Removal of Iodine-Containing X-ray Contrast Media from Environment: The Challenge of a Total Mineralization
Abstract
:1. Introduction
2. ICM in the Environment
2.1. Effluents Polluted by ICM
2.2. Ecotoxicology of ICM
3. Processes for the Treatment of ICM
3.1. Biological Processes for Removing ICM
3.1.1. Aerobic Biological Treatment Processes
- (i)
- Biological degradation of organic pollution is carried out in the bioreactor by adapted microorganisms.
- (ii)
- After treatment, the microorganisms are separated from the treated wastewater by the membrane module.
3.1.2. Anaerobic Biological Treatments
3.2. Advanced Oxidation Processes (AOPs) for ICM Removal
3.2.1. Ozone-Based AOPs
Ozonation
Peroxone-Process
3.2.2. UV-Based AOPs
UV/H2O2
Chlorine as Co-Reactant with UV
Photocatalysis
3.2.3. Fenton Process
Classical Fenton Process
Modified Fenton
- (i) Photo-reduction of Fe3+ to Fe2+ ions
- 2.
- (ii) Peroxide photolysis via shorter wavelengths
3.2.4. Electrochemical AOPs
BDD Anode
DSA Anode
3.2.5. Other AOPs
Ultrasound
Plasma
Electron Beam Irradiation
AOPs Involving the Activation of Sulfate Radicals
3.3. Reductive Deiodination for Removing ICM
- (1)
- The degradation of ICM by AOPS can lead to the formation of toxic intermediates due to the absence of selectivity of this class of processes, whereas electro-reductive dehalogenation is selective.
- (2)
- Reductive deiodination allows the easy recovery of iodide ions, which is very promising to achieve a cost-effective treatment on the production sites, owing to the wide consumption of ICM over the world.
3.3.1. Electroreductive Deiodination
3.3.2. Metallic Reductants
3.3.3. Biogenic Metal Nanoparticles as New Catalysts for the Hydrogenation of ICM
3.3.4. Coupled Processes for ICM Removal
3.4. By-Products Identification during the Degradation of ICM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nieto-Juárez, J.I.; Torres-Palma, R.A.; Botero-Coy, A.; Hernández, F. Pharmaceuticals and environmental risk assessment in municipal wastewater treatment plants and rivers from Peru. Environ. Int. 2021, 155, 106674. [Google Scholar] [CrossRef] [PubMed]
- Anh, H.Q.; Le, T.P.Q.; Da Le, N.; Lu, X.X.; Duong, T.T.; Garnier, J.; Rochelle-Newall, E.; Zhang, S.; Oh, N.-H.; Oeurng, C.; et al. Antibiotics in surface water of East and Southeast Asian countries: A focused review on contamination status, pollution sources, potential risks, and future perspectives. Sci. Total. Environ. 2020, 764, 142865. [Google Scholar] [CrossRef] [PubMed]
- Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. Sci. Total Environ. 2012, 429, 123–155. [Google Scholar] [CrossRef] [PubMed]
- Arman, N.Z.; Salmiati, S.; Aris, A.; Salim, M.R.; Nazifa, T.H.; Muhamad, M.S.; Marpongahtun, M. A Review on Emerging Pollutants in the Water Environment: Existences, Health Effects and Treatment Processes. Water 2021, 13, 3258. [Google Scholar] [CrossRef]
- Khan, S.; Naushad, M.; Govarthanan, M.; Iqbal, J.; Alfadul, S.M. Emerging contaminants of high concern for the environment: Current trends and future research. Environ. Res. 2022, 207, 112609. [Google Scholar] [CrossRef]
- Kümmerer, K. Drugs in the environment: Emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources–a review. Chemosphere 2001, 45, 957–969. [Google Scholar] [CrossRef]
- Dekker, H.M.; Stroomberg, G.J.; Prokop, M. Tackling the increasing contamination of the water supply by iodinated contrast media. Insights into Imaging 2022, 13, 30. [Google Scholar] [CrossRef]
- Sengar, A.; Vijayanandan, A. Comprehensive review on iodinated X-ray contrast media: Complete fate, occurrence, and formation of disinfection byproducts. Sci. Total. Environ. 2021, 769, 144846. [Google Scholar] [CrossRef]
