62 ± 4.93a | 61.69 ± 5.08b | 5.90 ± 0.42b | 307.12 ± 25.04a | 0.24 ± 0.01e | 0.16 ± 9 × 10−3d | 0.22 ± 0.01e |
+6% amaranth seed flour | 120.50 ± 4.96b | 59.30 ± 1.17bc | 5.59 ± 0.43b | 306.85 ± 27.46a | 0.26 ± 0.02e | 0.21 ± 1 × 10−2c | 0.23 ± 0.01e |
+10% amaranth seed flour | 121.17 ± 4.02b | 57.85 ± 3.38bc | 5.66 ± 0.03b | 308.65 ± 20.12a | 0.35 ± 0.01cd | 0.22 ± 4 × 10−3c | 0.37 ± 0.01d |
+2% amaranth sprout flour | 150.85 ± 4.68a | 66.25 ± 3.37b | 5.29 ± 0.59b | 284.71 ± 24.25a | 0.31 ± 0.01d | 0.19 ± 3 × 10−3c | 0.36 ± 0.01d |
+4% amaranth sprout flour | 138.75 ± 1.24a | 65.52 ± 3.11b | 7.26 ± 0.28a | 302.09 ± 21.12a | 0.40 ± 0.02bc | 0.25 ± 2 × 10−3b | 0.41 ± 0.00c |
+6% amaranth sprout flour | 137.88 ± 6.35a | 64.09 ± 3.70b | 7.17 ± 0.07a | 311.52 ± 5.63a | 0.42 ± 0.02b | 0.28 ± 2 × 10−2b | 0.46 ± 0.03b |
+10% amaranth sprout flour | 139.02 ± 3.84a | 84.89 ± 3.04a | 7.94 ± 0.18a | 317.10 ± 8.60a | 0.63 ± 0.04a | 0.41 ± 9 × 10−3a | 0.82 ± 0.00a |
Compound | Minced Tilapia Meat Gels | ||||||||
---|---|---|---|---|---|---|---|---|---|
Control | +Amaranth Seed Flour | +Amaranth Sprout Flour | |||||||
0% | 2% | 4% | 6% | 10% | 2% | 4% | 6% | 10% | |
Free polyphenols | |||||||||
Flavonols | |||||||||
Quercetin rutinoside (rutin) * | ND | ND | ND | ND | 0.50 ± 0.02b | ND | ND | 0.34 ± 0.00a | 0.49 ± 0.02b |
Kaempferol rutinoside | ND | ND | ND | 0.37 ± 0.02a | 0.64 ± 0.01c | ND | 0.36 ± 0.01a | 0.52 ± 0.03b | 0.82 ± 0.06d |
Flavones | |||||||||
Apigenin dihexoside | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Isoflavones | |||||||||
Daidzin hexoside | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Glycitin hexoside | ND | ND | ND | ND | ND | ND | ND | 0.61 ± 0.05a | 0.80 ± 0.02b |
Genistin hexoside | ND | ND | ND | 0.37 ± 0.03a | 0.60 ± 0.16bc | ND | 0.35 ± 0.01a | 0.48 ± 0.02b | 0.81 ± 0.15c |
Hydroxybenzoic acids | |||||||||
Hydroxybenzoic acid hexoside | ND | ND | ND | ND | 1.09 ± 0.25a | ND | ND | 1.12 ± 0.02a | 1.52 ± 0.21a |
Hydroxybenzoic acid * | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Dihydroxybenzoic acid hexoside | ND | 0.84 ± 0.03a | 1.21 ± 0.12b | 3.40 ± 0.06e | 6.75 ± 0.65f | 1.07 ± 0.00b | 1.62 ± 0.04c | 1.97 ± 0.10c | 2.90 ± 0.11d |
Vanillic acid * | ND | ND | ND | 1.07 ± 0.08a | 2.11 ± 0.20b | ND | ND | 1.12 ± 9.12a | 2.13 ± 0.17b |
Hydroxycinnamic acids | |||||||||
Cinammic acid * | ND | ND | 1.45 ± 0.04c | 2.18 ± 0.19d | 3.89 ± 0.24e | ND | ND | 0.29 ± 0.03a | 0.99 ± 0.10b |
