Effects of Sonication and Thermal Pasteurization on the Nutritional, Antioxidant, and Microbial Properties of Noni Juice
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Soluble Solids, pH, Titratable Acidity, Viscosity, and Color
2.2. Total Carotenoids, Phenolics, and Flavonoids
2.3. Organic Acids
2.4. Antioxidant Capacity
2.5. Microbial Activity
3. Materials and Methods
3.1. Preparation of Noni Juice
3.2. Sonication and Pasteurization Treatments
3.3. Total Soluble Solids (TSS), pH, Titratable Acidity, Viscosity, and Color
3.4. Sample Preparation for Total Carotenoids, Phenolics, Flavonoids, and Antioxidant Capacity
3.5. Total Phenolic Content (TPC)
3.6. Total Flavonoid Content (TFC)
3.7. Total Carotenoid Content (TCC)
3.8. Ferric Reducing Antioxidant Power (FRAP)
3.9. Trolox Equivalent Antioxidant Capacity (TEAC)
3.10. Sample Preparation for Quantification of Organic Acids and Phenolics
3.11. Organic Acids
3.12. Phenolics
3.13. Microbial Analysis
3.14. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Almeida, S.; de Oliveira, D.; Hotza, D. Properties and applications of Morinda citrifolia (noni): A review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 883–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dussossoy, E.; Brat, P.; Bony, E.; Boudard, F.; Poucheret, P.; Mertz, C.; Giaimis, J.; Michel, A. Characterization, anti-oxidative and anti-inflammatory effects of Costa Rican noni juice (Morinda citrifolia L.). J. Ethnopharmacol. 2011, 133, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Assi, R.A.; Darwis, Y.; Abdulbaqi, I.M.; Khan, A.A.; Vuanghao, L.; Laghari, M. Morinda citrifolia (Noni): A comprehensive review on its industrial uses, pharmacological activities, and clinical trials. Arab. J. Chem. 2017, 10, 691–707. [Google Scholar] [CrossRef]
- Motshakeri, M.; Ghazali, H.M. Nutritional, phytochemical and commercial quality of Noni fruit: A multi-beneficial gift from nature. Trends Food Sci. Technol. 2015, 45, 118–129. [Google Scholar] [CrossRef]
- Raman, M.; Ambalam, P.; Doble, M. Probiotics, Prebiotics, and Fibers in Nutritive and Functional Beverages. In Nutrients in Beverages; Academic Press: Cambridge, MA, USA, 2019; pp. 315–367. [Google Scholar] [CrossRef]
- Saelee, M.; Sivamaruthi, B.S.; Sirilun, S.; Sirithunyalug, J.; Peerajan, S.; Chaiyasut, C. The influence of pasteurization and starter culture on methanol content and bio-profile of fermented Morinda citrifolia Linn. (Noni) fruit juice. Food Sci. Technol. 2020, 40, 621–628. [Google Scholar] [CrossRef] [Green Version]
- Nelson, S.C.; Elevitch, C.R. Consumer Guide. In Noni: The Complete Guide for Consumers and Growers; Permanent Agriculture Resources (PAR): Holualoa, HI, USA, 2006; pp. 27–40. [Google Scholar]
- Basumatary, B.; Nayak, P.K.; Chandrasekar, C.M.; Nath, A.; Nayak, M.; Kesavan, R.K. Impact of thermo sonication and pasteurization on the physicochemical, microbiological and anti-oxidant properties of pomelo (Citrus maxima) juice. Int. J. Fruit Sci. 2020, 20, S2056–S2073. [Google Scholar] [CrossRef]
- Nayak, P.K.; Basumatary, B.; Chandrasekar, C.M.; Seth, D.; Kesavan, R.K. Impact of thermosonication and pasteurization on total phenolic contents, total flavonoid contents, antioxidant activity, and vitamin C levels of elephant apple (Dillenia indica) juice. J. Food Process Eng. 2020, 43, e134472020. [Google Scholar] [CrossRef]