- Pauwels, B.; Verstraete, W. The treatment of hospital wastewater: An appraisal. J. Water Health 2006, 4, 405–416. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.T.; Shah b, I.A.; Ihsanullah, I.; Naushad, M.; Ali, S.; Shah, S.H.A.; Mohammad, A.W. Hospital wastewater as a source of environmental contamination: An overview of management practices, environmental risks, and treatment processes. J. Water Process Eng. 2021, 41, 101990. [Google Scholar] [CrossRef]
- Ternes, T.A.; Bonerz, M.; Herrmann, N.; Loffler, D.; Keller, E.; Lacida, B.B.; Alder, A.C. Determination of pharmaceuticals, iodinated contrast media and musk fragrances in sludge by LC/tandem MS and GC/MS. J. Chromatogr. A 2005, 1067, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Harrower, J.; McNaughtan, M.; Hunter, C.; Hough, R.; Zhang, Z.; Helwig, K. Chemical Fate and Partitioning Behavior of Antibiotics in the Aquatic Environment—A Review. Environ. Toxicol. Chem. 2021, 40, 3275–3298. [Google Scholar] [CrossRef] [PubMed]
- Giger, W.; Alder, A.C.; Golet, E.M.; Kohler, H.-P.E.; McArdell, C.S.; Molnar, E.; Siegrist, H.; Suter, M.J.-F. Occurrence and Fate of Antibiotics as Trace Contaminants in Wastewaters, Sewage Sludges, and Surface Waters. CHIMIA 2003, 57, 485. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.-B.; Watson, A.D. Metal-based X-ray contrast media. Chem. Rev. 1999, 99, 2353–2378. [Google Scholar] [CrossRef]
- Estep, K.G.; Josef, K.A.; Bacon, E.R.; Illig, C.R.; Toner, J.L.; Mishra, D.; Blazak, W.F.; Miller, D.M.; Johnson, D.K.; Allen, J.M.; et al. 1,3,5-Trialkyl-2,4,6-triiodobenzenes: Novel X-ray Contrast Agents for Gastrointestinal Imaging. J. Med. Chem. 2000, 43, 1940–1948. [Google Scholar] [CrossRef]
- Barge, A.; Baricco, F.; Cravotto, G.; Fretta, R.; Lattuada, L. Mechanochemistry Applied to the Synthesis of X-ray Contrast Agent. ACS Sustain. Chem. Eng. 2020, 8, 12825–12830. [Google Scholar] [CrossRef]
- Haaland, T.; Sydnes, L.K. Formation of N,O-Acetals in the Production of X-ray Contrast Agents. Org. Process Res. Dev. 2014, 18, 1181–1190. [Google Scholar] [CrossRef]
- Haarr, M.B.; Lindbäck, E.; Håland, T.; Sydnes, M.O. Synthesis of an Alleged Byproduct Precursor in Iodixanol Preparation. ACS Omega 2018, 3, 7344–7349. [Google Scholar] [CrossRef] [Green Version]
- Radjenovic, J.; Flexer, V.; Donose, B.C.; Sedlak, D.L.; Keller, J. Removal of the X-ray Contrast Media Diatrizoate by Electrochemical Reduction and Oxidation. Environ. Sci. Technol. 2013, 47, 13686–13694. [Google Scholar] [CrossRef]
- Zhang, W.; Soutrel, I.; Amrane, A.; Fourcade, F.; Geneste, F. Electrochemical Processes Coupled to a Biological Treatment for the Removal of Iodinated X-ray Contrast Media Compounds. Front. Chem. 2020, 8, 646. [Google Scholar] [CrossRef]
- Li, J.; Jiang, J.; Pang, S.; Yang, Y.; Sun, S.; Wang, L.; Wang, P. Transformation of X-ray contrast media by conventional and advanced oxidation processes during water treatment: Efficiency, oxidation intermediates, and formation of iodinated byproducts. Water Res. 2020, 185, 116234. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Pacek, G.; Mrozik, A. Transformation and ecotoxicological effects of iodinated X-ray contrast media. Rev. Environ. Sci. Bio/Technology 2020, 19, 337–354. [Google Scholar] [CrossRef]
- Mendoza, A.; Aceña, J.; Pérez, S.; de Alda, M.L.; Barceló, D.; Gil, A.; Valcárcel, Y. Pharmaceuticals and iodinated contrast media in a hospital wastewater: A case study to analyse their presence and characterise their environmental risk and hazard. Environ. Res. 2015, 140, 225–241. [Google Scholar] [CrossRef] [PubMed]
