Recent Advances in Molecularly Imprinted Polymers for Antibiotic Analysis
Abstract
:1. Introduction
2. Emerging Techniques for the Preparation of MIPs
3. SPE Modes Based on MIPs
4. Sensors Based on MIPs
5. Applications of MIPs for Antibiotic Analysis
5.1. SAs
5.2. QNs
5.3. BALs
5.4. MALs
5.5. TCs
5.6. AGs
5.7. Others
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Li, J.; Wang, Y.; Wang, L.; Chen, L. Recent advances in sample pretreatment applications of molecularly imprinted polymers for determination of sulfonamides antibiotics residues. Coast. Sci. 2019, 6, 8–21. (In Chinese) [Google Scholar]
- Chen, Q.; Bing, N.; Xie, H.; Bao, Y. Research progress on the pollution status of antibiotics in different environmental media and their detection methods. Environ. Monit. 2017, 9, 24–31. (In Chinese) [Google Scholar]
- Stachelek, M.; Zalewska, M.; Kawecka-Grochocka, E.; Sakowski, T.; Bagnicka, E. Overcoming bacterial resistance to antibiotics: The urgent need—A review. Ann. Anim. Sci. 2021, 21, 63–87. [Google Scholar] [CrossRef]
- Treiber, F.M.; Beranek-Knauer, H. Antimicrobial residues in food from animal origin-a review of the literature focusing on products collected in stores and markets worldwide. Antibiotics 2021, 10, 534. [Google Scholar] [CrossRef] [PubMed]
- Dugheri, S.; Marrubini, G.; Mucci, N.; Cappelli, G.; Bonari, A.; Pompilio, I.; Trevisani, L.; Arcangeli, G. A review of micro-solid-phase extraction techniques and devices applied in sample pretreatment coupled with chromatographic analysis. Acta Chromatogr. 2021, 33, 99–111. [Google Scholar] [CrossRef]
- Arabi, M.; Ostovan, A.; Bagheri, A.R.; Guo, X.; Wang, L.; Li, J.; Wang, X.; Li, B.; Chen, L. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic Analysis. TRAC-Trends Anal. Chem. 2020, 128, 115923. [Google Scholar] [CrossRef]
- Sabari, S.N.U.M.; Loh, S.H.; Kamaruzaman, S.; Yahaya, N.; Khalik, W.M.A.W.M. Micro-solid phase extraction of polycyclic aromatic hydrocarbons in water using either C-18 or molecularly imprinted polymer membranes: Analytical merits and limitations. Sains Malays. 2021, 50, 123–133. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, J.; Fan, H.; Zhou, Q.; Liu, X. Recent advances of adsorbents in solid phase extraction for environmental samples. Int. J. Environ. Anal. Chem. 2016, 96, 407–435. [Google Scholar] [CrossRef]
- Peng, F.; Mi, F.; Hu, C.; Wang, Y.; Li, G.; Guan, M. Preparation of magnetic molecularly imprinted polymers and their applications in samples preparation. Chin. J. Anal. Lab. 2022, 41, 1344–1357. [Google Scholar]
- Kechagia, M.; Samanidou, V.; Kabir, A.; Furton, K.G. One-pot synthesis of a multi-template molecularly imprinted polymer for the extraction of six sulfonamide residues from milk before high-performance liquid chromatography with diode array detection. J. Sep. Sci. 2018, 41, 723–731. [Google Scholar] [CrossRef]
- Gao, L.; Qin, D.; Chen, Z.; Wu, S.; Tang, S.; Wang, P. Determination of sulfonamide antibiotics in fish and shrimp samples based on magnetic carbon nanotube dummy molecularly imprinted polymer extraction followed by UPLC-MS/MS. Electrophoresis 2021, 42, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Huang, D.; Lai, C.; Zeng, G.; Qin, L.; Zhang, C.; Yi, H.; Li, B.; Deng, R.; Liu, S.; et al. Recent advances in sensors for tetracycline antibiotics and their applications. Trac-Trends Anal. Chem. 2018, 109, 260–274. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Y.; Lu, Y. Application of molecular imprinted polymer-based sensor in food safety. J. Food Sci. Technol. 2015, 33, 1–5. [Google Scholar]
- Cheng, C.; Shi, N.; Jiang, X. Review on studies of molecular imprinted optical biosensors. J. Chem. Eng. Chin. Univ. 2020, 34, 572–581. (In Chinese) [Google Scholar]
- Huang, X.; Pu, J.; Chen, C.; Li, T. Application of molecular imprinting technique in pharmaceutical science and its prospect. J. Anhui Agri. 2016, 44, 3–6. [Google Scholar]
- Alexander, C.; Andersson, H.S.; Andersson, L.I.; Ansell, R.J.; Kirsch, N.; Nicholls, I.A.; O’Mahony, J.; Whitcombe, M.J. Molecular imprinting science and technology: A survey of the literature for the years up to and including 2003. J. Mol. Recognit. 2006, 19, 106–180. [Google Scholar]
- Arabi, M.; Ostovan, A.; Wang, Y.; Mei, R.; Fu, L.; Li, J.; Wang, X.; Chen, L. Chiral molecular imprinting-based SERS detection strategy for absolute enantiomeric discrimination. Nat. Commun. 2022, 13, 5757. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137–2211. [Google Scholar] [CrossRef]
- Ashley, J.; Shahbazi, M.A.; Kant, K.; Chidambara, V.A.; Wolff, A.; Bang, D.D.; Sun, Y. Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives. Biosens. Bioelectron. 2017, 91, 606–615. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Dong, W.; Zhang, X.; Yu, J.; Huang, C.; Deng, L.; Chen, H.; Peng, H. Preparation and characterization of protein molecularly imprinted poly (ionic liquid)/calcium alginate composite cryogel membrane with high mechanical strength for the separation of bovine serum albumin. Molecules 2022, 27, 7304. [Google Scholar] [CrossRef]
- Yang, Y.; Shen, X. Preparation and application of molecularly imprinted polymers for flavonoids: Review and perspective. Molecules 2022, 27, 7355. [Google Scholar] [CrossRef]
- Tian, C. Application development molecularly imprinted solid-phase extraction technologyon detection in food safety. Chem. Reag. 2017, 39, 1175–1178. (In Chinese) [Google Scholar]
