Synthesis of New Triazole-Based Thiosemicarbazone Derivatives as Anti-Alzheimer’s Disease Candidates: Evidence-Based In Vitro Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. In Vitro Inhibition of Acetylcholinesterase and Butyrylcholinesterase Activities
Structure–Activity Relationship (SAR) for Inhibition of Acetylcholinesterase (AChE) and Butyrylcholinesterase (BuChE)
2.3. Docking Study
3. Experimental
3.1. General Procedure of 1,2,4-Triazole Bearing Thiosemicarbazone Derivatives (6a–u)
3.2. Spectral Analysis
3.2.1. (.E)-2-(1-(2-bromophenyl)-2-((5-(4-nitrophenyl)-4H-1,2,4-triazol-3-yl)thio)ethylidene)-N-(4,5-dichloro-2-nitrophenyl)hydrazine-1-carbothioamide (6a)
3.2.2. (.E)-N-(4,5-dichloro-2-nitrophenyl)-2-(1-(2-hydroxyphenyl)-2-((5-(4-nitrophenyl)-4H-1,2,4-triazol-3-yl)thio)ethylidene)hydrazine-1-carbothioamide (6b)
3.2.3. (.E)-2-(1-([1,1′-biphenyl]-4-yl)-2-((5-(4-nitrophenyl)-4H-1,2,4-triazol-3-yl)thio)ethylidene)-N-phenylhydrazine-1-carbothioamide (6c)
3.2.4. (.E)-2-(1-([1,1′-biphenyl]-4-yl)-2-((5-(4-nitrophenyl)-4H-1,2,4-triazol-3-yl)thio)ethylidene)-N-(4′-methyl-[1,1′-biphenyl]-4-yl)hydrazine-1-carbothioamide (6d)
3.2.5. (.E)-2-(1-([1,1′-biphenyl]-4-yl)-2-((5-(4-nitrophenyl)-4H-1,2,4-triazol-3-yl)thio)ethylidene)-N-(3-nitrophenyl)hydrazine-1-carbothioamide (6e)
3.2.6. (.E)-2-(1-(2,5-dimethoxyphenyl)-2-((5-(4-nitrophenyl)-4H-1,2,4-triazol-3-yl)thio)ethylidene)-N-(4-methyl-2-nitrophenyl)hydrazine-1-carbothioamide (6f)
3.2.7. (.E)-2-(1-(2,5-dimethoxyphenyl)-2-((5-(4-nitrophenyl)-4H-1,2,4-triazol-3-yl)thio)ethylidene)-N-(4-nitrophenyl)hydrazine-1-carbothioamide (6g)
3.2.8. (.E)-2-(1-(4-bromophenyl)-2-((5-(4-nitrophenyl)-4H-1,2,4-triazol-3-yl)thio)ethylidene)-N-(4-methyl-2-nitrophenyl)hydrazine-1-carbothioamide (6h)
3.2.9. (.E)-N-(4,5-dichloro-2-nitrophenyl)-2-(1-(3-hydroxy-2-nitrophenyl)-2-((5-(4-nitrophenyl)-4H-1,2,4-triazol-3-yl)thio)ethylidene)hydrazine-1-carbothioamide (6i)
3.2.10. (.E)-2-(1-([1,1′-biphenyl]-4-yl)-2-((5-(4-nitrophenyl)-4H-1,2,4-triazol-3-yl)thio)ethylidene)-N-(2,5-dichloro-4-(dimethylamino)phenyl)hydrazine-1-carbothioamide (6j)
3.2.11. (.E)-2-(1-(4-bromophenyl)-2-((5-(4-nitrophenyl)-4H-1,2,4-triazol-3-yl)thio)ethylidene)-N-(4′-methyl-[1,1′-biphenyl]-4-yl)hydrazine-1-carbothioamide (6k)
3.2.12. (.E)-N-(4,5-dichloro-2-nitrophenyl)-2-(1-(4-methyl-2-nitrophenyl)-2-((5-(4-nitrophenyl)-4H-1,2,4-triazol-3-yl)thio)ethylidene)hydrazine-1-carbothioamide (6l)
3.2.13. (.E)-2-(1-(3,4-dichlorophenyl)-2-((5-(4-nitrophenyl)-4H-1,2,4-triazol-3-yl)thio)ethylidene)-N-(4-methyl-2-nitrophenyl)hydrazine-1-carbothioamide (6m)
3.2.14. (.E)-2-(1-(3,4-dichlorophenyl)-2-((5-(4-nitrophenyl)-4H-1,2,4-triazol-3-yl)thio)ethylidene)-N-(4-nitrophenyl)hydrazine-1-carbothioamide (6n)