- Weissbrodt, D.G.; Kovalova, L.; Ort, C.; Pazhepurackel, V.; Moser, R.; Hollender, J.; Siegrist, H.; McArdell, C.S. Mass Flows of X-ray Contrast Media and Cytostatics in Hospital Wastewater. Environ. Sci. Technol. 2009, 43, 4810–4817. [Google Scholar] [CrossRef] [Green Version]
- Kümmerer, K.; Erbe, T.; Gartiser, S.; Brinker, L. AOX—Emiissions from hospitals into municipal waste water. Chemosphere 1998, 36, 2437–2445. [Google Scholar] [CrossRef]
- Pérez, S.; Barceló, D. Fate and occurrence of X-ray contrast media in the environment. Anal. Bioanal. Chem. 2006, 387, 1235–1246. [Google Scholar] [CrossRef]
- Seitz, W.; Weber, W.H.; Jiang, J.-Q.; Lloyd, B.J.; Maier, M.; Maier, D.; Schulz, W. Monitoring of iodinated X-ray contrast media in surface water. Chemosphere 2006, 64, 1318–1324. [Google Scholar] [CrossRef]
- Carballa, M.; Omil, F.; Lema, J.M.; Llompart, M.; García-Jares, C.; Rodríguez, I.; Gómez, M.; Ternes, T. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res. 2004, 38, 2918–2926. [Google Scholar] [CrossRef]
- Drewes, J.E.; Fox, P.; Jekel, M. Occurrence of iodinated X-ray contrast media in domestic effluents and their fate during indirect potable reuse. J. Environ. Sci. Health Part A 2001, 36, 1633–1645. [Google Scholar] [CrossRef]
- Xu, Z.; Li, X.; Hu, X.; Yin, D. Distribution and relevance of iodinated X-ray contrast media and iodinated trihalomethanes in an aquatic environment. Chemosphere 2017, 184, 253–260. [Google Scholar] [CrossRef]
- Strehl, C.; Thoene, V.; Heymann, L.; Schwesig, D.; Boergers, A.; Bloser, M.; Fligge, F.; Merkel, W.; Tuerk, J. Cost-effective reduction of micro pollutants in the water cycle—Case study on iodinated contrast media. Sci. Total Environ. 2019, 688, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Fent, K.; Weston, A.A.; Caminada, D. Ecotoxicology of human pharmaceuticals. Aquat. Toxicol. 2006, 76, 122–159. [Google Scholar] [CrossRef] [PubMed]
- Quiros, Y.; Sánchez-González, P.D.; López-Hernández, F.J.; Morales, A.I.; López-Novoa, J.M. Cardiotrophin-1 Administration Prevents the Renal Toxicity of Iodinated Contrast Media in Rats. Toxicol. Sci. 2013, 132, 493–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steger-Hartmann, T.; Länge, R.; Schweinfurth, H. Environmental Risk Assessment for the Widely Used Iodinated X-Ray Contrast Agent Iopromide (Ultravist). Ecotoxicol. Environ. Saf. 1999, 42, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Oleksy-Frenzel, J.; Wischnack, S.; Jekel, M. Application of ion-chromatography for the determination of the organic-group parameters AOCl, AOBr and AOI in water. Anal. Bioanal. Chem. 2000, 366, 89–94. [Google Scholar] [CrossRef]
- Lopez-Prieto, I.J.; Park, M.; AzadiAghdam, M.; Pan, H.; Jones, S.L.; Snyder, S.A. Formation and control of disinfection by-products from iodinated contrast media attenuation through sequential treatment processes of ozone-low pressure ultraviolet light followed by chlorination. Chemosphere 2021, 278, 130394. [Google Scholar] [CrossRef]
- Li, M.; Zhang, T.-Y.; Xu, B.; Hu, C.-Y.; Dong, Z.-Y.; Wang, Z.; Tang, Y.-L.; Yu, S.-L.; Pan, Y.; Xian, Q. Iodinated trihalomethanes formation in iopamidol-contained water during ferrate/chlor(am)ination treatment. Chemosphere 2021, 272, 129568. [Google Scholar] [CrossRef]
- Ternes, T.A.; Hirsch, R. Occurrence and Behavior of X-ray Contrast Media in Sewage Facilities and the Aquatic Environment. Environ. Sci. Technol. 2000, 34, 2741–2748. [Google Scholar] [CrossRef]
- Gönder, Z.B.; Kara, E.M.; Celik, B.O.; Vergili, I.; Kaya, Y.; Altinkum, S.M.; Bagdatli, Y.; Yilmaz, G. Detailed characterization, antibiotic resistance and seasonal variation of hospital wastewater. Environ. Sci. Pollut. Res. 2021, 28, 16380–16393. [Google Scholar] [CrossRef]