- Lu, W.; Liu, J.; Li, J.; Wang, X.; Lv, M.; Cui, R.; Chen, L. Dual-template molecularly imprinted polymers for dispersive solid-phase extraction of fLuoroquinolones in water samples coupled with high performance liquid chromatography. Analyst 2019, 144, 1292–1302. [Google Scholar] [CrossRef] [PubMed]
- Chai, P.; Song, Z.; Liu, W.; Xue, J.; Wang, S.; Liu, J.; Li, J. Application of carbon dots in the analysis and detection of antibiotics. Chin. J. Chromatogr. 2021, 39, 816–826. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, J.; Chen, L. Advanced preparation technologies and strategies for molecularly imprinted materials. Chin. Sci. Bull. 2019, 64, 1352–1367. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Zahedi, P.; Ziaee, M.; Abdouss, M.; Farazin, A.; Mizaikoff, B. Biomacromolecule template-based molecularly imprinted polymers with an emphasis on their synthesis strategies: A review. Polym. Adv. Technol. 2016, 27, 1124–1142. [Google Scholar] [CrossRef]
- Mueller, A. A note about crosslinking density in imprinting polymerization. Molecules 2021, 26, 5139. [Google Scholar] [CrossRef]
- Erturk, G.; Mattiasson, B. Molecular imprinting techniques used for the preparation of biosensors. Sensors 2017, 17, 288. [Google Scholar] [CrossRef]
- Pan, M.; Hong, L.; Xie, X.; Liu, K.; Yang, J.; Wang, S. Nanomaterials-based surface protein imprinted polymers: Synthesis and medical applications. Macromol. Chem. Phys. 2021, 222, 2000222. [Google Scholar] [CrossRef]
- Lu, Z.; Huo, P.; Luo, Y.; Liu, X.; Wu, D.; Gao, X.; Li, C.; Yan, Y. Performance of molecularly imprinted photocatalysts based on fly-ash cenospheres for selective photodegradation of single and ternary antibiotics solution. J. Mol. Catal. A-Chem. 2013, 378, 91–98. [Google Scholar] [CrossRef]
- Viela, F.; Navarro-Baena, I.; Hernandez, J.J.; Osorio, M.R.; Rodriguez, I. Moth-eye mimetic cytocompatible bactericidal nanotopography: A convergent design. Bioinspir. Biomim. 2018, 13, 026011. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Xu, S.; Li, J. Recent advances in molecular imprinting technology: Current status, challenges and highlighted applications. Chem. Soc. Rev. 2011, 40, 2922–2942. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Song, L.; Bu, T.; Li, Y.; Ba, X.; He, J.; You, L.; Gu, K. Synthesis and characterization of sulfa drugs imprinted polymers by atom transfer radical polymerization with fragment imprinting. J. Anal. Test. 2018, 37, 82–86. (In Chinese) [Google Scholar]
- Li, Z.; Tang, H.; Feng, A.; Tang, H. Synthesis of zwitterionic polymers by living/controlled radical polymerization and its applications. Adv. Chem. 2018, 30, 1097–1111. (In Chinese) [Google Scholar]
- Cai, T.; Zhou, Y.; Liu, H.; Li, J.; Wang, X.; Zhao, S.; Gong, B. Preparation of monodisperse, restricted-access, media-molecularly imprinted polymers using bi-functional monomers for solid-phase extraction of sarafloxacin from complex samples. J. Chromatogr. A 2021, 1642, 462009. [Google Scholar] [CrossRef]
- Chen, Z. Separation and Enrichment of Monoterpenoids from Sibiraea Angustat Extract with Magnetic Surface Dummy Template Molecularly Imprinted Polymers. Master’s Thesis, Jiangxi University of Chinese Medicine, Nanchang, China, 2020. (In Chinese). [Google Scholar]
- Wang, Y.; Li, J.; Wang, L.; Qi, J.; Chen, L. Recent advances in applications of fragment/dummy molecularly imprinted polymers. Chin. J. Chromatogr. 2021, 39, 134–141. (In Chinese) [Google Scholar] [CrossRef]
- Prasada Rao, T.; Metilda, P.; Mary Gladis, J. Preconcentration techniques for uranium (VI) and thorium (IV) prior to analytical determination—an overview. Talanta 2005, 68, 1048–1064. [Google Scholar]
- Sun, D.; Song, Z.; Zhang, Y.; Wang, Y.; Lv, M.; Liu, H.; Wang, L.; Lu, W.; Li, J.; Chen, L. Recent advances in molecular-imprinting-based solid-phase extraction of antibiotics residues coupled with chromatographic analysis. Front. Environ. Chem. 2021, 2, 703961. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, X.; Zhang, Z.; Yin, J.; Wang, D.; Xu, Y.; Zhang, W.; Li, X.; Zhang, Q.; Liu, L. Synthesis of dummy-template molecularly imprinted polymer adsorbents for solid phase extraction of aminoglycosides antibiotics from environmental water samples. Talanta 2020, 208, 120385. [Google Scholar] [CrossRef]
- Qin, D.; Zhao, M.; Wang, J.; Lian, Z. Selective extraction and detection of norfloxacin from marine sediment and seawater samples using molecularly imprinted silica sorbents coupled with HPLC. Mar. Pollut. Bull. 2020, 150, 110677. [Google Scholar] [CrossRef]
- Chen, J.; Wang, L.; Liu, Y.; Chen, L.; Li, X.; Wang, X.; Zhu, G. Highly selective removal of kitasamycin from the environment by molecularly imprinted polymers: Adsorption performance and mechanism. Colloid Surf. A-Physicochem. Eng. Asp. 2021, 625, 126926. [Google Scholar] [CrossRef]
- Vuran, B.; Ulusoy, H.I.; Sarp, G.; Yilmaz, E.; Morgul, U.; Kabir, A.; Tartaglia, A.; Locatelli, M.; Soylak, M. Determination of chloramphenicol and tetracycline residues in milk samples by means of nanofiber coated magnetic particles prior to high-performance liquid chromatography-diode array detection. Talanta 2021, 230, 122307. [Google Scholar] [CrossRef] [PubMed]
- Capriotti, A.L.; Cavaliere, C.; La Barbera, G.; Montone, C.M.; Piovesana, S.; Lagana, A. Recent applications of magnetic solid-phase extraction for sample preparation. Chromatographia 2019, 82, 1251–1274. [Google Scholar] [CrossRef]