- Chitgar, M.F.; Aalami, M.; Maghsoudlou, Y.; Milani, E. Comparative Study on the Effect of Heat Treatment and Sonication on the Quality of Barberry (Berberis Vulgaris) Juice. J. Food Process. Preserv. 2016, 41, e129562016. [Google Scholar] [CrossRef]
- Clemens, R.; Drewnowski, A.; Ferruzzi, M.G.; Toner, C.D.; Welland, D. Squeezing Fact from Fiction about 100% Fruit Juice. Adv. Nutr. Int. Rev. J. 2015, 6, 236S–243S. [Google Scholar] [CrossRef]
- Bhat, R.; Goh, K.M. Sonication treatment convalesce the overall quality of hand-pressed strawberry juice. Food Chem. 2017, 215, 470–476. [Google Scholar] [CrossRef]
- Barraza-Elenes, C.; Camacho-Hernández, I.L.; Yahia, E.M.; Zazueta-Morales, J.J.; Aguilar-Palazuelos, E.; Heredia, J.B.; Muy-Rangel, D.; Delgado-Nieblas, C.; Carrillo-López, A. Analysis by UPLC–DAD–ESI-MS of phenolic compounds and HPLC–DAD-based determination of carotenoids in noni (Morinda citrifolia L.) bagasse. J. Agric. Food Chem. 2019, 67, 7365–7377. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.; Gośliński, M.; Przygoński, K.; Wojtowicz, E. The antioxidant properties of exotic fruit juices from acai, maqui berry and noni berries. Eur. Food Res. Technol. 2018, 244, 1897–1905. [Google Scholar] [CrossRef]
- Abid, M.; Jabbar, S.; Wu, T.; Hashim, M.M.; Hu, B.; Lei, S.; Zeng, X. Sonication enhances polyphenolic compounds, sugars, carotenoids and mineral elements of apple juice. Ultrason. Sonochem. 2014, 21, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Kumoro, A.C.; Retnowati, D.S.; Budiyati, C.S. Influence of Temperature and Solid Concentration on the Physical Properties of Noni (Morinda citrifolia L.) Juice. Food Bioprocess Technol. 2009, 4, 1482–1488. [Google Scholar] [CrossRef]
- Santhirasegaram, V.; Razali, Z.; Somasundram, C. Effects of thermal treatment and sonication on quality attributes of Chokanan mango (Mangifera indica L.) juice. Ultrason. Sonochem. 2013, 20, 1276–1282. [Google Scholar] [CrossRef]
- Manzoor, M.F.; Ahmad, N.; Ahmed, Z.; Siddique, R.; Mehmood, A.; Usman, M.; Zeng, X.-A. Effect of dielectric barrier discharge plasma, ultra-sonication, and thermal processing on the rheological and functional properties of sugarcane juice. J. Food Sci. 2020, 85, 3823–3832. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Coates, G. Thermal Pasteurization Effects on Color of Red Grapefruit Juices. J. Food Sci. 1999, 64, 663–666. [Google Scholar] [CrossRef]
- Saini, R.K.; Nile, S.H.; Park, S.W. Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Res. Int. 2015, 76, 735–750. [Google Scholar] [CrossRef]
- Valdés, H.; Romero, J.; Saavedra, A.; Plaza, A.; Bubnovich, V. Concentration of noni juice by means of osmotic distillation. J. Membr. Sci. 2009, 330, 205–213. [Google Scholar] [CrossRef]
- Nugroho, K.P.A.; Rahardjo, M.; Jovitatera, A. The Optimization of Pudding Formulation Using Noni (Morinda citrifolia L.) Seen from Antioxidant Content and Sensory Characteristics. Indones. J. Agric. Res. 2019, 1, 280–288. [Google Scholar] [CrossRef]