- Hasan, N.; Salman, S.; Islam, A.; Znad, H.; Hasan, M. Sustainable composite sensor material for optical cadmium(II) monitoring and capturing from wastewater. Microchem. J. 2020, 161, 105800. [Google Scholar] [CrossRef]
- Joseph, L.; Jun, B.-M.; Jang, M.; Park, C.M.; Muñoz-Senmache, J.C.; Hernández-Maldonado, A.J.; Heyden, A.; Yu, M.; Yoon, Y. Removal of contaminants of emerging concern by metal-organic framework nanoadsorbents: A review. Chem. Eng. J. 2019, 369, 928–946. [Google Scholar] [CrossRef]
- Kim, Y.; Bae, J.; Park, J.; Suh, J.; Lee, S.; Park, H.; Choi, H. Removal of 12 selected pharmaceuticals by granular mesoporous silica SBA-15 in aqueous phase. Chem. Eng. J. 2014, 256, 475–485. [Google Scholar] [CrossRef]
- Zuorro, A.; Lavecchia, R.; Medici, F.; Piga, L. Spent Tea Leaves as a Potential Low-cost Adsorbent for the Removal of Azo Dyes from Wastewater. Chem. Eng. Trans. 2013, 32, 19–24. [Google Scholar]
- Zuorro, A.; Lavecchia, R.; Natali, S. Magnetically Modified Agro-Industrial Wastes as Efficient and Easily Recoverable Adsorbents for Water Treatment. Chem. Eng. Trans. 2014, 38, 349–354. [Google Scholar]
- Zuorro, A.; Maffei, G.; Lavecchia, R. Kinetic modeling of azo dye adsorption on non-living cells of Nannochloropsis oceanica. J. Environ. Chem. Eng. 2017, 5, 4121–4127. [Google Scholar] [CrossRef]
- Yoon, S.U.; Mahanty, B.; Kim, C.G. Preparation of superparamagnetic iron oxide nanoparticles and evaluation of their adsorption capacity toward carbamazepine and diatrizoate. Desalination Water Treat. 2015, 57, 7789–7800. [Google Scholar] [CrossRef]
- Lan, Y.; Coetsier, C.; Causserand, C.; Serrano, K.G. Feasibility of Micropollutants Treatment by Coupling Nanofiltration and Electrochemical Oxidation: Case of Hospital Wastewater. Int. J. Chem. React. Eng. 2015, 13, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Al-Khalid, T.; El-Naas, M.H. Aerobic Biodegradation of Phenols: A Comprehensive Review. Crit. Rev. Env. Sci. Technol. 2012, 42, 1631–1690. [Google Scholar] [CrossRef]
- Batt, A.L.; Kim, S.; Aga, D.S. Enhanced Biodegradation of Iopromide and Trimethoprim in Nitrifying Activated Sludge. Environ. Sci. Technol. 2006, 40, 7367–7373. [Google Scholar] [CrossRef]
- Haiss, A.; Kummerer, K. Biodegradability of the X-ray contrast compound diatrizoic acid, identification of aerobic degradation products and effects against sewage sludge micro-organisms. Chemosphere 2006, 62, 294–302. [Google Scholar] [CrossRef]
- Kalsch, W. Biodegradation of the iodinated X-ray contrast media diatrizoate and iopromide. Sci. Total. Environ. 1999, 225, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Kormos, J.L.; Schulz, M.; Kohler, H.-P.E.; Ternes, T.A. Biotransformation of Selected Iodinated X-ray Contrast Media and Characterization of Microbial Transformation Pathways. Environ. Sci. Technol. 2010, 44, 4998–5007. [Google Scholar] [CrossRef] [PubMed]
- Jyoti, J.; Alka, D.; Kumar, S.J. Application of membrane-bio-reactor in waste-water treatment: A review. Int. J. Chem. Chem. Eng. 2013, 3, 115–122. [Google Scholar]
- Kovalova, L.; Siegrist, H.; Singer, H.; Wittmer, A.; McArdell, C.S. Hospital Wastewater Treatment by Membrane Bioreactor: Performance and Efficiency for Organic Micropollutant Elimination. Environ. Sci. Technol. 2012, 46, 1536–1545. [Google Scholar] [CrossRef] [Green Version]
- Redeker, M.; Wick, A.; Meermann, B.; Ternes, T.A. Removal of the Iodinated X-ray Contrast Medium Diatrizoate by Anaerobic Transformation. Environ. Sci. Technol. 2014, 48, 10145–10154. [Google Scholar] [CrossRef] [PubMed]
- Redeker, M.; Wick, A.; Meermann, B.; Ternes, T.A. Anaerobic Transformation of the Iodinated X-ray Contrast Medium Iopromide, Its Aerobic Transformation Products, and Transfer to Further Iodinated X-ray Contrast Media. Environ. Sci. Technol. 2018, 52, 8309–8320. [Google Scholar] [CrossRef]