- Mao, Y.; Li, Z.; Liu, C.; Tian, L.; Kang, H.; Song, Z.; Yan, X.; Wang, Z. Study on adsorptive performance of ciprofloxacin by molecularly imprinted polymers based on magnetic wheat straw biochar. Chem. Reag. 2021, 43, 1631–1637. (In Chinese) [Google Scholar]
- Wu, J.; Zhi, S.; Jia, C.; Li, X.; Zhu, X.; Zhao, E. Dispersive solid-phase extraction combined with dispersive liquid-liquid microextraction for simultaneous determination of seven succinate dehydrogenase inhibitor fungicides in watermelon by ultra high performance liquid chromatography with tandem mass spectrometry. J. Sep. Sci. 2019, 42, 3688–3696. [Google Scholar]
- Islas, G.; Ibarra, I.S.; Hernandez, P.; Miranda, J.M.; Cepeda, A. Dispersive solid phase extraction for the analysis of veterinary drugs applied to food samples: A review. Int. J. Anal. Chem. 2017, 2017, 8215271. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Tong, J.; Sun, M.; Chen, L. Fast and selective extraction of chloramphenicol from soil by matrix solid-phase dispersion using molecularly imprinted polymer as dispersant. J. Sep. Sci. 2011, 34, 1886–1892. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, J.; Li, C.; Chen, L. Analysis of tetracyclines from milk powder by molecularly imprinted solid-phase dispersion based on a metal-organic framework followed by ultra high performance liquid chromatography with tandem mass spectrometry. J. Sep. Sci. 2018, 41, 2604–2612. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, L.; Song, Y.; Liu, J.; Wang, J. Application of molecularly imprinted polymer based matrix solid phase dispersion for determination of fluoroquinolones, tetracyclines and sulfonamides in meat. J. Chromatogr. B 2017, 1065, 104–111. [Google Scholar] [CrossRef]
- Barahona, F.; Albero, B.; Luis Tadeo, J.; Martin-Esteban, A. Molecularly imprinted polymer-hollow fiber microextraction of hydrophilic fluoroquinolone antibiotics in environmental waters and urine samples. J. Chromatogr. A 2019, 1587, 42–49. [Google Scholar] [CrossRef]
- Szultka, M.; Szeliga, J.; Jackowski, M.; Buszewski, B. Development of novel molecularly imprinted solid-phase microextraction fibers and their application for the determination of antibiotic drugs in biological samples by SPME-LC/MSn. Anal. Bioanal. Chem. 2012, 403, 785–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores Aguilar, J.F.; Miranda, J.M.; Rodriguez, J.A.; Paez-Hernandez, M.E.; Ibarra, I.S. Selective removal of tetracycline residue in milk samples using a molecularly imprinted polymer. J. Polym. Res. 2020, 27, 176. [Google Scholar] [CrossRef]
- Rodriguez-Gomez, R.; Teresa Garcia-Corcoles, M.; Cipa, M.; Barron, D.; Navalon, A.; Zafra-Gomez, A. Determination of quinolone residues in raw cow milk. application of polar stir-bars and ultra-high performance liquid chromatography-tandem mass spectrometry. Food Addit. Contam. Part A-Chem. 2018, 35, 1127–1138. [Google Scholar] [CrossRef] [PubMed]
- Perez-Padilla, Y.; Medina Cetina, S.A.M.; Avila-Ortega, A.; Alberto Barron-Zambrano, J.A.; Rafael Vilchis-Nestor, A.; Carrera-Figueiras, C.; Munoz-Rodriguez, D. Evaluation of polydimethylsiloxane-phenylsiloxane as a coating for stir bar sorptive extraction. J. Mex. Chem. Soc. 2018, 62, 348–357. [Google Scholar] [CrossRef]
- Cui, Y.; Jiang, L.; Li, H.; Meng, D.; Chen, Y.; Ding, L.; Xu, Y. Molecularly imprinted electrospun nanofibre membrane assisted stir bar sorptive extraction for trace analysis of sulfonamides from animal feeds. J. Ind. Eng. Chem. 2021, 96, 382–389. [Google Scholar] [CrossRef]
- Wang, R.; Li, C.; Li, Q.; Zhang, S.; Lv, F.; Yan, Z. Electrospinning fabrication of covalent organic framework composite nanofibers for pipette tip solid phase extraction of tetracycline antibiotics in grass carp and duck. J. Chromatogr. A 2020, 1622, 461098. [Google Scholar] [CrossRef]
- Mozaner Bordin, D.C.; Rabelo Alves, M.N.; de Campos, E.G.; De Martinis, B.S. Disposable pipette tips extraction: Fundamentals, applications and state of the art. J. Sep. Sci. 2016, 39, 1168–1172. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.H.; Ziyaadini, M.; Kaykhaii, M.; Ahmad, J.K.; Naruie, N. Separation and determination of ciprofloxacin in seawater, human blood plasma and tablet samples using molecularly imprinted polymer pipette-tip solid phase extraction and its optimization by response surface methodology. J. Sep. Sci. 2020, 43, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, R.A.; Angulo Flores, D.H.; Santos da Silva, R.C.; Avelar Dutra, F.V.A.; Borges, K.B. Pipette-tip solid-phase extraction using poly (1-vinylimidazole-co-trimethylolpropane trimethacrylate) as a new molecularly imprinted polymer in the determination of avermectins and milbemycins in fruit juice and water samples. Food Chem. 2018, 262, 86–93. [Google Scholar] [CrossRef]
- Yang, W.; Ma, Y.; Sun, H.; Huang, C.; Shen, X. Molecularly imprinted polymers based optical fiber sensors: A review. Trac-Trends Anal. Chem. 2022, 152, 116608. [Google Scholar] [CrossRef]
- Wang, Q.; Du, H.; Han, G.; Chen, Q.; Kong, B. Advance in the application of molecularly imprinted polymer-based sensors for meat safety detection. Food Chem. 2022, 43, 346–353. (In Chinese) [Google Scholar]
- Yang, Q.; Li, J.; Wang, X.; Peng, H.; Xiong, H.; Chen, L. Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis. Biosens. Bioelectron. 2018, 112, 54–71. [Google Scholar] [CrossRef] [PubMed]