3.2.15. (.E)-2-(1-(3,4-dichlorophenyl)-2-((5-(4-nitrophenyl)-4H-1,2,4-triazol-3-yl)thio)ethylidene)-N-phenylhydrazine-1-carbothioamide (6o)
3.2.16. (.E)-2-(1-(3,4-dichlorophenyl)-2-((5-(4-nitrophenyl)-4H-1,2,4-triazol-3-yl)thio)ethylidene)-N-(4′-methyl-[1,1′-biphenyl]-4-yl)hydrazine-1-carbothioamide (6p)
3.2.17. (.E)-2-(1-(3,4-dichlorophenyl)-2-((5-(4-nitrophenyl)-4H-1,2,4-triazol-3-yl)thio)ethylidene)-N-(3-nitrophenyl)hydrazine-1-carbothioamide (6q)
3.2.18. (.E)-N-(4-methyl-2-nitrophenyl)-2-(1-(2-nitrophenyl)-2-((5-(4-nitrophenyl)-4H-1,2,4-triazol-3-yl)thio)ethylidene)hydrazine-1-carbothioamide (6r)
3.2.19. (.E)-N-(4-nitrophenyl)-2-(1-(2-nitrophenyl)-2-((5-(4-nitrophenyl)-4H-1,2,4-triazol-3-yl)thio)ethylidene)hydrazine-1-carbothioamide (6s)
3.2.20. (.E)-2-(1-(3-methoxyphenyl)-2-((5-(4-nitrophenyl)-4H-1,2,4-triazol-3-yl)thio)ethylidene)-N-(4-methyl-2-nitrophenyl)hydrazine-1-carbothioamide (6t)
3.2.21. (.E)-2-(1-(3-methoxyphenyl)-2-((5-(4-nitrophenyl)-4H-1,2,4-triazol-3-yl)thio)ethylidene)-N-(4-nitrophenyl)hydrazine-1-carbothioamide (6u)
3.3. Molecular Docking Protocol
3.4. Acetylcholinesterase Activity Assay Protocol
3.5. Butyrylcholinesterase Activity Assay Protocol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adams, R.L.; Craig, P.L.; Parsons, O.A. Neuropsychology of dementia. Neurol. Clin. 1986, 4, 387–404. [Google Scholar] [CrossRef] [PubMed]
- Aisen, P.S.; Davis, K.L. The search for disease-modifying treatment for Alzheimer’s disease. Neurology 1997, 48, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Jann, M.W. Preclinical pharmacology of metrifonate. Pharmacotherapy 1998, 18, 55–67. [Google Scholar] [PubMed]
- Massoulié, J.; Pezzementi, L.; Bon, S.; Krejci, E.; Vallette, F.M. Molecular and cellular biology of cholinesterases. Prog. Neurobiol. 1993, 41, 31–91. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, G.; H-Greig, N.; A-Khan, J.; A-Kamal, M. Status of acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease and type 2 diabetes mellitus. CNS Neurol. Disord. Drug Targets 2014, 13, 1432–1439. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Iftikhar, F.; Ullah, F.; Sadiq, A.; Rashid, U. Rational design and synthesis of dihydropyrimidine based dual binding site acetylcholinesterase inhibitors. Bioorg. Chem. 2016, 69, 91–101. [Google Scholar] [CrossRef]
- Auld, D.S.; Kornecook, T.J.; Bastianetto, S.; Quirion, R. Alzheimer’s disease and the basal forebrain cholinergic system: Relations to β-amyloid peptides, cognition, and treatment strategies. Prog. Neurobiol. 2002, 68, 209–245. [Google Scholar] [CrossRef]
- Ecobichon, D.J.; Comeau, A.M. Pseudocholinesterases of mammalian plasma: Physicochemical properties and organophosphate inhibition in eleven species. Toxicol. Appl. Pharmacol. 1973, 24, 92–100. [Google Scholar] [CrossRef]