Ferulic acid hexoside | ND | ND | ND | ND | ND | ND | ND | ND | 0.67 ± 0.05 |
Caffeic acid * | ND | ND | ND | ND | ND | ND | 0.31 ± 0.02a | 1.01 ± 0.07b | 1.45 ± 0.11b |
Feruloylquinic acid | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Ferulic acid* | ND | ND | ND | ND | ND | ND | 0.09 ± 0.00a | 0.34 ± 0.02b | 0.71 ± 0.04c |
Bound polyphenols | |||||||||
Hydroxycinnamic acids | |||||||||
Ferulic acid * | ND | ND | ND | ND | ND | 10.33 ± 1.07a | 13.11 ± 1.00a | 15.54 ± 0.91b | 18.47 ± 1.32c |
Betalains | |||||||||
Betacyanins | |||||||||
Amaranthine | ND | ND | ND | ND | ND | ND | 0.23 ± 0.01a | 0.89 ± 0.04b | 1.34 ± 0.08c |
Isoamaranthine | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Antioxidant Capacity | Minced Tilapia Meat Gels | ||||||||
---|---|---|---|---|---|---|---|---|---|
Control | +Amaranth Seed Flour | +Amaranth Sprout Flour | |||||||
0% | 2% | 4% | 6% | 10% | 2% | 4% | 6% | 10% | |
Q-ABTS assay | 20.93 ± 1.61e | 40.67 ± 0.34d | 39.15 ± 2.40d | 44.78 ± 2.70cd | 36.09 ± 2.34d | 57.95 ± 1.60bc | 71.92 ± 4.03ab | 74.36 ± 6.13a | 80.79 ± 6.13a |
Q-DPPH assay | 16.86 ± 0.06d | 74.65 ± 3.18c | 83.04 ± 1.16bc | 80.40 ± 7.56bc | 85.17 ± 0.31b | 94.57 ± 2.33a | 97.93 ± 0.63a | 98.66 ± 0.25a | 97.04 ± 0.06a |
Minced Tilapia Meat Gel | Texture Profile Analysis Parameters | ||
---|---|---|---|
Hardness 1 | Springiness | Cohesiveness 2 | |
Control (0%) | 21.30 ± 2.44 a | 0.92 ± 0.03 a | 0.38 ± 0.01 b |
+2% amaranth seed flour | 28.25 ± 3.34 bc | 0.93 ± 0.04 a | 0.46 ± 0.05 c |
+4% amaranth seed flour | 32.95 ± 3.71 d | 0.92 ± 0.03 a | 0.42 ± 0.01 c |
+6% amaranth seed flour | 36.91 ± 3.61 d | 0.95 ± 0.04 a | 0.55 ± 0.01 d |
+10% amaranth seed flour | 36.75 ± 3.70 d | 0.95 ± 0.03 a | 0.40 ± 0.02 c |
+2% amaranth sprout flour | 26.55 ± 2.73 bc | 0.94 ± 0.01 a | 0.36 ± 0.01 b |
+4% amaranth sprout flour | 22.58 ± 2.55 ab | 0.91 ± 0.01 a | 0.21 ± 0.06 a |
+6% amaranth sprout flour | 21.57 ± 2.58 ab | 0.93 ± 0.01 a | 0.41 ± 0.02 c |
+10% amaranth sprout flour | 24.62 ± 1.28 ab | 0.93 ± 0.02 a | 0.23 ± 0.03 a |
Minced Tilapia Meat Gel | Color Parameters | ||||||
---|---|---|---|---|---|---|---|
L* | a* | b* | Chroma | Hue Angle | Whiteness | ΔE | |
Control (0%) | 71.45 ± 1.32a | −0.66 ± 0.51f | 8.63 ± 0.89c | 8.67 ± 0.87c | 94.61 ± 3.48a | 71.13 ± 1.31a | --- |