- Suryanarayanan, V.; Wu, C.T.; Ho, K.C. Molecularly imprinted electrochemical sensors. Electroanalysis 2010, 22, 1795–1811. [Google Scholar] [CrossRef]
- Saylan, Y.; Yilmaz, F.; Ozgur, E.; Derazshamshir, A.; Yavuz, H.; Denizli, A. Molecular imprinting of macromolecules for sensor applications. Sensors 2017, 17, 898. [Google Scholar] [CrossRef] [PubMed]
- Capoferri, D.; Alvarez-Diduk, R.; Del Carlo, M.; Compagnone, D.; Merkoci, A. Electrochromic molecular imprinting sensor for visual and smartphone-based detections. Anal. Chem. 2018, 90, 5850–5856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, C.; Yang, B.; Jiang, X.; Li, J. Current progress of nanomaterials in molecularly imprinted electrochemical sensing. Crit. Rev. Anal. Chem. 2018, 48, 15–32. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Chen, X.; Wang, P.; Chen, C.; Pan, R.; Ling, Y.; Tang, Y. Preparation of molecularly imprinted composites initiated by hemin/graphene hybrid nanosheets and its application in detection of sulfamethoxazole. Curr. Med. Sci. 2019, 39, 159–165. [Google Scholar] [CrossRef]
- Surya, S.G.; Khatoon, S.; Lahcen, A.A.; Nguyen, A.T.H.; Dzantiev, B.B.; Tarannum, N.; Satama, K.N. A chitosan gold nanoparticles molecularly imprinted polymer based ciprofloxacin sensor. RSC Adv. 2020, 10, 12823–12832. [Google Scholar] [CrossRef]
- Liu, Z.; Fan, T.; Zhang, Y.; Ren, X.; Wang, Y.; Ma, H.; Wei, Q. Electrochemical assay of ampicillin using Fe3N-Co2N nanoarray coated with molecularly imprinted polymer. Microchim. Acta 2020, 187, 442. [Google Scholar] [CrossRef]
- Wen, Y.; Sun, D.; Zhang, Y.; Zhou, N.; Liu, H.; Li, J.; Zhuang, X. Molecular imprinting based electrochemical detection of quinolones antibiotics. Chem. Reag. 2022, 44, 1334–1341. (In Chinese) [Google Scholar]
- Guney, S.; Arslan, T.; Yanik, S.; Guney, O. An electrochemical sensing platform based on graphene oxide and molecularly imprinted polymer modified electrode for selective detection of amoxicillin. Electroanalysis 2021, 33, 46–56. [Google Scholar] [CrossRef]
- Meneghello, A.; Tartaggia, S.; Alvau, M.D.; Polo, F.; Toffoli, G. Biosensing technologies for therapeutic drug monitoring. Curr. Med. Chem. 2018, 25, 4354–4377. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R. The Preparation of Imprinted Fluorescence Sensor and the Research of Their Selective Detection of Fluoroquinolones. Master’s Thesis, Jiangsu University, Zhenjiang, China, 2020. (In Chinese). [Google Scholar]
- Mujahid, A.; Dickert, F.L. Molecularly imprinted polymers for sensors: Comparison of optical and mass-sensitive detection. In Molecularly Imprinted Sensors; Elsevier: Amsterdam, The Netherlands, 2012; pp. 125–159. [Google Scholar]
- Shaheen, A.; Taj, A.; Jameel, F.; Tahir, M.A.; Mujahid, A.; Butt, F.K.; Khan, W.S.; Bajwa, S.Z. Synthesis of graphitic carbon nitride nanosheets-layered imprinted polymer system as a nanointerface for detection of chloramphenicol. Appl. Nanosci. 2022, 12, 139–150. [Google Scholar] [CrossRef]
- Ayankojo, A.G.; Reut, J.; Boroznjak, R.; Opik, A.; Syritski, V. Molecularly imprinted poly (meta-Phenylenediamine) based QCM sensor for detecting amoxicillin. Sens. Actuators B-Chem. 2018, 258, 766–774. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, H.; Wang, L.; Ji, L.; Sun, D.; Liu, H.; Song, Z.; Li, J. Solid-phase extraction of sulfonamides antibiotics by using dummy template based molecularly imprinted materials. Chem. Reag. 2022, 44, 1314–1324. (In Chinese) [Google Scholar]
- Zhu, G.; Cheng, G.; Wang, P.; Li, W.; Wang, Y.; Fan, J. Water compatible imprinted polymer prepared in water for selective solid phase extraction and determination of ciprofloxacin in real samples. Talanta 2019, 200, 307–315. [Google Scholar] [CrossRef]
- Pourtaghi, A.; Mohammadinejad, A.; Rezaee, M.A.; Saberi, M.R.; Motamedshariaty, V.S.; Mohajeri, S.A. Application of molecularly imprinted solid-phase extraction coupled with liquid chromatography method for detection of penicillin G in pasteurised milk samples. Int. J. Dairy Technol. 2022, 75, 83–93. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, Y.; Wu, S.; Sun, Z.; Gong, B. Preparation of ampicillin surface molecularly imprinted polymers for its selective recognition of ampicillin in eggs samples. Int. J. Anal. Chem. 2018, 2018, 5897381. [Google Scholar] [CrossRef]
- Pupin, R.R.; Foguel, M.V.; Goncalves, L.M.; Sotomayor, M.; del, P.T. Magnetic molecularly imprinted polymers obtained by photopolymerization for selective recognition of penicillin G. J. Appl. Polym. Sci. 2020, 137, 48496. [Google Scholar] [CrossRef]
- Wang, Y. Preparation of β-Lactam Antibiotic Multi-Template Molecularly Imprinted Magnetic Composite Material and Its Environmental Analysis Application. Master’s Thesis, Guangdong University of Technology, Guangzhou, China, 2021. (In Chinese). [Google Scholar]
- Song, X.; Zhou, T.; Li, J.; Su, Y.; Xie, J.; He, L. Determination of macrolide antibiotics residues in pork using molecularly imprinted dispersive solid-phase extraction coupled with LC-MS/MS. J. Sep. Sci. 2018, 41, 1138–1148. [Google Scholar] [CrossRef]
- Song, X.; Zhou, T.; Li, J.; Zhang, M.; Xie, J.; He, L. Determination of ten macrolide drugs in environmental water using molecularly imprinted solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry. Molecules 2018, 23, 1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, N.; Feng, C.; Qu, P.; Wang, G.; Liu, J.; Liu, J.X.; Wang, J.P. Determination of tetracyclines in chicken by dispersive solid phase microextraction based on metal-organic frameworks/molecularly imprinted nano-polymer and ultra performance liquid chromatography. Food Anal. Meth. 2020, 13, 1211–1219. [Google Scholar] [CrossRef]