- Rahim, F.; Ullah, H.; Taha, M.; Wadood, A.; Javed, M.T.; Rehman, W.; Nawaz, M.; Ashraf, M.; Ali, M.; Sajid, M.; et al. Synthesis and in vitro acetylcholinesterase and butyrylcholinesterase inhibitory potential of hydrazide-based Schiff bases. Bioorg. Chem. 2016, 68, 30–40. [Google Scholar] [CrossRef]
- Cavalli, A.; Bolognesi, M.L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Recanatini, M.; Melchiorre, C. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem. 2008, 51, 347–372. [Google Scholar] [CrossRef]
- Rockwood, K.; Mintzer, J.; Truyen, L.; Wessel, T.; Wilkinson, D. Effects of a flexible galantamine dose in Alzheimer’s disease: A randomised, controlled trial. J. Neurol. Neurosurg. Psychiatry 2001, 71, 589–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kucukguzel, I.; Kucukquzel, S.G.; Rollas, S.; Otuk-Sanis, G.; Ozdemir, O.; Bayrak, I.; Altug, T.; Stables, J.P. Synthesis of some 3-(arylalkylthio)-4-alkyl/aryl-5-(4-aminophenyl)-4H-1,2,4-triazole derivatives and their anticonvulsant activity. Farmaco 2004, 59, 893–901. [Google Scholar] [CrossRef]
- Maddila, S.; Gorle, S.; Singh, M.; Lavanya, P.; Jonnalagadda, S.B. Synthesis and Anti-Inflammatory Activity of Fused 1,2,4-triazolo-[3,4-b] [1,3,4]thiadiazole Derivatives of Phenothiazine. Lett. Drug Des. Discov. 2013, 10, 977. [Google Scholar] [CrossRef]
- Almasirad, A.; Tabatabai, S.A.; Faizi, M.; Kebriaeezadeh, A.; Mehrabi, N.; Dalvandi, A.; Shafiee, A.; Ainsworth, C.; Easton, N.R.; Livezey, M.; et al. Synthesis and anticonvulsant activity of new 2-substituted-5-[2-(2-fluorophenoxy) phenyl]-1,3,4-oxadiazoles and 1,2,4-triazoles. Bioorg. Med. Chem. Lett. 2004, 14, 6057–6059. [Google Scholar] [CrossRef] [PubMed]
- Maddila, S.; Pagadala, R.; Sreekanth, R.; Jonnalagadda, B. 1,2,4-Triazoles: A Review of Synthetic Approaches and the Biological Activity. Lett. Org. Chem. 2013, 10, 693–714. [Google Scholar] [CrossRef]
- Oh, K.; Yamada, K.; Asami, T.; Yoshizawa, Y. Synthesis of novel brassinosteroid biosynthesis inhibitors based on the ketoconazole scaffold. Bioorg. Med. Chem. Lett. 2012, 22, 1625–1628. [Google Scholar] [CrossRef]
- Wang, B.; Chu, D.; Feng, Y.; Shen, Y.; Aoyagi-Scharber, M.; Post, L.E. Discovery and Characterization of (8 S, 9 R)-5-Fluoro-8-(4-fluorophenyl)-9-(1-methyl-1 H-1, 2, 4-triazol-5-yl)-2, 7, 8, 9-tetrahydro-3 H-pyrido[4, 3, 2-de]phthalazin-3-one (BMN 673, Talazoparib), a Novel, Highly Potent, and Orally Efficacious Poly (ADP-ribose) Polymerase-1/2 Inhibitor, as an Anticancer Agent. J. Med. Chem. 2016, 59, 335–357. [Google Scholar]
- Murphy, M.J.J. Molecular action and clinical relevance of aromatase inhibitors. Oncologist 1998, 3, 129–130. [Google Scholar] [CrossRef] [Green Version]
