Synthesis and In Vitro Testing of YVO4:Eu3+@silica-NH-GDA-IgG Bio-Nano Complexes for Labelling MCF-7 Breast Cancer Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological Characterization
2.2. Structure Characterization
2.3. Luminescence Properties
2.4. In Vitro Cellular Imaging
3. Materials and Methods
3.1. Preparation of YVO4:Eu3+@Silica-NH2 Nanoparticles
3.2. Preparation of YVO4:Eu3+@silica-NH-GDA-IgG Bio-Nanocomplexes
3.3. MCF-7 Breast Cancer Cell and HEK-293A Cell Culture and Fluorescence Imaging of Cells
3.4. Cellular Surface Labelling Analysis Using Flowcytometry
3.5. Characterization Techniques
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Tan, M.; Chen, G. Rare Earth-Doped Nanoparticles for Advanced In Vivo Near Infrared Imaging. In Near Infrared-Emitting Nanoparticles for Biomedical Applications; Benayas, A., Hemmer, E., Hong, G., Jaque, D., Eds.; Springer: Cham, Switzerland, 2020; pp. 63–81. [Google Scholar] [CrossRef]
- Shao, J.; Yan, J.; Li, X.; Li, S.; Hu, T. Novel fluorescent label based on YVO4: Bi3+, Eu3+ for latent fingerprint detection. Dyes Pigments 2018, 160, 555–562. [Google Scholar] [CrossRef]
- Giang, L.T.K.; Trejgis, K.; Marciniak, Ł.; Opalińska, A.; Koltsov, I.E.; Łojkowski, W. Synthesis and characterizations of YZ-BDC:Eu3+,Tb3+ nanothermometers for luminescence-based temperature sensing. RSC Adv. 2022, 12, 13065–13073. [Google Scholar] [CrossRef] [PubMed]
- Sevic, D.; Rabasovic, M.S.; Krizan, J.; Savic-Sevic, S.; Nikolic, M.G.; Marinkovic, B.P. YVO4:Eu3+ nanopowders: Multi-mode temperature sensing technique. J. Phys. D Appl. Phys. 2019, 53, 015106. [Google Scholar] [CrossRef]
- Fernández-Osorio, A.; Redón, R.; Medina-Pérez, J.; Pedroza-Montero, M.; Acosta, M. Photoluminescence and Thermoluminescence Properties of Nanophosphors, YVO4:Eu3+ and YVO4:Eu3+:Dy3+. J. Clust. Sci. 2022, 33, 653–664. [Google Scholar] [CrossRef]
- Giaume, D.; Poggi, M.; Casanova, D.; Mialon, G.; Lahlil, K.; Alexandrou, A.; Gacoin, T.; Boilot, J.-P. Organic Functionalization of Luminescent Oxide Nanoparticles toward Their Application As Biological Probes. Langmuir 2008, 24, 11018–11026. [Google Scholar] [CrossRef]
- Senty, T.R.; Yalamanchi, M.; Zhang, Y.; Cushing, S.K.; Seehra, M.S.; Shi, X.; Bristow, A.D. Photoluminescence spectroscopy of YVO4:Eu3+ nanoparticles with aromatic linker molecules: A precursor to biomedical functionalization. J. Appl. Phys. 2014, 115, 163107. [Google Scholar] [CrossRef] [Green Version]
- Ascenzi, P.; Bettinelli, M.; Boffi, A.; Botta, M.; De Simone, G.; Luchinat, C.; Marengo, E.; Mei, H.; Aime, S. Rare earth elements (REE) in biology and medicine. Rendiconti Lincei. Scienze Fisiche Naturali 2020, 31, 821–833. [Google Scholar] [CrossRef]
- Soukka, T.; Paukkunen, J.; Härmä, H.; Lönnberg, S.; Lindroos, H.; Lövgren, T. Supersensitive Time-resolved Immunofluorometric Assay of Free Prostate-specific Antigen with Nanoparticle Label Technology. Clin. Chem. 2001, 47, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Fan, Q.; Cui, X.; Guo, H.; Xu, Y.; Zhang, G.; Peng, B. Application of rare earth-doped nanoparticles in biological imaging and tumor treatment. J. Biomater. Appl. 2020, 35, 237–263. [Google Scholar] [CrossRef]