- Rühmland, S.; Wick, A.; Ternes, T.; Barjenbruch, M. Fate of pharmaceuticals in a subsurface flow constructed wetland and two ponds. Ecol. Eng. 2015, 80, 125–139. [Google Scholar] [CrossRef]
- Babuponnusami, A.; Muthukumar, K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. Eng. 2014, 2, 557–572. [Google Scholar] [CrossRef]
- Zhou, L.; Ferronato, C.; Chovelon, J.-M.; Sleiman, M.; Richard, C. Investigations of diatrizoate degradation by photo-activated persulfate. Chem. Eng. J. 2017, 311, 28–36. [Google Scholar] [CrossRef]
- Gomes, J.; Costa, R.; Quinta-Ferreira, R.M.; Martins, R.C. Application of ozonation for pharmaceuticals and personal care products removal from water. Sci. Total. Environ. 2017, 586, 265–283. [Google Scholar] [CrossRef]
- Malik, S.N.; Ghosh, P.C.; Vaidya, A.N.; Mudliar, S.N. Hybrid ozonation process for industrial wastewater treatment: Principles and applications: A review. J. Water Process. Eng. 2020, 35, 101193. [Google Scholar] [CrossRef]
- Huber, M.M.; Göbel, A.; Joss, A.; Hermann, N.; Löffler, D.; McArdell, C.S.; Ried, A.; Siegrist, H.; Ternes, T.A.; von Gunten, U. Oxidation of Pharmaceuticals during Ozonation of Municipal Wastewater Effluents: A Pilot Study. Environ. Sci. Technol. 2005, 39, 4290–4299. [Google Scholar] [CrossRef]
- Seitz, W.; Jiang, J.-Q.; Schulz, W.; Weber, W.H.; Maier, D.; Maier, M. Formation of oxidation by-products of the iodinated X-ray contrast medium iomeprol during ozonation. Chemosphere 2007, 70, 1238–1246. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; Chen, Z.; Wang, S.; Zhou, Y.; Li, L.; Yuan, L.; Shen, J.; Jin, Q.; Zhang, X.; Kang, J. Catalytic ozonation of iohexol with α-Fe0.9Mn0.1OOH in water: Efficiency, degradation mechanism and toxicity evaluation. J. Hazard. Mater. 2020, 402, 123574. [Google Scholar] [CrossRef] [PubMed]
- Ternes, T.A.; Stüber, J.; Herrmann, N.; McDowell, D.; Ried, A.; Kampmann, M.; Teiser, B. Ozonation: A tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Res. 2003, 37, 1976–1982. [Google Scholar] [CrossRef] [PubMed]
- Ning, B.; Graham, N.J. Ozone Degradation of Iodinated Pharmaceutical Compounds. J. Environ. Eng. 2008, 134, 944–953. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Lu, G.; Zhang, R.; Lin, Q.; Yao, J.; Shen, X.; Wang, W. Effective degradation of diatrizoate by electro-peroxone process using ferrite/carbon nanotubes based gas diffusion cathode. Electrochimica Acta 2017, 236, 297–306. [Google Scholar] [CrossRef]
- Chen, B.; Lee, W.; Westerhoff, P.K.; Krasner, S.W.; Herckes, P. Solar photolysis kinetics of disinfection byproducts. Water Res. 2010, 44, 3401–3409. [Google Scholar] [CrossRef]
- Hu, C.-Y.; Hou, Y.-Z.; Lin, Y.-L.; Li, A.-P.; Deng, Y.-G. Degradation kinetics of diatrizoate during UV photolysis and UV/chlorination. Chem. Eng. J. 2018, 360, 1003–1010. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, Y.-L.; Xu, B.; Xia, S.-J.; Zhang, T.-Y.; Gao, N.-Y. Degradation of iohexol by UV/chlorine process and formation of iodinated trihalomethanes during post-chlorination. Chem. Eng. J. 2016, 283, 1090–1096. [Google Scholar] [CrossRef]
- Gao, Z.-C.; Lin, Y.-L.; Xu, B.; Xia, Y.; Hu, C.-Y.; Cao, T.-C.; Zou, X.-Y.; Gao, N.-Y. Evaluating iopamidol degradation performance and potential dual-wavelength synergy by UV-LED irradiation and UV-LED/chlorine treatment. Chem. Eng. J. 2018, 360, 806–816. [Google Scholar] [CrossRef]
- Wols, B.; Hofman-Caris, C.; Harmsen, D.; Beerendonk, E. Degradation of 40 selected pharmaceuticals by UV/H2O2. Water Res. 2013, 47, 5876–5888. [Google Scholar] [CrossRef] [PubMed]
