Effects of Growth Period and Storage Methods on Primary Metabolite Contents and Antioxidant Activities of Morus alba L. Leaf
Abstract
:1. Introduction
2. Results
2.1. Comparison of the Primary Metabolites of Mulberry Leaf after Storage
2.1.1. Qualitative and Quantitative Analyses of Primary Metabolites
2.1.2. Differentially Accumulated Metabolite (DAM) Identification and Functional Annotation Analysis
2.2. Effects of the Storage Method on Antioxidant Activity
2.2.1. FRAP
2.2.2. ARSC
2.2.3. DRSC
2.3. Comparison of the Primary Metabolites in the Growth Period of Mulberry Leaves
2.3.1. Qualitative and Quantitative Analyses of Primary Metabolites
2.3.2. Differentially Accumulated Metabolite (DAM) Identification, Functional Annotation, and KEGG Enrichment Analysis
3. Discussion
3.1. Effects of Storage Methods on Types, Contents, and Antioxidant Activities of Primary Metabolites in Mulberry Leaves
3.2. Effect of the Growth Period on the Types and Contents of Primary Metabolites in Mulberry Leaves
4. Materials and Methods
4.1. Plant Material
4.2. Preparation of Dried Samples
4.3. Generation of the MicroTom Metabolic Network (MMN) Dataset
4.4. Measurement of Antioxidant Activity
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zhang, R.; Zhang, Q.; Zhu, S.; Liu, B.; Liu, F.; Xu, Y. Mulberry leaf (Morus alba L.): A review of its potential influences in mechanisms of action on metabolic diseases. Pharmacol. Res. 2022, 175, 106029. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Kapoor, R.; Thathola, A.; Srivastava, R.P. Nutritional quality of leaves of some genotypes of mulberry (Morus alba). Int. J. Food Sci. Nutr. 2006, 57, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Thaipitakwong, T.; Numhom, S.; Aramwit, P. Mulberry leaves and their potential effects against cardiometabolic risks: A review of chemical compositions, biological properties and clinical efficacy. Pharm. Biol. 2018, 56, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Wang, Q.; Wang, Y.; Wang, Y.; Hao, J.; Jiang, M. Quantitative 1H-NMR Spectroscopy for Profiling Primary Metabolites in Mulberry Leaves. Molecules 2018, 23, 554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, E.W.C.; Wong, S.K.; Tangah, J.; Inoue, T.; Chan, H.T. Phenolic constituents and anticancer properties of Morus alba (white mulberry) leaves. J. Integr. Med. 2020, 18, 189–195. [Google Scholar] [CrossRef]
- Thondre, P.S.; Lightowler, H.; Ahlstrom, L.; Gallagher, A. Mulberry leaf extract improves glycaemic response and insulaemic response to sucrose double blind, placebo-controlled study. Nutr. Metab. 2021, 18, 41. [Google Scholar] [CrossRef]
- Cao, G.; Li, K.; Guo, J.; Lu, M.; Hong, Y.; Cai, Z. Mass Spectrometry for Analysis of Changes during Food Storage and Processing. J. Agric. Food Chem. 2020, 68, 6956–6966. [Google Scholar] [CrossRef]
- Liu, J.D.; Goodspeed, D.; Sheng, Z.; Li, B.; Yang, Y.; Kliebenstein, D.J.; Braam, J. Keeping the rhythm: Light/dark cycles during postharvest storage preserve the tissue integrity and nutritional content of leafy plants. BMC Plant Biol. 2015, 15, 92. [Google Scholar] [CrossRef] [Green Version]
- Bvenura, C.; Sivakumar, D. The role of wild fruits and vegetables in delivering a balanced and healthy diet. Food Res. Int. 2017, 99, 15–30. [Google Scholar] [CrossRef]
- Coradi, P.C.; Maldaner, V.; Lutz, É.; Daí, P.V.D.S.; Teodoro, P.E. Influences of drying temperature and storage conditions for preserving the quality of maize postharvest on laboratory and field scales. Sci. Rep. 2020, 10, 22006. [Google Scholar] [CrossRef]
- Coradi, P.C.; Müller, A.; Souza, G.A.C.; Steinhaus, J.I.; Wagner, R. Quality of Soybean Cultivars in the Drying and Storage Processes in Real Scale and Experimental; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020; Volume 43. [Google Scholar] [CrossRef]
- Vidinamo, F.; Fawzia, S.; Karim, M.A. Effect of drying methods and storage with agro-ecological conditions on phytochemicals and antioxidant activity of fruits: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 353–361. [Google Scholar] [CrossRef]
- Hu, L.; Wang, C.; Guo, X.; Chen, D.; Zhou, W.; Chen, X.; Zhang, Q. Flavonoid Levels and Antioxidant Capacity of Mulberry Leaves: Effects of Growth Period and Drying Methods. Front. Plant Sci. 2021, 12, 684974. [Google Scholar] [CrossRef]