- Kolesnikov, I.E.; Mamonova, D.V.; Kurochkin, M.A.; Kolesnikov, E.Y.; Lähderanta, E. Optical Thermometry by Monitoring Dual Emissions from YVO4 and Eu3+ in YVO4:Eu3+ Nanoparticles. ACS Appl. Nano Mater. 2021, 4, 1959–1966. [Google Scholar] [CrossRef]
- Bouzigues, C.; Gacoin, T.; Alexandrou, A. Biological Applications of Rare-Earth Based Nanoparticles. ACS Nano 2011, 5, 8488–8505. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Tan, W.B.; Zhang, Y.; Fan, X.; Wang, M. Luminescent nanomaterials for biological labelling. Nanotechnology 2005, 17, R1–R13. [Google Scholar] [CrossRef]
- Huong, T.T.; Vinh, L.; Anh, T.K.; Khuyen, H.T.; Phuong, H.T.; Minh, L.Q. Fabrication and optical characterization of multimorphological nanostructured materials containing Eu(iii) in phosphate matrices for biomedical applications. New J. Chem. 2014, 38, 2114–2119. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lin, M.; Lee, A.; Park, Y.I. Lanthanide-doped nanoparticles for diagnostic sensing. Nanomaterials 2017, 7, 411. [Google Scholar] [CrossRef] [Green Version]
- Ren, Q.-F.; Zhang, B.; Chen, S.-H.; Wang, S.-L.; Zheng, Q.; Ding, Y.; Qian, H.-S.; Jin, Z. Amine salts assisted controllable synthesis of the YVO4:Eu3+ nanocrystallines and their luminescence properties. Phys. B Condens. Matter 2019, 557, 1–5. [Google Scholar] [CrossRef]
- Reddy, M.L.P.; Divya, V.; Pavithran, R. Visible-light sensitized luminescent europium(iii)-β-diketonate complexes: Bioprobes for cellular imaging. Dalton Trans. 2013, 42, 15249–15262. [Google Scholar] [CrossRef]
- Tamimi, E.; Ardila, D.C.; Haskett, D.G.; Doetschman, T.; Slepian, M.J.; Kellar, R.S.; Geest, J.P.V. Biomechanical Comparison of Glutaraldehyde-Crosslinked Gelatin Fibrinogen Electrospun Scaffolds to Porcine Coronary Arteries. J. Biomech. Eng. 2015, 138, 011001. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.Y.; Glattauer, V.; Ramshaw, J.A.M. Stabilisation of Collagen Sponges by Glutaraldehyde Vapour Crosslinking. Int. J. Biomater. 2017, 2017, 8947823. [Google Scholar] [CrossRef] [Green Version]
- Niekamp, S.; Stuurman, N.; Vale, R.D. A 6-nm ultra-photostable DNA FluoroCube for fluorescence imaging. Nat. Methods 2020, 17, 437–441. [Google Scholar] [CrossRef]
- Hermanson, G.T. Bioconjugate Techniques; Elsevier: New York, NY, USA, 2008. [Google Scholar]
- Stauffer, T.M. Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences-Fourier Transform Infrared and Raman Characterization of Silica-Based Materials; Capeletti, L.B., Zimnoch, J.H., Eds.; IntechOpen: London, UK, 2016; Chapter 1; pp. 1–20. [Google Scholar] [CrossRef] [Green Version]
- Negroni, M.P.; Fiszman, G.L.; Azar, M.E.; Morgado, C.C.; Español, A.J.; Pelegrina, L.T.; de la Torre, E.; Sales, M.E. Immunoglobulin G from Breast Cancer Patients in Stage I Stimulates Muscarinic Acetylcholine Receptors in MCF7 Cells and Induces Proliferation. Participation of Nitric Oxide Synthase-Derived Nitric Oxide. J. Clin. Immunol. 2010, 30, 474–484. [Google Scholar] [CrossRef]