- Borden, K.L.; Culjkovic-Kraljacic, B. Ribavirin as an anti-cancer therapy: Acute myeloid leukemia and beyond. Leuk. Lymphoma. 2010, 51, 1805–1815. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Junyent, J.; Benavent, E.; Sierra, Y.; el Haj, C.; Soldevila, L.; Torrejon, B.; Rigo-Bonnin, R.; Ariza, J.; Murillo, O. Efficacy of ceftolozane/tazobactam, alone and in combination with colistin, against multidrug-resistant Pseudomonas aeruginosa in an in vitro biofilm pharmacodynamic model. Int. J. Antimicrob. Agents 2019, 53, 612–619. [Google Scholar] [CrossRef]
- Yang, Y.; Rasmussen, B.A.; Shlaes, D.M. Class A β-lactamases—Enzyme-inhibitor interactions and resistance. Pharmaco. Thera. 1999, 83, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Donnelley, M.A.; Zhu, E.S.; Thompson, G.R., 3rd. Isavuconazole in the treatment of invasive aspergillosis and mucormycosis infections. Infect. Drug Resist. 2016, 9, 79–86. [Google Scholar] [PubMed] [Green Version]
- Ledoux, M.P.; Denis, J.; Nivoix, Y.; Herbrecht, R. Isavuconazole: A new broad-spectrum azole. Part 2: Pharmacokinetics and clinical activity. J. Mycol. Med. 2018, 28, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Taha, M.; Rahim, F.; Uddin, N.; Khan, I.U.; Iqbal, N.; Salahuddin, M.; Farooq, R.K.; Gollapalli, M.; Khan, K.M.; Zafar, A. Exploring indole-based-thiadiazole derivatives as potent acetylcholinesterase and butyrylcholinesterase enzyme inhibitors. Inter. J. Biol. Macromol. 2021, 188, 1025–1036. [Google Scholar] [CrossRef]
- Rahim, F.; Javid, M.T.; Ullah, H.; Wadood, A.; Taha, M.; Ashraf, M.; Aine, Q.U.; Khan, M.A.; Khan, F.; Mirza, S.; et al. Synthesis, Molecular Docking, Acetylcholinesterase and Butyrylcholinesterase Inhibitory Potential of Thiazole Analogs as New Inhibitors for Alzheimer Disease. Bioorg. Chem. 2015, 62, 106–116. [Google Scholar] [CrossRef]
- Taha, M.; Alshamrani, F.J.; Rahim, F.; Uddin, N.; Chigurupati, S.; Almandil, N.B.; Farooq, R.K.; Iqbal, N.; Aldubayan, M.; Venugopal, V.; et al. Synthesis, characterization, biological evaluation, and kinetic study of indole base sulfonamide derivatives as acetylcholinesterase inhibitors in search of potent anti-Alzheimer agent. J. King Saud Univ.-Sci. 2021, 33, 101401. [Google Scholar] [CrossRef]
- Taha, M.; Rahim, F.; Zaman, K.; Anouar, E.H.; Uddin, N.; Nawaz, F.; Sajid, M.; Khan, K.M.; Shah, A.A.; Wadood, A.; et al. Synthesis, in vitro biological screening and docking study of benzo [d] oxazole bis Schiff base derivatives as a potent anti-Alzheimer agent. J. Biomole. Struc. Dyn. 2021, 1–16. [Google Scholar] [CrossRef]