- Yang, S.-C.; Chen, T.-I.; Li, K.-Y.; Tsai, T.-C. Change in phenolic compound content, reductive capacity and ACE inhibitory activity in noni juice during traditional fermentation. J. Food Drug Anal. 2007, 15, 10. [Google Scholar] [CrossRef]
- Yang, J.; Paulino, R.; Janke-Stedronsky, S.; Abawi, F. Free-radical-scavenging activity and total phenols of noni (Morinda citrifolia L.) juice and powder in processing and storage. Food Chem. 2007, 102, 302–308. [Google Scholar] [CrossRef]
- Tan, C.X.; Chin, R.; Tan, S.T.; Tan, S.S. Phytochemicals and antioxidant activity of ultrasound-assisted avocado seed extract. Malays. J. Anal. Sci. 2022, 26, 439–446. [Google Scholar]
- Bhat, R.; Kamaruddin, N.S.B.C.; Min-Tze, L.; Karim, A. Sonication improves kasturi lime (Citrus microcarpa) juice quality. Ultrason. Sonochem. 2011, 18, 1295–1300. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; West, B.J.; Jensen, C.J. A quantitative comparison of phytochemical components in global noni fruits and their commercial products. Food Chem. 2010, 122, 267–270. [Google Scholar] [CrossRef]
- Bittová, M.; Hladůvková, D.; Roblová, V.; Kráčmar, S.; Kubáň, P.; Kubáň, V. Analysis of organic acids, deacetyl asperulosidic acid and polyphenolic compounds as a potential tool for characterization of noni (Morinda citrifolia) products. Nat. Prod. Commun. 2015, 10, 1817–1820. [Google Scholar] [CrossRef] [Green Version]
- Giavoni, M.; Villanueva-Suárez, M.J.; De la Peña-Armada, R.; Garcia-Alonso, A.; Mateos-Aparicio, I. Pasteurization Modifies the Sensorial Attributes and Nutritional Profile of Orange Pulp by-Product. Foods 2022, 11, 1973. [Google Scholar] [CrossRef]
- Chunhieng, T.; Hay, L.; Montet, D. Detailed study of the juice composition of noni (Morinda citrifolia) fruits from Cambodia. Fruits 2005, 60, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Silva, E.K.; Arruda, H.S.; Pastore, G.M.; Meireles, M.A.A.; Saldaña, M.D. Xylooligosaccharides chemical stability after high-intensity ultrasound processing of prebiotic orange juice. Ultrason. Sonochem. 2019, 63, 104942. [Google Scholar] [CrossRef]
- Abid, M.; Jabbar, S.; Wu, T.; Hashim, M.M.; Hu, B.; Lei, S.; Zhang, X.; Zeng, X. Effect of ultrasound on different quality parameters of apple juice. Ultrason. Sonochem. 2013, 20, 1182–1187. [Google Scholar] [CrossRef]
- Aadil, R.M.; Zeng, X.-A.; Han, Z.; Sun, D.-W. Effects of ultrasound treatments on quality of grapefruit juice. Food Chem. 2013, 141, 3201–3206. [Google Scholar] [CrossRef] [PubMed]
- Choo, K.Y.; Kho, C.; Ong, Y.Y.; Thoo, Y.Y.; Lim, R.L.H.; Tan, C.P.; Ho, C.W. Studies on the storage stability of fermented red dragon fruit (Hylocereus polyrhizus) drink. Food Sci. Biotechnol. 2018, 27, 1411–1417. [Google Scholar] [CrossRef] [PubMed]
- Ulloa, J.A.; Tapia, N.T.G.; Ulloa, P.R.; Ramírez-Ramírez, J.C.; Rangel, B.E.U. Effect of soaking in noni (Morinda citrifolia) juice on the microbiological and color behavior of Haden minimally processed mango. J. Food Sci. Technol. 2014, 52, 3079–3085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Food and Drug Administration. Factors that Influence Microbial Growth. 2011. Available online: https://www.canr.msu.edu/smprv/uploads/files/Safe_Practices_for_Food_Processes_Chpt._3_Factors_that_Influence_Microbial_Growth.pdf (accessed on 18 November 2022).