- Miklos, D.B.; Hartl, R.; Michel, P.; Linden, K.G.; Drewes, J.E.; Hübner, U. UV/H2O2 process stability and pilot-scale validation for trace organic chemical removal from wastewater treatment plant effluents. Water Res. 2018, 136, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.Y.; Hou, Y.Z.; Lin, Y.L.; Deng, Y.G.; Hua, S.J.; Du, Y.F.; Chen, C.W.; Wu, C.H. Kinetics and model development of iohexol degradation during UV/H2O2 and UV/S2O8(2-) oxidation. Chemosphere 2019, 229, 602–610. [Google Scholar] [CrossRef]
- Duan, X.; He, X.; Wang, D.; Mezyk, S.P.; Otto, S.C.; Marfil-Vega, R.; Mills, M.A.; Dionysiou, D.D. Decomposition of Iodinated Pharmaceuticals by UV-254 nm-assisted Advanced Oxidation Processes. J. Hazard. Mater. 2017, 323, 489–499. [Google Scholar] [CrossRef]
- Giannakis, S.; Jovic, M.; Gasilova, N.; Gelabert, M.P.; Schindelholz, S.; Furbringer, J.-M.; Girault, H.; Pulgarin, C. Iohexol degradation in wastewater and urine by UV-based Advanced Oxidation Processes (AOPs): Process modeling and by-products identification. J. Environ. Manag. 2017, 195, 174–185. [Google Scholar] [CrossRef] [Green Version]
- Keen, O.S.; Love, N.G.; Aga, D.S.; Linden, K.G. Biodegradability of iopromide products after UV/H2O2 advanced oxidation. Chemosphere 2016, 144, 989–994. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, S.; Zhang, W.; Bu, L.; Zhou, S. Comparison of diatrizoate degradation by UV/chlorine and UV/chloramine processes: Kinetic mechanisms and iodinated disinfection byproducts formation. Chem. Eng. J. 2019, 375, 121972. [Google Scholar] [CrossRef]
- Miklos, D.; Wang, W.-L.; Linden, K.; Drewes, J.; Hübner, U. Comparison of UV-AOPs (UV/H2O2, UV/PDS and UV/Chlorine) for TOrC removal from municipal wastewater effluent and optical surrogate model evaluation. Chem. Eng. J. 2019, 362, 537–547. [Google Scholar] [CrossRef]
- Kong, X.; Jiang, J.; Ma, J.; Yang, Y.; Pang, S. Comparative investigation of X-ray contrast medium degradation by UV/chlorine and UV/H2O2. Chemosphere 2018, 193, 655–663. [Google Scholar] [CrossRef]
- Sugihara, M.N.; Moeller, D.; Paul, T.; Strathmann, T.J. TiO2-photocatalyzed transformation of the recalcitrant X-ray contrast agent diatrizoate. Appl. Catal. B: Environ. 2013, 129, 114–122. [Google Scholar] [CrossRef]
- Meng, L.; Yang, S.; Sun, C.; He, H.; Xian, Q.; Li, S.; Wang, G.; Zhang, L.; Jiang, D. A novel method for photo-oxidative degradation of diatrizoate in water via electromagnetic induction electrodeless lamp. J. Hazard. Mater. 2017, 337, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Doll, T.E.; Frimmel, F.H. Photocatalytic degradation of carbamazepine, clofibric acid and iomeprol with P25 and Hombikat UV100 in the presence of natural organic matter (NOM) and other organic water constituents. Water Res. 2005, 39, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Doll, T.E.; Frimmel, F.H. Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2 materials—Determination of intermediates and reaction pathways. Water Res. 2004, 38, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.-X.; Xu, B.; Lin, Y.-L.; Hu, C.-Y.; Zhang, T.-Y.; Gao, N.-Y. Photodegradation kinetics of iopamidol by UV irradiation and enhanced formation of iodinated disinfection by-products in sequential oxidation processes. Water Res. 2014, 58, 198–208. [Google Scholar] [CrossRef]
- Glaze, W.H.; Kenneke, J.F.; Ferry, J.L. Chlorinated byproducts from the titanium oxide-mediated photodegradation of trichloroethylene and tetrachloroethylene in water. Environ. Sci. Technol. 1993, 27, 177–184. [Google Scholar] [CrossRef]
- Velo-Gala, I.; López-Peñalver, J.J.; Sánchez-Polo, M.; Rivera-Utrilla, J. Comparative study of oxidative degradation of sodium diatrizoate in aqueous solution by H2O2/Fe2+, H2O2/Fe3+, Fe (VI) and UV, H2O2/UV, K2S2O8/UV. Chem. Eng. J. 2014, 241, 504–512. [Google Scholar] [CrossRef]