- Yang, Y.; Fu, Y.; Su, H.; Mao, L.; Chen, M. Sensitive detection of MCF-7 human breast cancer cells by using a novel DNA-labeled sandwich electrochemical biosensor. Biosens. Bioelectron. 2018, 122, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Moallem, G.; Pore, A.A.; Gangadhar, A.; Sari-Sarraf, H.; Vanapalli, S.A. Detection of live breast cancer cells in bright-field microscopy images containing white blood cells by image analysis and deep learning. J. Biomed. Opt. 2022, 27, 076003. [Google Scholar] [CrossRef] [PubMed]
- Vinh, L.T.; Huong, T.T.; Phuong, H.T.; Khuyen, H.T.; Hung, N.M.; Thao, D.T.; Minh, L.Q. Folic Acid-Conjugated Silica-Modified TbPO4·H2O Nanorods for Biomedical Applications. J. Nanomater. 2021, 2021, 9888856. [Google Scholar] [CrossRef]
- Labrador-Páez, L.; Ximendes, E.C.; Rodríguez-Sevilla, P.; Ortgies, D.H.; Rocha, U.; Jacinto, C.; Rodríguez, E.M.; Haro-González, P.; Jaque, D. Core–shell rare-earth-doped nanostructures in biomedicine. Nanoscale 2018, 10, 12935–12956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huong, T.T.; Vinh, L.T.; Phuong, H.T.; Khuyen, H.T.; Anh, T.K.; Tu, V.D.; Minh, L.Q. Controlled fabrication of the strong emission YVO4:Eu3+ nanoparticles and nanowires by microwave assisted chemical synthesis. J. Lumin. 2016, 173, 89–93. [Google Scholar] [CrossRef]
- Huong, T.T.; Phuong, H.T.; Vinh, L.T.; Khuyen, H.T.; Thao, D.T.; Tuyen, L.D.; Anh, T.K.; Minh, L.Q. Upconversion NaYF4:Yb3+/Er3+@silica-TPGS Bio-Nano Complexes: Synthesis, Characterization, and In Vitro Tests for Labeling Cancer Cells. J. Phys. Chem. B 2021, 125, 9768–9775. [Google Scholar] [CrossRef]
- Jain, A.; Fournier, P.G.J.; Mendoza-Lavaniegos, V.; Sengar, P.; Guerra-Olvera, F.M.; Iñiguez, E.; Kretzschmar, T.G.; Hirata, G.A.; Juárez, P. Functionalized rare earth-doped nanoparticles for breast cancer nanodiagnostic using fluorescence and CT imaging. J. Nanobiotechnol. 2018, 16, 26. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huong, T.T.; Vinh, L.T.; Khuyen, H.T.; Tuyen, L.D.; Van, N.D.; Thao, D.T.; Phuong, H.T. Synthesis and In Vitro Testing of YVO4:Eu3+@silica-NH-GDA-IgG Bio-Nano Complexes for Labelling MCF-7 Breast Cancer Cells. Molecules 2023, 28, 280. https://doi.org/10.3390/molecules28010280
Huong TT, Vinh LT, Khuyen HT, Tuyen LD, Van ND, Thao DT, Phuong HT. Synthesis and In Vitro Testing of YVO4:Eu3+@silica-NH-GDA-IgG Bio-Nano Complexes for Labelling MCF-7 Breast Cancer Cells. Molecules. 2023; 28(1):280. https://doi.org/10.3390/molecules28010280
Chicago/Turabian StyleHuong, Tran Thu, Le Thi Vinh, Hoang Thi Khuyen, Le Dac Tuyen, Nguyen Duc Van, Do Thi Thao, and Ha Thi Phuong. 2023. "Synthesis and In Vitro Testing of YVO4:Eu3+@silica-NH-GDA-IgG Bio-Nano Complexes for Labelling MCF-7 Breast Cancer Cells" Molecules 28, no. 1: 280. https://doi.org/10.3390/molecules28010280
APA StyleHuong, T. T., Vinh, L. T., Khuyen, H. T., Tuyen, L. D., Van, N. D., Thao, D. T., & Phuong, H. T. (2023). Synthesis and In Vitro Testing of YVO4:Eu3+@silica-NH-GDA-IgG Bio-Nano Complexes for Labelling MCF-7 Breast Cancer Cells. Molecules, 28(1), 280. https://doi.org/10.3390/molecules28010280