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Association of Official Analytical Chemists: Rockville, MD, USA, 2007. [Google Scholar]
- Guerrouj, K.; Sánchez-Rubio, M.; Taboada-Rodríguez, A.; Cava-Roda, R.M.; Marín-Iniesta, F. Sonication at mild temperatures enhances bioactive compounds and microbiological quality of orange juice. Food Bioprod. Process. 2016, 99, 20–28. [Google Scholar] [CrossRef]
- Dars, A.G.; Hu, K.; Liu, Q.; Abbas, A.; Xie, B.; Sun, Z. Effect of Thermo-Sonication and Ultra-High Pressure on the Quality and Phenolic Profile of Mango Juice. Foods 2019, 8, 298. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.X.; Chong, G.H.; Hamzah, H.; Ghazali, H.M. Characterization of Virgin Avocado Oil Obtained via Advanced Green Techniques. Eur. J. Lipid Sci. Technol. 2018, 120, 1800170. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Devaki, M. The ferric reducing/antioxidant power (FRAP) assay for non-enzymatic antioxidant capacity: Concepts, procedures, limitations and applications. In Measurement of Antioxidant Activity & Capacity: Recent Trends and Applications; Apak, R., Capanoglu, E., Shahidi, F., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018; pp. 273–283. [Google Scholar] [CrossRef]
- Scherer, R.; Cecília, A.; Rybka, P.; Augusto, C.; Dillenburg, A.; Teixeira, J.; Teixeira, H. Validation of a HPLC method for simultaneous determination of main organic acids in fruits and juices. Food Chem. 2012, 135, 150–154. [Google Scholar] [CrossRef] [Green Version]
- Saikia, S.; Mahnot, N.K.; Mahanta, C.L. A comparative study on the effect of conventional thermal pasteurisation, microwave and ultrasound treatments on the antioxidant activity of five fruit juices. Food Sci. Technol. Int. 2015, 22, 288–301. [Google Scholar] [CrossRef]
Sample | TSS (°Brix) | pH | Titratable Acidity (%) | Viscosity (mPa s) | Color | |||||
---|---|---|---|---|---|---|---|---|---|---|
L* | a* | b* | h° | C* | ΔE | |||||
PAS | 1.37 ± 0.06 a | 3.91 ± 0.01 a | 0.18 ± 0.02 a | 14.40 ± 0.40 a | 47.66 ±0.32 a | −0.41 ± 0.03 a | 5.46 ± 0.03 bc | 94.33 ± 0.34 a | 5.48 ± 0.03 bc | 1.16 ± 0.85 a |
FRE | 1.33 ± 0.06 a | 3.90 ± 0.01 a | 0.17 ± 0.01 a | 16.27 ± 0.23 b | 47.55 ± 0.47 a | −0.44 ± 0.03 a | 6.47 ± 0.75 c | 93.94 ± 0.73 a | 6.49 ± 0.74 c | REF |
S20 | 1.30 ± 0.00 a | 3.91 ± 0.01 a | 0.17 ± 0.01 a | 17.07 ± 0.61 bc | 52.92 ± 0.31 b | −0.39 ± 0.06 a | 4.30 ± 0.36 ab | 95.21 ± 0.31 a | 4.32 ± 0.37 ab | 5.84 ± 0.19 b |
S40 | 1.30 ± 0.00 a | 3.91 ± 0.01 a | 0.17 ± 0.01 a | 17.73 ± 0.23 c | 52.35 ± 0.53 b | −0.35 ± 0.11 a | 4.59 ± 0.28 ab | 94.37 ± 1.54 a | 4.60 ± 0.27 ab | 5.20 ± 0.61 b |
S60 | 1.33 ± 0.06 a | 3.91 ± 0.01 a | 0.17 ± 0.01 a | 17.33 ± 0.23 c | 52.71 ± 0.47 b | −0.35 ± 0.06 a | 3.45 ± 0.70 a | 95.75 ± 0.16 a | 3.47 ± 0.71 a | 6.11 ± 0.44 b |