- Chan, T.W.; Graham, N.J.; Chu, W. Degradation of iopromide by combined UV irradiation and peroxydisulfate. J. Hazard. Mater. 2010, 181, 508–513. [Google Scholar] [CrossRef]
- Fenton, H. LXXIII.—Oxidation of tartaric acid in presence of iron. J. Chem. Soc. Trans. 1894, 65, 899–910. [Google Scholar]
- Munoz, M.; de Pedro, Z.M.; Casas, J.A.; Rodriguez, J.J. Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation—A review. Appl. Catal. B Environ. 2015, 176–177, 249–265. [Google Scholar] [CrossRef] [Green Version]
- Real, F.J.; Benitez, F.J.; Acero, J.L.; Sagasti, J.J.P.; Casas, F. Kinetics of the Chemical Oxidation of the Pharmaceuticals Primidone, Ketoprofen, and Diatrizoate in Ultrapure and Natural Waters. Ind. Eng. Chem. Res. 2009, 48, 3380–3388. [Google Scholar] [CrossRef]
- Yangin-Gomec, C.; Olmez-Hanci, T.; Arslan-Alaton, I.; Khoei, S.; Fakhri, H. Iopamidol degradation with ZVI- and ZVA-activated chemical oxidation: Investigation of toxicity, anaerobic inhibition and microbial communities. J. Environ. Chem. Eng. 2018, 6, 7318–7326. [Google Scholar] [CrossRef]
- Polo, A.; López-Peñalver, J.; Sánchez-Polo, M.; Rivera-Utrilla, J.; Velo-Gala, I.; Salazar-Rábago, J. Oxidation of diatrizoate in aqueous phase by advanced oxidation processes based on solar radiation. J. Photochem. Photobiol. A Chem. 2016, 319–320, 87–95. [Google Scholar] [CrossRef]
- Bokare, A.D.; Choi, W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 2014, 275, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Arslan-Alaton, I.; Olmez-Hanci, T.; Korkmaz, G.; Sahin, C. Removal of iopamidol, an iodinated X-ray contrast medium, by zero-valent aluminum-activated H2O2 and S2O82−. Chem. Eng. J. 2017, 318, 64–75. [Google Scholar] [CrossRef]
- Pouran, S.R.; Aziz, A.A.; Daud, W.M.A.W. Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters. J. Ind. Eng. Chem. 2015, 21, 53–69. [Google Scholar] [CrossRef]
- Bocos, E.; Oturan, N.; Sanromán, M.; Oturan, M.A. Elimination of radiocontrast agent Diatrizoic acid from water by electrochemical advanced oxidation: Kinetics study, mechanism and mineralization pathway. J. Electroanal. Chem. 2016, 772, 1–8. [Google Scholar] [CrossRef]
- Ganzenko, O.; Trellu, C.; Oturan, N.; Huguenot, D.; Péchaud, Y.; van Hullebusch, E.D.; Oturan, M.A. Electro-Fenton treatment of a complex pharmaceutical mixture: Mineralization efficiency and biodegradability enhancement. Chemosphere 2020, 253, 126659. [Google Scholar] [CrossRef]
- Korshin, G.; Yan, M. Electrochemical dehalogenation of disinfection by-products and iodine-containing contrast media: A review. Environ. Eng. Res. 2018, 23, 345–353. [Google Scholar] [CrossRef] [Green Version]
- Panizza, M.; Cerisola, G. Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 2009, 109, 6541–6569. [Google Scholar] [CrossRef]
- Moreira, F.C.; Boaventura, R.A.R.; Brillas, E.; Vilar, V.J.P. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Appl. Catal. B Environ. 2017, 202, 217–261. [Google Scholar] [CrossRef]
- Cardarelli, F. Materials Handbook; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Comninellis, C.; Kapalka, A.; Malato, S.; Parsons, S.A.; Poulios, I.; Mantzavinos, D. Advanced oxidation processes for water treatment: Advances and trends for R&D. J. Chem. Technol. Biotechnol. 2008, 83, 769–776. [Google Scholar] [CrossRef]
- Radjenovic, J.; Petrovic, M. Sulfate-mediated electrooxidation of X-ray contrast media on boron-doped diamond anode. Water Res. 2016, 94, 128–135. [Google Scholar] [CrossRef]