- Odoch, M.; Buysa, E.M.; Taylor, J.R. Effects of vacuum packaging storage of minimally processed cassava roots at various temperatures on microflora, tissue structure, starch extraction by wet milling and granule quality. J. Sci. Food Agric. 2021, 101, 6347–6354. [Google Scholar] [CrossRef]
- Rickman, J.C.; Bruhn, C.M.; Barrett, D.M. Nutritional comparison of fresh, frozen, and canned fruits and vegetables II. Vitamin A and carotenoids, vitamin E, minerals and fiber. J. Sci. Food Agric. 2007, 87, 1185–1196. [Google Scholar] [CrossRef]
- Ludwig, V.; Berghetti, M.; Ribeiro, S.R.; Rossato, F.P.; Wendt, L.M.; Thewes, F.R.; Thewes, F.R.; Brackmann, A.; Both, V.; Wagner, R. The effects of soybean storage under controlled atmosphere at different temperatures on lipid oxidation and volatile compounds profile. Food Res. Int. 2021, 147, 110483. [Google Scholar] [CrossRef]
- Santos, J.; Mendiola, J.A.; Oliveira, M.B.P.P.; Ibáñez, E.; Herrero, M. Sequential determination of fat-and water-soluble vitamins in green leafy vegetables during storage. J. Chromatogr. A 2012, 1261, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Bouzari, A.; Holstege, D.; Barrett, D.M. Vitamin Retention in Eight Fruits and Vegetables: A Comparison of Refrigerated and Frozen Storage. J. Agric. Food Chem. 2015, 63, 957–962. [Google Scholar] [CrossRef]
- Chen, L.; Wang, W.; Zhang, J.; Cui, H.; Ni, D.; Jiang, H. Dual effects of ascorbic acid on the stability of EGCG by the oxidation product dehydroascorbic acid promoting the oxidation and inhibiting the hydrolysis pathway. Food Chem. 2021, 337, 127639. [Google Scholar] [CrossRef] [PubMed]
- Nile, S.H.; Park, S.W. Edible berries: Bioactive components and their effect on human health. Nutrition 2014, 30, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Al-Rizeiqi, M.H.; Guizani, N.; Al-Ruzaiqi, M.S.; Al-Aamri, A.H.; Zainab, S. Stability of vitamin C in fresh and freeze-dried capsicum stored at different temperatures. J. Food Sci. Technol. 2015, 52, 1691–1697. [Google Scholar] [CrossRef] [Green Version]
- Cosmai, L.; Caponio, F.; Pasqualone, A.; Paradiso, V.M.; Summo, C. Evolution of the oxidative stability, bio-active compounds and color characteristics of non-thermally treated vegetable pâtés during frozen storage. J. Sci. Food Agric. 2017, 97, 4904–4911. [Google Scholar] [CrossRef] [PubMed]
- Bellés, M.; Alonso, V.; Roncalés, P.; Beltrán, J.A. The combined effects of superchilling and packaging on the shelf life of lamb. Meat Sci. 2017, 133, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Feng, Y.; Fu, T.; Sheng, Y.; Zhang, S.; Zhang, Y.; Jiang, Y.; Yu, M.; Zhang, D. Effect of storage on metabolites of brown rice. J. Sci. Food Agric. 2020, 100, 4364–4377. [Google Scholar] [CrossRef] [PubMed]
- Selani, M.M.; Contreras-Castillo, C.J.; Shirahigue, L.D.; Gallo, C.R.; Plata-Oviedo, M.; Montes-Villanueva, N.D. Wine industry residues extracts as natural antioxidants in raw and cooked chicken meat during frozen storage. Meat Sci. 2011, 88, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Topalovic, A.; Knezevic, M.; Vajs, V. The total phenolics and antioxidants from fruit and vegetables: An evaluation of daily intake. Poljopr. Šumarstvo 2013, 59, 143. [Google Scholar]
- Polumackanycz, M.; Sledzinski, T.; Goyke, E.; Wesolowski, M.; Viapiana, A. A Comparative Study on the Phenolic Composition and Biological Activities of Morus alba L. Commercial Samples. Molecules 2019, 24, 3082. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Liao, T.; Liu, W.; Zou, L.; Liu, C.; Terefe, N.S. Inhibitory effects of organic acids on polyphenol oxidase: From model systems to food systems. Crit. Rev. Food Sci. 2019, 60, 3594–3621. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, A.; Atasoy, A.F.; Hayaloglu, A.A. Changes in volatile compounds, sugars and organic acids of different spices of peppers (Capsicum annuum L.) during storage. Food Chem. 2020, 311, 125910. [Google Scholar] [CrossRef]