- Hussain, R.; Ullah, H.; Rahim, F.; Sarfraz, M.; Taha, M.; Iqbal, R.; Alhomrani, M.; Alamri, A.S.; Abdulaziz, O.; Abdelaziz, M.A. Multipotent Cholinesterase Inhibitors for the Treatment of Alzheimer’s disease: Synthesis, Biological Analysis and Molecular Docking Study of Benzimidazole-Based Thiazole Derivatives. Molecules 2022, 27, 6087. [Google Scholar] [CrossRef]
- Basha, N.M.; Venkatesh, B.C.; Reddy, G.M.; Zyryanov, G.V.; Subbaiah, M.V.; Wen, J.C.; Gollakota, A.R. Synthesis, Antimicrobial Assay and SARs of Pyrazole Included Heterocyclic Derivatives. Polycycl. Aromat. Compd. 2021, 1–15. [Google Scholar] [CrossRef]
- Shyamsivappan, S.; Vivek, R.; Saravanan, A.; Arasakumar, T.; Suresh, T.; Athimoolam, S.; Mohan, P.S. A novel 8-nitro quinoline-thiosemicarbazone analogues induces G1/S & G2/M phase cell cycle arrest and apoptosis through ROS mediated mitochondrial pathway. Bioorganic Chem. 2020, 97, 103709. [Google Scholar]
- Riaz, N.; Iftikhar, M.; Saleem, M.; Hussain, S.; Rehmat, F.; Afzal, Z.; Khawar, S.; Ashraf, M.; al-Rashida, M. New synthetic 1,2,4-triazole derivatives: Cholinesterase inhibition and molecular docking studies. Results Chem. 2020, 2, 100041. [Google Scholar] [CrossRef]
- Siddiqui, S.Z.; Arfan, M.; Abbasi, M.A.; Shah, S.A.A.; Ashraf, M.; Hussain, S.; Saleem, R.S.Z.; Rafique, R.; Khan, K.M. Discovery of Dual Inhibitors of Acetyl and Butrylcholinesterase and Antiproliferative Activity of 1,2,4-Triazole-3-thiol: Synthesis and In Silico Molecular Study. Chem. Select. 2020, 5, 6430–6439. [Google Scholar] [CrossRef]
- Wadood, A.; Shareef, A.; Rehman, A.U.; Muhammad, S.; Khurshid, B.; Khan, R.S.; Shams, S.; Afridi, S.G. In Silico Drug Designing for ala438 Deleted Ribosomal Protein S1 (RpsA) on the Basis of the Active Compound Zrl15. ACS Omega 2022, 7, 397–408. [Google Scholar] [CrossRef]
- Rehman, A.U.; Zhen, G.; Zhong, B.; Ni, D.; Li, J.; Nasir, A.; Gabr, M.T.; Rafiq, H.; Wadood, A.; Lu, S.; et al. Mechanism of zinc ejection by disulfiram in nonstructural protein 5A. Phys. Chem. Chem. Phys. 2021, 23, 12204–12215. [Google Scholar] [CrossRef]
- Chigurupati, S.; Selvaraj, M.; Mani, V.; Selvarajan, K.K.; Mohammad, J.I.; Kaveti, B.; Bera, H.; Palanimuthu, V.R.; Teh, L.K.; Salleh, M.Z. Identification of novel acetylcholinesterase inhibitors: Indolopyrazoline derivatives and molecular docking studies. Bioorganic Chem. 2016, 67, 9–17. [Google Scholar] [CrossRef]
- Chigurupati, S.; Selvaraj, M.; Mani, V.; Mohammad, J.I.; Selvarajan, K.K.; Akhtar, S.S.; Marikannan, M.; Raj, S.; Teh, L.K.; Salleh, M.Z. Synthesis of azomethines derived from cinnamaldehyde and vanillin: In vitro aetylcholinesterase inhibitory, antioxidant and insilico molecular docking studies. Med. Chem. Res. 2018, 27, 807–816. [Google Scholar] [CrossRef]
Derivative | R1 | R2 | AChE IC50 (µM) a | BuChE IC50 (µM) a | Selectivity Index b |
---|---|---|---|---|---|
6a | 2.20 ± 0.10 | 3.90 ± 0.10 | 1.77 | ||