Sample | TC (mg βCE/100 mL) | TPC (mg GAE/100 mL) | TFC (mg RE/100 mL) |
---|---|---|---|
PAS | 0.01 ± 0.00 a | 2.62 ± 0.05 a | 1.14 ± 0.17 ab |
FRE | 0.02 ± 0.00 a | 2.93 ± 0.07 b | 1.01 ± 0.19 a |
S20 | 0.01 ± 0.00 a | 2.88 ± 0.08 b | 1.20 ± 0.17 ab |
S40 | 0.01 ± 0.00 a | 2.93 ± 0.05 b | 1.40 ± 0.06 ab |
S60 | 0.02 ± 0.00 a | 3.19 ± 0.06 c | 1.48 ± 0.11 b |
Sample | Phenolic Compounds (mg/100 mL) | Organic Acids (mg/100 mL) | ||||||
---|---|---|---|---|---|---|---|---|
Scopoletin | Rutin | Vanillic Acid | Quercetin | Malic Acid | Fumaric Acid | Citric Acid | Ascorbic Acid | |
PAS | 0.83 ± 0.06 a | 2.22 ± 0.25 a | 7.95 ± 1.37 a | ND | 57.54 ± 3.97 a | 0.35 ± 0.05 a | 0.90 ± 0.13 a | 17.15 ± 0.20 a |
FRE | 0.96 ± 0.01 a | 2.75 ± 0.02 a | 9.02 ± 0.25 ab | ND | 76.43 ± 2.72 b | 0.39 ± 0.05 ab | 1.50 ± 0.07 b | 26.93 ± 1.17 b |
S20 | 0.98 ± 0.01 a | 2.64 ± 0.02 a | 9.52 ± 1.10 abc | ND | 84.34 ± 6.52 bc | 0.41 ± 0.02 ab | 1.86 ± 0.12 c | 28.01 ± 1.50 bc |
S40 | 1.00 ± 0.01 a | 2.92 ± 0.03 a | 11.74 ± 1.02 bc | ND | 86.58 ± 4.43 bc | 0.51 ± 0.02 c | 2.24 ± 0.18 d | 30.21 ± 0.71 cd |
S60 | 1.47 ± 0.23 b | 4.02 ± 0.84 b | 12.17 ± 1.18 c | ND | 89.31 ± 5.36 c | 0.45 ± 0.04 bc | 4.78 ± 0.06 e | 31.55 ± 1.43 d |
Sample | FRAP (μM Fe2+/kg) | TEAC (mM TE/kg) |
---|---|---|
PAS | 29.92 ± 2.57 a | 15.52 ± 0.31 a |
FRE | 37.90 ± 4.69 ab | 17.65 ± 0.26 b |
S20 | 38.73 ± 5.23 ab | 18.32 ± 0.27 b |
S40 | 45.38 ± 0.72 b | 19.39 ± 0.26 c |
S60 | 59.63 ± 1.88 c | 19.65 ± 0.30 c |
Sample | Week 0 (log CFU/mL) | Week 4 (log CFU/mL) | Week 8 (log CFU/mL) | |||
---|---|---|---|---|---|---|
AMB | YM | AMB | YM | AMB | YM | |
FRE | 1.71 ± 0.11 b | ND | 1.70 ± 0.02 b | ND | 1.84 ± 0.14 b | ND |
PAS | 0.85 ± 0.21 a | ND | 0.60 ± 0.00 a | ND | 0.69 ± 0.13 a | ND |
S60 | 1.83 ± 0.00 b | ND | 1.75 ± 0.05 b | ND | 1.78 ± 0.14 b | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choo, Y.X.; Teh, L.K.; Tan, C.X. Effects of Sonication and Thermal Pasteurization on the Nutritional, Antioxidant, and Microbial Properties of Noni Juice. Molecules 2023, 28, 313. https://doi.org/10.3390/molecules28010313
Choo YX, Teh LK, Tan CX. Effects of Sonication and Thermal Pasteurization on the Nutritional, Antioxidant, and Microbial Properties of Noni Juice. Molecules. 2023; 28(1):313. https://doi.org/10.3390/molecules28010313
Chicago/Turabian StyleChoo, Yi Xuan, Lai Kuan Teh, and Chin Xuan Tan. 2023. "Effects of Sonication and Thermal Pasteurization on the Nutritional, Antioxidant, and Microbial Properties of Noni Juice" Molecules 28, no. 1: 313. https://doi.org/10.3390/molecules28010313
APA StyleChoo, Y. X., Teh, L. K., & Tan, C. X. (2023). Effects of Sonication and Thermal Pasteurization on the Nutritional, Antioxidant, and Microbial Properties of Noni Juice. Molecules, 28(1), 313. https://doi.org/10.3390/molecules28010313