- Li, T.; Shi, D.; Wu, Q.; Zhang, Z.; Qu, H.; Jiang, Y. Sodium para-aminosalicylate delays pericarp browning of litchi fruit by inhibiting ROS-mediated senescence during postharvest storage. Food Chem. 2019, 278, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, M.M.; Vieira, E.A.; de Freitas Fialho, J. Postharvest conservation of minimally processed cassava roots subjected to different packaging systems. Científica 2019, 47, 144–155. [Google Scholar] [CrossRef]
- Chen, Q.; Shinozaki, D.; Luo, J.; Pottier, M.; Have, M.; Marmagne, A.; Reisdorf-Cren, M.; Chardon, F.; Thomine, S.; Yoshimoto, K.; et al. Autophagy and Nutrients Management in Plants. Cells 2019, 8, 1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kehelpannala, C.; Rupasinghe, T.; Pasha, A.; Esteban, E.; Hennessy, T.; Bradley, D.; Ebert, B.; Provart, N.J.; Roessner, U. An Arabidopsis lipid map reveals differences between tissues and dynamic changes throughout development. Plant J. 2021, 107, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Murcia, G.; Fontana, A.; Pontin, M.; Baraldi, R.; Bertazza, G.; Piccoli, P.N. ABA and GA3 regulate the synthesis of primary and secondary metabolites related to alleviation from biotic and abiotic stresses in grapevine. Phytochemistry 2017, 135, 34–52. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo-Vega, J.; Arteaga-Badillo, D.; Sánchez-Gutiérrez, M.; Morales-González, J.; Vargas-Mendoza, N.; Gómez-Aldapa, C.; Castro-Rosas, J.; Delgado-Olivares, L.; Madrigal-Bujaidar, E.; Madrigal-Santillán, E. Organic Acids from Roselle (Hibiscus sabdariffa L.)-A Brief Review of Its Pharmacological Effects. Biomedicines 2020, 8, 100. [Google Scholar] [CrossRef] [PubMed]
- Szymborska-Sandhu, I.; Przybył, J.L.; Kosakowska, O.; Bączek, K.; Węglarz, Z. Chemical Diversity of Bastard Balm (Melittis melisophyllum L.) as Affected by Plant Development. Molecules 2020, 25, 2421. [Google Scholar] [CrossRef]
- Xiao, J.; Gu, C.; He, S.; Zhu, D.; Huang, Y.; Zhou, Q. Widely targeted metabolomics analysis reveals new biomarkers and mechanistic insights on chestnut (Castanea mollissima Bl.) calcification process. Food Res. Int. 2021, 141, 110128. [Google Scholar] [CrossRef]
- He, L.; Lv, H.; Chen, N.; Wang, C.; Zhou, W.; Chen, X.; Zhang, Q. Improving fermentation, protein preservation and antioxidant activity of Moringa oleifera leaves silage with gallic acid and tannin acid. Bioresour. Technol. 2020, 297, 122390. [Google Scholar] [CrossRef]
- Wang, S.; Fan, J.; Xu, L.; Ye, K.; Shu, T.; Liu, S. Enhancement of Antioxidant Activity in O/W Emulsion and Cholesterol-Reducing Capacity of Epigallocatechin by Derivatization with Representative Phytosterols. J. Agric. Food Chem. 2019, 67, 12461–12471. [Google Scholar] [CrossRef] [PubMed]
Picking Period | Storage Method | Storage Temperature | ARSC (mg TE/g Dried Sample) | DRSC (Mg TE/g Dried Sample) | FRAP (mg TE/g Dried Sample) |
---|---|---|---|---|---|
G1 | A | T1 | 73.20 ± 2.80 b* | 20.13 ± 0.45 ab | 35.99 ± 2.11 a |
T2 | 76.50 ± 2.03 ab | 19.02 ± 2.39 b | 27.75 ± 3.35 b | ||
V | T1 | 75.21 ± 1.26 ab | 21.45 ± 1.85 ab | 34.49 ± 2.93 a | |
T2 | 78.51 ± 2.19 a | 22.24 ± 1.20 a | 34.23 ± 0.73 a | ||
G2 | A | T1 | 72.85 ± 1.16 | 16.33 ± 2.46 B | 24.36 ± 0.36 A |
T2 | 74.94 ± 1.17 | 18.25 ± 0.68 AB | 22.73 ± 0.65 B | ||
V | T1 | 75.77 ± 2.97 | 18.00 ± 1.04 AB | 23.49 ± 1.37 AB | |
T2 | 75.52 ± 2.86 | 19.13 ± 0.31 A | 23.82 ± 0.23 AB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, L.; Chen, D.; Zhou, W.; Chen, X.; Zhang, Q. Effects of Growth Period and Storage Methods on Primary Metabolite Contents and Antioxidant Activities of Morus alba L. Leaf. Molecules 2023, 28, 148. https://doi.org/10.3390/molecules28010148
Hu L, Chen D, Zhou W, Chen X, Zhang Q. Effects of Growth Period and Storage Methods on Primary Metabolite Contents and Antioxidant Activities of Morus alba L. Leaf. Molecules. 2023; 28(1):148. https://doi.org/10.3390/molecules28010148
Chicago/Turabian StyleHu, Lei, Dandan Chen, Wei Zhou, Xiaoyang Chen, and Qing Zhang. 2023. "Effects of Growth Period and Storage Methods on Primary Metabolite Contents and Antioxidant Activities of Morus alba L. Leaf" Molecules 28, no. 1: 148. https://doi.org/10.3390/molecules28010148
APA StyleHu, L., Chen, D., Zhou, W., Chen, X., & Zhang, Q. (2023). Effects of Growth Period and Storage Methods on Primary Metabolite Contents and Antioxidant Activities of Morus alba L. Leaf. Molecules, 28(1), 148. https://doi.org/10.3390/molecules28010148