+2% amaranth seed flour | 68.16 ± 1.61ab | −0.16 ± 0.32e | 9.46 ± 0.58bc | 9.47 ± 0.58bc | 91.00 ± 2.00ab | 67.86 ± 1.59b | 3.54 ± 1.49c |
+4% amaranth seed flour | 68.04 ± 0.65ab | −0.11 ± 0.31e | 9.81 ± 0.56bc | 9.82 ± 0.55bc | 90.72 ± 1.83b | 67.74 ± 0.64b | 3.71 ± 0.58c |
+6% amaranth seed flour | 65.41 ± 0.82b | 0.17 ± 0.33d | 10.46 ± 0.92b | 10.47 ± 0.93b | 89.20 ± 1.66b | 65.11 ± 0.80bc | 6.45 ± 0.65b |
+10% amaranth seed flour | 64.27 ± 0.87b | 0.76 ± 0.43c | 11.15 ± 1.04b | 11.18 ± 1.06b | 86.22 ± 1.79c | 63.95 ± 0.86c | 7.81 ± 0.89b |
+2% amaranth sprout flour | 68.35 ± 1.24ab | 0.30 ± 0.39cd | 11.70 ± 0.70b | 11.71 ± 0.70b | 88.61 ± 1.89b | 67.98 ± 1.22b | 4.59 ± 0.97c |
+4% amaranth sprout flour | 63.18 ± 2.70bc | 0.52 ± 0.20c | 12.99 ± 0.72b | 13.00 ± 0.72b | 87.69 ± 0.84bc | 62.82 ± 2.65c | 9.59 ± 2.09ab |
+6% amaranth sprout flour | 63.36 ± 1.52bc | 1.76 ± 0.37b | 16.25 ± 0.84a | 16.34 ± 0.87a | 83.87 ± 1.05d | 62.87 ± 1.49c | 11.45 ± 1.13a |
+10% amaranth sprout flour | 62.19 ± 0.59c | 2.12 ± 0.29a | 18.66 ± 0.81a | 18.78 ± 0.81a | 83.51 ± 0.85d | 61.64 ± 0.57c | 13.95 ± 0.72a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Ramírez, I.F.; Sotelo-González, A.M.; López-Echevarría, G.; Martínez-Maldonado, M.A. Amaranth Seeds and Sprouts as Functional Ingredients for the Development of Dietary Fiber, Betalains, and Polyphenol-Enriched Minced Tilapia Meat Gels. Molecules 2023, 28, 117. https://doi.org/10.3390/molecules28010117
Pérez-Ramírez IF, Sotelo-González AM, López-Echevarría G, Martínez-Maldonado MA. Amaranth Seeds and Sprouts as Functional Ingredients for the Development of Dietary Fiber, Betalains, and Polyphenol-Enriched Minced Tilapia Meat Gels. Molecules. 2023; 28(1):117. https://doi.org/10.3390/molecules28010117
Chicago/Turabian StylePérez-Ramírez, Iza F., Ana M. Sotelo-González, Gerardo López-Echevarría, and Miguel A. Martínez-Maldonado. 2023. "Amaranth Seeds and Sprouts as Functional Ingredients for the Development of Dietary Fiber, Betalains, and Polyphenol-Enriched Minced Tilapia Meat Gels" Molecules 28, no. 1: 117. https://doi.org/10.3390/molecules28010117
APA StylePérez-Ramírez, I. F., Sotelo-González, A. M., López-Echevarría, G., & Martínez-Maldonado, M. A. (2023). Amaranth Seeds and Sprouts as Functional Ingredients for the Development of Dietary Fiber, Betalains, and Polyphenol-Enriched Minced Tilapia Meat Gels. Molecules, 28(1), 117. https://doi.org/10.3390/molecules28010117