- Zeng, G. Preparation and Monitoring Application of Tetracyclines Multi-Template Molecularly Imprinted Magnetic Composite. Master’s Thesis, Guangdong University of Technology, Guangzhou, China, 2020. (In Chinese). [Google Scholar]
- Guo, M.; Wang, R.; Jin, Z.; Zhang, X.; Jokerst, J.; Sun, Y.; Sun, L. Hyperbranched molecularly imprinted photoactive polymers and its detection of tetracycline antibiotics. ACS Appl. Polym. Mater. 2022, 4, 1234–1242. [Google Scholar] [CrossRef]
- Huang, L.; Yu, W.; Guo, X.; Huang, Y.; Zhou, Q.; Zhai, H. Chip-based multi-molecularly imprinted monolithic capillary array columns coated Fe3O4/GO for selective extraction and simultaneous determination of tetracycline, chlortetracycline and deoxytetracycline in eggs. Microchem. J. 2019, 150, 104097. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, Z.; Liu, G.; Zhang, Z.; Yin, J. Preparation of magnetic dummy template molecularly imprinted polymers for the determination of aminoglycosides antibiotics in milk. Food Anal. Meth. 2021, 14, 2111–2120. [Google Scholar] [CrossRef]
- Huang, Y.; Lou, X.; Zhou, Z.; Wang, Y.; Kong, C.; Huang, D.; Cai, Y.; Yu, H. Determination of 11 kinds of aminoglycosides in aquatic products by ultra performance liquid chromatography-tandem mass spectrometry solid phase extraction. Chin. J. Anal. Chem. 2018, 46, 454–461. (In Chinese) [Google Scholar]
- Lian, Z.; Wang, J. Selective detection of chloramphenicol based on molecularly imprinted solid-phase extraction in seawater from Jiaozhou bay, China. Mar. Pollut. Bull. 2018, 133, 750–755. [Google Scholar] [CrossRef]
- Li, Z.; Lei, C.; Wang, N.; Jiang, X.; Zeng, Y.; Fu, Z.; Zou, L.; He, L.; Liu, S.; Ao, X.; et al. Preparation of magnetic molecularly imprinted polymers with double functional monomers for the extraction and detection of chloramphenicol in food. J. Chromatogr. B 2018, 1100, 113–121. [Google Scholar] [CrossRef]
- Negarian, M.; Mohammadinejad, A.; Mohajeri, S.A. Preparation, evaluation and application of core-shell molecularly imprinted particles as the sorbent in solid-phase extraction and analysis of lincomycin residue in pasteurized milk. Food Chem. 2019, 288, 29–38. [Google Scholar] [CrossRef]
- Cai, T.; Ma, M.; Liu, H.; Li, J.; Hou, J.; Gong, B. Preparation of monodisperse magnetic surface molecularly imprinted polymers for selective recognition of lincomycin hydrochloride in milk. J. Liq. Chromatogr. Relat. Technol. 2019, 42, 459–467. [Google Scholar] [CrossRef]
- Shi, X.; Zuo, Y.; Jia, X.; Wu, X.L.; Jing, N.; Wen, B.; Mi, X. A Novel Molecularly imprinted sensor based on gold nanoparticles/reduced graphene oxide/single-walled carbon nanotubes nanocomposite for the detection of pefloxacin. Int. J. Electrochem. Sci. 2020, 15, 9683–9697. [Google Scholar] [CrossRef]
- Liu, Z.; Jin, M.; Lu, H.; Yao, J.; Wang, X.; Zhou, G.; Shui, L. Molecularly imprinted polymer decorated 3D-framework of functionalized multi-walled carbon nanotubes for ultrasensitive electrochemical sensing of norfloxacin in pharmaceutical formulations and rat plasma. Sens. Actuator B-Chem. 2019, 288, 363–372. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.; Ma, J.; Wei, S.; Zhang, H. A novel electrochemical sensor based on molecularly imprinted polymer with binary functional monomers at Fe-doped porous carbon decorated Au electrode for the sensitive detection of lomefloxacin. Ionics 2020, 26, 4183–4192. [Google Scholar] [CrossRef]
- Hammam, M.A.; Wagdy, H.A.; El Nashar, R.M. Moxifloxacin hydrochloride electrochemical detection based on newly designed molecularly imprinted polymer. Sens. Actuator B-Chem. 2018, 275, 127–136. [Google Scholar] [CrossRef]
- Li, S.; Ma, X.; Pang, C.; Li, H.; Liu, C.; Xu, Z.; Luo, J.; Yang, Y. Novel molecularly imprinted amoxicillin sensor based on a dual recognition and dual detection strategy. Anal. Chim. Acta 2020, 1127, 69–78. [Google Scholar] [CrossRef]
- Hu, L.; Zhou, T.; Feng, J.; Jin, H.; Tao, Y.; Luo, D.; Mei, S.; Lee, Y.I. A rapid and sensitive molecularly imprinted electrochemiluminescence sensor for azithromycin determination in biological samples. J. Electroanal. Chem. 2018, 813, 1–8. [Google Scholar] [CrossRef]
- Ayankojo, A.G.; Reut, J.; Ciocan, V.; Opik, A.; Syritski, V. Molecularly imprinted polymer-based sensor for electrochemical detection of erythromycin. Talanta 2020, 209, 120502. [Google Scholar] [CrossRef]
- Rebelo, P.; Pacheco, J.G.; Cordeiro, M.N.D.S.; Melo, A.; Delerue-Matos, C. Azithromycin Electrochemical Detection Using a Molecularly Imprinted Polymer Prepared on a Disposable Screen-Printed Electrode. Anal. Methods 2020, 12, 1486–1494. [Google Scholar] [CrossRef]
- Yu, Z.; Kang, T.; Lu, L. An electrochemical molecularly imprinted sensor for tetracycline based on gold nanoparticles and graphene quantum dots. J. Instrum. Anal. 2020, 39, 182–189. (In Chinese) [Google Scholar]
- Zeb, S.; Wong, A.; Khan, S.; Hussain, S.; Sotomayor, M.D.P.T. Using magnetic nanoparticles/MIP-based electrochemical sensor for quantification of tetracycline in milk samples. J. Electroanal. Chem. 2021, 900, 115713. [Google Scholar] [CrossRef]