6b | 0.20 ± 0.10 | 0.30 ± 0.10 | 1.5 | ||
6c | N.A. | N.A. | N.A. | ||
6d | N.A. | N.A. | N.A. | ||
6e | 4.70 ± 0.10 | 6.30 ± 0.10 | 1.34 | ||
6f | 2.40 ± 0.10 | 4.70 ± 0.10 | 1.96 | ||
6g | 2.10 ± 0.10 | 4.30 ± 0.10 | 2.04 | ||
6h | 9.10 ± 0.20 | 11.20 ± 0.30 | 1.23 | ||
6i | 0.10 ± 0.050 | 0.20 ± 0.050 | 2.0 | ||
6j | 11.30 ± 0.30 | 12.30 ± 0.30 | 1.09 | ||
6k | 12.20 ± 0.30 | 14.10 ± 0.40 | 1.15 | ||
6l | 4.60 ± 0.010 | 5.90 ± 0.10 | 1.28 | ||
6m | 2.70 ± 0.10 | 3.80 ± 0.10 | 1.41 | ||
6n | 0.70 ± 0.05 | 1.70 ± 0.050 | 2.43 | ||
6o | 2.50 ± 0.30 | 3.10 ± 0.40 | 1.24 | ||
6p | 3.20 ± 0.10 | 4.60 ± 0.10 | 1.44 | ||
6q | 0.60 ± 0.050 | 0.90 ± 0.10 | 1.50 | ||
6r | 1.30 ± 0.050 | 2.20 ± 0.10 | 1.69 | ||
6s | 1.40 ± 0.050 | 2.30 ± 0.10 | 1.64 | ||
6t | 1.90 ± 0.10 | 2.50 ± 0.10 | 1.32 | ||
6u | 2.90 ± 0.10 | 3.70 ± 0.10 | 1.28 | ||
Standard drug Donepezil | 2.16 ± 0.12 | 4.5 ± 0.11 | 2.08 |
Active Derivatives | Name of Enzyme | Free Binding Energy (kcal/mol) | Number of HBs | Number of Closest Residues |
---|---|---|---|---|
6i | AChE | −12.13 | 5 | 24 |
BuChE | −11.78 | 2 | 22 | |
6b | AChE | −11.37 | 3 | 22 |
BuChE | −10.49 | 5 | 21 | |
6q | AChE | −10.63 | 6 | 23 |
BuChE | −9.42 | 3 | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahim, F.; Ullah, H.; Taha, M.; Hussain, R.; Sarfraz, M.; Iqbal, R.; Iqbal, N.; Khan, S.; Ali Shah, S.A.; Albalawi, M.A.; et al. Synthesis of New Triazole-Based Thiosemicarbazone Derivatives as Anti-Alzheimer’s Disease Candidates: Evidence-Based In Vitro Study. Molecules 2023, 28, 21. https://doi.org/10.3390/molecules28010021
Rahim F, Ullah H, Taha M, Hussain R, Sarfraz M, Iqbal R, Iqbal N, Khan S, Ali Shah SA, Albalawi MA, et al. Synthesis of New Triazole-Based Thiosemicarbazone Derivatives as Anti-Alzheimer’s Disease Candidates: Evidence-Based In Vitro Study. Molecules. 2023; 28(1):21. https://doi.org/10.3390/molecules28010021
Chicago/Turabian StyleRahim, Fazal, Hayat Ullah, Muhammad Taha, Rafaqat Hussain, Maliha Sarfraz, Rashid Iqbal, Naveed Iqbal, Shoaib Khan, Syed Adnan Ali Shah, Marzough Aziz Albalawi, and et al. 2023. "Synthesis of New Triazole-Based Thiosemicarbazone Derivatives as Anti-Alzheimer’s Disease Candidates: Evidence-Based In Vitro Study" Molecules 28, no. 1: 21. https://doi.org/10.3390/molecules28010021
APA StyleRahim, F., Ullah, H., Taha, M., Hussain, R., Sarfraz, M., Iqbal, R., Iqbal, N., Khan, S., Ali Shah, S. A., Albalawi, M. A., Abdelaziz, M. A., Alatawi, F. S., Alasmari, A., Sakran, M. I., Zidan, N., Jafri, I., & Khan, K. M. (2023). Synthesis of New Triazole-Based Thiosemicarbazone Derivatives as Anti-Alzheimer’s Disease Candidates: Evidence-Based In Vitro Study. Molecules, 28(1), 21. https://doi.org/10.3390/molecules28010021