- Bi, H.; Wu, Y.; Wang, Y.; Liu, G.; Ning, G.; Xu, Z. A molecularly imprinted polymer combined with dual functional Au@Fe3O4 nanocomposites for sensitive detection of kanamycin. J. Electroanal. Chem. 2020, 870, 114216. [Google Scholar] [CrossRef]
- Cardoso, A.R.; Tavares, A.P.M.; Sales, M.G.F. In-situ generated molecularly imprinted material for chloramphenicol electrochemical sensing in waters down to the nanomolar level. Sens. Actuator B-Chem. 2018, 256, 420–428. [Google Scholar] [CrossRef]
- Kurc, O.; Turkmen, D. Molecularly imprinted polymers based surface plasmon resonance sensor for sulfamethoxazole detection. Photonic Sens. 2022, 12, 220417. [Google Scholar] [CrossRef]
- Chen, X.; Luan, Y.; Wang, N.; Zhou, Z.; Ni, X.; Cao, Y.; Zhang, G.; Lai, Y.; Yang, W. Ratiometric fluorescence nanosensors based on core- shell structured carbon/ CdTe quantum dots and surface molecularly imprinted polymers for the detection of sulfadiazine. J. Sep. Sci. 2018, 41, 4394–4401. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Lv, C.; Yuan, X.; He, M.; Lai, J.; Sun, H. A novel fluorescent optical fiber sensor for highly selective detection of antibiotic ciprofloxacin based on replaceable molecularly imprinted nanoparticles composite hydrogel detector. Sens. Actuator B-Chem. 2021, 328, 129000. [Google Scholar] [CrossRef]
- Bunkoed, O.; Donkhampa, P.; Nurerk, P. A nanocomposite optosensor of hydroxyapatite and graphene quantum dots embedded within highly specific polymer for norfloxacin detection. Microchem. J. 2020, 158, 105127. [Google Scholar] [CrossRef]
- Bereli, N.; Cimen, D.; Huseynli, S.; Denizli, A. Detection of amoxicillin residues in egg extract with a molecularly imprinted polymer on gold microchip using surface plasmon resonance and quartz crystal microbalance methods. J. Food Sci. 2020, 85, 4152–4160. [Google Scholar] [CrossRef]
- Bakhshpour, M.; Göktürk, I.; Bereli, N.; Yılmaz, F.; Denizli, A. Selective detection of penicillin G antibiotic in milk by molecularly imprinted polymer-based plasmonic SPR sensor. Biomimetics 2021, 6, 72. [Google Scholar] [CrossRef]
- Wei, X.; Lv, L.; Zhang, Z.; Guan, W. Preparation of molecularly imprinted fluorescence sensor based on carbon quantum dots via precipitation polymerization for fluorescence detection of tetracycline. J. Appl. Polym. Sci. 2020, 137, e49126. [Google Scholar] [CrossRef]
- Gao, W.; Li, P.; Qin, S.; Huang, Z.; Cao, Y.; Liu, X. A highly sensitive tetracycline sensor based on a combination of magnetic molecularly imprinted polymer nanoparticles and surface plasmon resonance detection. Microchim. Acta 2019, 186, 637. [Google Scholar] [CrossRef]
- Wang, W.; Xu, Y.; Liu, X.; Peng, L.; Huang, T.; Yan, Y.; Li, C. Efficient fabrication of ratiometric fluorescence imprinting sensors based on organic-inorganic composite materials and highly sensitive detection of oxytetracycline in milk. Microchem. J. 2020, 157, 105053. [Google Scholar] [CrossRef]
- Geng, Y.; Guo, M.; Tan, J.; Huang, S.; Tang, Y.; Tan, L.; Liang, Y. A fluorescent molecularly imprinted polymer using aptamer as a functional monomer for sensing of kanamycin. Sens. Actuators B-Chem. 2018, 268, 47–54. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, C.; Chen, C.; Zhu, S.; Zhou, J.; Wang, M.; Shang, P. Determination of kanamycin using a molecularly imprinted SPR sensor. Food Chem. 2018, 266, 170–174. [Google Scholar] [CrossRef]
- Amiripour, F.; Ghasemi, S.; Azizi, S.N. Design of turn-on luminescent sensor based on nanostructured molecularly imprinted polymer-coated zirconium metal–organic framework for selective detection of chloramphenicol residues in milk and honey. Food Chem. 2021, 347, 120934. [Google Scholar] [CrossRef] [PubMed]
- Chen, S. Study on Application and Sensing Mechanism of Carbon Dots-Molecularly Imprinting Sensors in Detection of Chloramphenicol. Master’s Thesis, Jiangnan University, Wuxi, China, 2019. (In Chinese). [Google Scholar]
- Zhao, X.; Lu, L.; Zhu, M.; Liu, H.; He, J.; Zheng, F. Development of hydrophilic magnetic molecularly imprinted polymers for the dispersive solid-phase extraction of sulfonamides from animal-derived samples before HPLC detection. J. Sep. Sci. 2021, 44, 2399–2407. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Ji, L.; Chen, L. Simultaneous determination of sulfonamides antibiotics in environmental water and seafood samples using ultrasonic-assisted dispersive liquid-liquid microextraction coupled with high performance liquid chromatography. Molecules 2022, 27, 2160. [Google Scholar] [CrossRef]
- Pham, T.D.M.; Ziora, Z.M.; Blaskovich, M.A.T. Quinolone antibiotics. Med. Chem. Commun. 2019, 10, 1719–1739. [Google Scholar] [CrossRef]
- Jiwanti, P.K.; Wardhana, B.Y.; Sutanto, L.G.; Chanif, M.F. A review on carbon-based electrodes for electrochemical sensor of quinolone antibiotics. ChemistrySelect 2022, 7, e202103997. [Google Scholar] [CrossRef]
- De Oliveira, H.L.; da Silva Anacleto, S.; Maria da Silva, A.T.; Pereira, A.C.; de Souza Borges, W.; Figueiredo, E.C.; Borges, K.B. Molecularly imprinted pipette-tip solid phase extraction for selective determination of fluoroquinolones in human urine using HPLC-DAD. J. Chromatogr. B 2016, 1033, 27–39. [Google Scholar] [CrossRef]
- Kim, S.W.; Park, S.B.; Im, S.P.; Lee, J.S.; Jung, J.W.; Gong, T.W.; Lazarte, J.M.S.; Kim, J.; Seo, J.S.; Kim, J.H.; et al. Outer membrane vesicles from β-lactam-resistant Escherichia coli enable the survival of β-lactam-susceptible E. coli in the presence of β-lactam antibiotics. Sci. Rep. 2018, 8, 5402. [Google Scholar] [CrossRef] [Green Version]
- Garza Montelongo, E.; Sanchez Anguiano, M.G.; Blanco Jerez, L.M.; Pereira Ulloa, E.D.; Rivas Quiroz, B.L.; Elizondo Martinez, P. Determination of tylosin in milk samples by poly (ethylene terephthalate)-based molecularly imprinted polymer. J. Appl. Polym. Sci. 2020, 137, e49204. [Google Scholar] [CrossRef]
- Xu, Y.; Tang, Y.; Zhao, Y.; Gao, R.; Zhang, J.; Fu, D.; Li, Z.; Li, H.; Tang, X. Bifunctional monomer magnetic imprinted nanomaterials for selective separation of tetracyclines directly from milk samples. J. Colloid Interface Sci. 2018, 515, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Yue, F.; Li, F.; Kong, Q.; Guo, Y.; Sun, X. Recent advances in aptamer-based sensors for aminoglycoside antibiotics detection and their applications. Sci. Total Environ. 2021, 762, 143129. [Google Scholar] [CrossRef] [PubMed]
- Dutta, J.; Mala, A.A. Removal of antibiotic from the water environment by the adsorption technologies: A review. Water Sci. Technol. 2020, 82, 401–426. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. Research progress on residue analysis of chloramphenicol in honey. Food Saf. Guide 2022, 51, 155–157. [Google Scholar]
- Arabi, M.; Chen, L. Technical challenges of molecular-imprinting-based optical sensors for environmental pollutants. Langmuir 2022, 38, 5963–5967. [Google Scholar] [CrossRef]
- Li, J.; Sun, D. Molecularly imprinted ratiometric fluorescence nanosensors. Langmuir 2022, 38, 13305–13312. [Google Scholar] [CrossRef]
- Arabi, M.; Ostovan, A.; Li, J.; Wang, X.; Zhang, Z.; Choo, J.; Chen, L. Molecular imprinting: Green perspectives and strategies. Adv. Mater. 2021, 33, 2100543. [Google Scholar] [CrossRef]
- Ostovan, A.; Arabi, M.; Wang, Y.; Li, J.; Li, B.; Wang, X.; Chen, L. Greenificated molecularly imprinted materials for advanced applications. Adv. Mater. 2022, 34, 2203154. [Google Scholar] [CrossRef]
- Song, Z.; Li, J.; Lu, W.; Li, B.; Yang, G.; Bi, Y.; Arabi, M.; Wang, X.; Ma, J.; Chen, L. Molecularly imprinted polymers based materials and their applications in chromatographic and electrophoretic separations. TRAC-Trends Anal. Chem. 2022, 146, 116504. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Gao, R.; Tian, X.; Heinlein, J.; Hussain, S.; Pfefferle, L.D.; Chen, X.; Zhang, X.; Hao, Y. Strategic design and fabrication of lightweight sesame ball-like hollow double-layer hybrid magnetic molecularly imprinted nanomaterials for the highly specific separation and recovery of tetracycline from milk. Green Chem. 2022, 24, 8036–8045. [Google Scholar] [CrossRef]
Types of Antibiotics | SPE Mode | Analyte/Number | Imprinting Technique | Template | Polymerization Method | LOD | Detection Technique | Real Sample | Recovery/% | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
SAs | PSPE | SAs/6 | multi-template imprinting strategies | SNM, SCM, SDZ, STZ, SMZ, SMT | sol-gel polymerization | 1.9–13.3 μg/kg | HPLC-DAD | milk | - | [10] |
MSPD | SAs/8 QNs/8 TCs/4 | - | SB, PA, TC | - | 0.5–3.0 ng/g | UPLC | pork | 74.5–102.7 | [50] | |
DSPE | SAs/4 | dummy template imprinting | SZ | precipitation polymerization | 0.27–0.64 μg/L | HPLC-UV | water | 93.8–102.6 | [78] | |
SBSE | SAs/4 | - | SMM | emulsion polymerization | 1.5–3.4 ng/g | LC–MS/MS | feed | 80.6–89.7 | [56] | |
MSPE | SAs/14 | dummy template imprinting | SB | - | 0.1 μg/kg | UPLC-MS/MS | fish, shrimp | 90.2–99.9 | [11] | |
QNs | PSPE | QNs/3 | multi-functional monomer imprinting strategies | CIP | - | 0.11 μg/L | HPLC | water, soil and pork | 87.33–102.50 | [79] |
PT-μSPE | CIP/1 | - | CIP | in situ polymerization | 1.50 μg/L | Spectrophotometry | sea water | 86.9–99.6 | [59] | |
SPME | FQs/4 | - | ENR | - | 0.1–10 μg/L | HPLC-UV, HPLC-MS/MS | water | 9.4–24.5 | [51] | |
DSPE | FQs/2 | dual-template imprinting strategies | NOR, ENR | precipitation polymerization | 0.22 μg/L, 0.36 μg/L | HPLC | lake, ocean, tap water | 80.9–101.1 | [23] | |
MSPE | FQs, TC, SA/4 | - | CIP | ATRP | - | HPLC | - | - | [45] | |
BALs | PSPE | penicillin G/1 | - | PEN-G | - | 2 ng/mL | HPLC-UV | milk | 81–90 | [80] |
PSPE | BALs/4 | surface imprinting | AMP | - | - | HPLC | food | 91.5–94.9 | [81] | |
PSPE | BALs/3 | - | PEN-G | photopolymerization | - | LC-MS | - | - | [82] | |
PSPE | BALs/5 | multi-template imprinting strategies | AMO, CFX, CFZ, PEN-G, OXA | - | 0.24–0.56 μg/L | HPLC | lake water, pond water | 91.3–110.1 | [83] | |
MALs | DSPE | MALs/7 | - | TUL | precipitation polymerization | 0.2–0.5 μg/kg | HPLC-MS/MS | pork | 68.6–95.5 | [84] |
PSPE | MALs/10 | - | TYL | bulk polymerization | 1.0–15.0 ng/L | LC-MS/MS | water | 62.6–100.9 | [85] | |
PSPE | KITA/1 | multi-functional monomer imprinting strategies | KITA | - | 0.1 mg/L | HPLC | soil, water | 92.3–108.8 | [42] | |
TCs | MSPD | TCs/3 | - | TC | - | 0.217–0.318 ng/g | UHPLC-MS/MS | milk powder. | 84.7–93.9 | [49] |
SPME | TCs/4 | - | TC | precipitation polymerization | - | LVSS-CE | milk | - | [53] | |
DSPE | TCs/7 | surface imprinting | MC | - | 0.2–0.6 ng/g | UHPLC-PDA | chicken muscle | 69.6–94.7 | [86] | |
PSPE | TCs/4 | dummy template imprinting | TC, OTC, CTC, DC | - | 0.74, 0.67 0.92, 0.95 μg/L | HPLC | river water, pond water | 82.7–103.3 | [87] | |
MSPE | TCs/2 | surface imprinting | TCs | - | 0.39 mg/L | HPLC | - | - | [88] | |
PSPE | TCs/3 | - | TC, CTC, DC | in situ polymerization | 3.0–5.0 μg/kg | HPLC-FLD | egg | 86.4–94.2 | [89] | |
AGs | MSPE | AGs/6 | dummy template imprinting, surface imprinting | RAF | - | 3.6–9.6 μg/kg | HPLC-MS/MS | milk | 82.6–114.1 | [90] |
DSPE | AGs/6 | dummy template imprinting | RAF | precipitation polymerization | 0.006–0.6 ng/mL | HPLC-MS/MS | water | 70.8–108.3 | [40] | |
PSPE | AGs/11 | - | AGs | - | 1.0–10.0 μg/kg | UPLC-MS/MS | aquatic products | 78.4–109.6 | [91] | |
others | PSPE | CAP/1 | - | CAP | precipitation polymerization | 5 ng/L | HPLC-DAD | sea water | 81–90 | [92] |
PSPE | CAP/1 | multi-functional monomer imprinting strategies | CAP | suspension polymerization | 10 μg/L | HPLC-UV | food | 95.31–106.89 | [93] | |
PSPE | LIN/1 | - | LIN | 0.02 μg/mL | HPLC-UV | milk | 80–89 | [94] | ||
MSPE | LIN, AMO, OXYT, CLIN/4 | surface imprinting | LIN | ATRP | 15.0 ng/g | HPLC-UV | milk | 94.3–98.2 | [95] |
Types of Antibiotics | Templates/Analytes | Function Monomers | Electrode | Detection Mode | Linear Range | LOD | Real Sample | Recovery/% | Ref. |
---|---|---|---|---|---|---|---|---|---|
SAs | SMX | MAA | GCE | CV | 5 μg/kg–1 mg/g | 1.2 μg/kg | food | - | [68] |
QNs | CIP | MAA | GCE | CV | 1–100 μmol/L | 210 nmol/L | water | 94–106 | [69] |
PEF | - | GCE | DPV | 5.0 × 10−7–2.0 × 10−5 mol/L | 1.6 × 10−8 mol/L | milk | - | [96] | |
NOR | MAA | Ag/AgCl | CV, DPV | 0.003–3.125 μmol/L | 1.58 nmol/L | - | 97.36–109.58 | [97] | |
LFX | o-PD | Fe-PC/Au | CV, DPV | 1–120 nmol/L | 0.2 nmol/L | water, milk | 86.6–105.0 | [98] | |
MFLX | MAA/4-VP | Ag/AgCl | - | 1.0 × 10−5–1.0 × 10−2 mol/L | 1.7 × 10−6 mol/L | urine | 96.6–102.8 | [99] | |
BALs | AMO | MAA | Ag/AgCl | DPV, EIS | 5–1500 × 10−11 mol/L | 9.2 × 10−12 mol/L, 8.3 × 10−12 mol/L | - | - | [100] |
AMO | APTES, PTES | GO/GCE | CV, DPV | 5.0 × 10−10–9.1 × 10−7 mol/L | 2.94 × 10−10 mol/L | - | - | [72] | |
AMP | NNDMA | Fe3N-Co2N/CC | DPV | 5.56 × 10−9–9 × 10−3 mol/L | 3.65 × 10−10 mol/L | milk | 97.06–102.43 | [70] | |
MALs | Ery/AZM | MAA | Ag/AgCl | CV, DPV | 1.0 × 10−10–4.0 × 10−7 mol/L | 2.3 × 10−11 mol/L | - | 98.4–113.5 | [101] |
Ery | m-PD | Ag/AgCl | CV, EIS | - | 0.1 nmol/L | tap water | 91–102 | [102] | |
AZY | 4-ABA | SPCE | CV, EIS | 0.5–10.0 μmol/L | 0.08 μmol/L | water | - | [103] | |
TCs | TC | 4-ATP | GCE | CV, EIS | 2.0 × 10−8–3.0 × 10−8 mol/L | 1.5 × 10−9 mol/L | - | 97. 9–106 | [104] |
TC | AA | Ag/AgCl | CV, DPV | 5.0 × 10−7–4.0 × 10−5 mol/L | 1.5 × 10−7 mol/L | milk | 93–103 | [105] | |
AGs | KAN | - | Ag/AgCl | CV | 10–500 nmol/L | 1.87 nmol/L | milk | - | [106] |
others | CAP | EBT | carbon screen-printed electrodes | CV, EIS | - | - | - | - | [107] |
Types of Antibiotics | Detection Technology | Imprinting Technique | Templates | Polymerization Methods | Linear Range | LOD | Recovery (%) | Real Sample | Ref. |
---|---|---|---|---|---|---|---|---|---|
SAs | SPR | - | SMX | - | - | 0.0011 μg/L | 97.2–99.5 | milk | [108] |
fluorescence nano-sensors | surface imprinting | SDZ | - | 0.25–20 μmol/L | 0.042 μmol/L | 79.3–101.2 | water, milk | [109] | |
QNs | fluorescent optical fiber sensor | - | CIP | - | 10–500 μmol/L | 6.86 μmol/L | - | water | [110] |
fluorescence sensor | - | NOR | - | 1.0–100.0 μg/L | 0.35 μg/L | 93.8–99.3 | chicken meat, milk | [111] | |
fluorescence sensor | - | NOR | reverse microemulsion | 3.82–150 nmol/L | 3.82 nmol/L | - | - | [74] | |
BALs | SPR | - | AMO | UV polymerization | 0.1–10 ng/mL | 0.0005 ng/mL | - | egg | [112] |
SPR | - | PEN-G | - | 0.01–10 ng/mL | - | - | milk | [113] | |
TCs | fluorescence sensor | - | TC | precipitation polymerization | 1.0–60 μmoL/L | 0.17 μmoL/L | 96–105.6 | water | [114] |
SPR | surface imprinting | TC | 5.0–100 pg/mL | 1.0 pg/mL | 95.7–104.6 | milk | [115] | ||
fluorescence sensor | - | OTC | precipitation polymerization | 0–80 μmol/L | 3.5 nmol/L | 99.93–100.20 | milk | [116] | |
AGs | fluorescence sensor | surface imprinting | KAN | - | 0.05–10.0 μg/mL | 0.013 μg/mL | - | water | [117] |
SPR | surface imprinting | KAN | - | 1.00 × 10−7–1.00 × 10−5 mol/L | 1.20 × 10−8 mol/L, 4.33 × 10−8 mol/L | - | honey, milk powder | [118] | |
Others | fluorescence sensor | surface imprinting | CAP | - | 0.16–161.56 μg/L | 0.013 μg/L | 96–105 | milk, honey | [119] |
mass sensor | - | CAP | free radical polymerization | - | 177 μmol/L | 90–98 | - | [76] | |
fluorescence sensor | - | CAP | reversed-phase microemulsion | 1.50 × 10−3–1.50 × 10−2 μmol/L | 12.83 nmol/L | 90.02–102.53 | crucian carp | [120] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, G.; Zhang, Y.; Sun, D.; Yan, S.; Wen, Y.; Wang, Y.; Li, G.; Liu, H.; Li, J.; Song, Z. Recent Advances in Molecularly Imprinted Polymers for Antibiotic Analysis. Molecules 2023, 28, 335. https://doi.org/10.3390/molecules28010335
Zhao G, Zhang Y, Sun D, Yan S, Wen Y, Wang Y, Li G, Liu H, Li J, Song Z. Recent Advances in Molecularly Imprinted Polymers for Antibiotic Analysis. Molecules. 2023; 28(1):335. https://doi.org/10.3390/molecules28010335
Chicago/Turabian StyleZhao, Guangli, Yue Zhang, Dani Sun, Shili Yan, Yuhao Wen, Yixiao Wang, Guisheng Li, Huitao Liu, Jinhua Li, and Zhihua Song. 2023. "Recent Advances in Molecularly Imprinted Polymers for Antibiotic Analysis" Molecules 28, no. 1: 335. https://doi.org/10.3390/molecules28010335
APA StyleZhao, G., Zhang, Y., Sun, D., Yan, S., Wen, Y., Wang, Y., Li, G., Liu, H., Li, J., & Song, Z. (2023). Recent Advances in Molecularly Imprinted Polymers for Antibiotic Analysis. Molecules, 28(1), 335. https://doi.org/10.3390/molecules28010335