- Schneider, A.-L.; Tisler, S.; Schell, H.; Matthée, T.; Behrendt-Fryda, B.; Tiehm, A. Electrochemical oxidation of iodinated X-ray contrast media by boron-doped diamond electrodes. DESALINATION Water Treat. 2017, 91, 268–272. [Google Scholar] [CrossRef]
- Feng, Y.; Li, X. Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Water Res. 2003, 37, 2399–2407. [Google Scholar] [CrossRef] [PubMed]
- Del Moro, G.; Pastore, C.; Di Iaconi, C.; Mascolo, G. Iodinated contrast media electro-degradation: Process performance and degradation pathways. Sci. Total Environ. 2015, 506–507, 631–643. [Google Scholar] [CrossRef] [PubMed]
- Ning, B.; Graham, N.J.D.; Lickiss, P.D. A comparison of ultrasound-based advanced oxidation processes for the removal of X-ray contrast media. Water Sci. Technol. 2009, 60, 2383–2390. [Google Scholar] [CrossRef]
- Magureanu, M.; Mandache, N.B.; Parvulescu, V.I. Degradation of pharmaceutical compounds in water by non-thermal plasma treatment. Water Res. 2015, 81, 124–136. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Y.; Hu, J.; He, J.; Mei, S.; Xue, G.; Ognier, S. Removal of iopromide from an aqueous solution using dielectric barrier discharge. J. Chem. Technol. Biotechnol. 2012, 88, 468–473. [Google Scholar] [CrossRef]
- Banaschik, R.; Jablonowski, H.; Bednarski, P.J.; Kolb, J.F. Degradation and intermediates of diclofenac as instructive example for decomposition of recalcitrant pharmaceuticals by hydroxyl radicals generated with pulsed corona plasma in water. J. Hazard. Mater. 2018, 342, 651–660. [Google Scholar] [CrossRef]
- Velo Gala, I.; López Peñalver, J.J.; Sánchez Polo, M.; Rivera Utrilla, J. Degradation of X-ray contrast media diatrizoate in different water matrices by gamma irradiation. J. Chem. Technol. Biotechnol. 2013, 88, 1336–1343. [Google Scholar] [CrossRef]
- Kwon, M.; Yoon, Y.; Cho, E.; Jung, Y.; Lee, B.-C.; Paeng, K.-J.; Kang, J.-W. Removal of iopromide and degradation characteristics in electron beam irradiation process. J. Hazard. Mater. 2012, 227–228, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Lai, M.-C. Trichloroethylene Degradation by Zero Valent Iron Activated Persulfate Oxidation. Environ. Eng. Sci. 2008, 25, 1071–1078. [Google Scholar] [CrossRef]
- Shang, W.; Dong, Z.; Li, M.; Song, X.; Zhang, M.; Jiang, C.; Feiyun, S. Degradation of diatrizoate in water by Fe(II)-activated persulfate oxidation. Chem. Eng. J. 2018, 361, 1333–1344. [Google Scholar] [CrossRef]
- Dong, H.; Qiang, Z.; Hu, J.; Sans, C. Accelerated degradation of iopamidol in iron activated persulfate systems: Roles of complexing agents. Chem. Eng. J. 2017, 316, 288–295. [Google Scholar] [CrossRef]
- Anipsitakis, G.P.; Dionysiou, D.D. Radical Generation by the Interaction of Transition Metals with Common Oxidants. Environ. Sci. Technol. 2004, 38, 3705–3712. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Tang, Y.; Xiao, D.; Zhang, D.; Huang, Y.; Guo, Y.; Liu, J. Oxidative degradation of iodinated X-ray contrast media (iomeprol and iohexol) with sulfate radical: An experimental and theoretical study. Chem. Eng. J. 2019, 368, 999–1012. [Google Scholar] [CrossRef]
- Ji, F.; Li, C.; Deng, L. Performance of CuO/Oxone system: Heterogeneous catalytic oxidation of phenol at ambient conditions. Chem. Eng. J. 2011, 178, 239–243. [Google Scholar] [CrossRef]
- Hu, J.; Dong, H.; Qu, J.; Qiang, Z. Enhanced degradation of iopamidol by peroxymonosulfate catalyzed by two pipe corrosion products (CuO and delta-MnO2). Water Res. 2017, 112, 1–8. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Z.; Yan, P.; She, T.; Wang, W.; Bi, L.; Kang, J.; Shen, J.; Li, X.; Shen, L.; et al. Enhanced degradation of iohexol in water by CuFe2O4 activated peroxymonosulfate: Efficiency, mechanism and degradation pathway. Chemosphere 2021, 289, 133198. [Google Scholar] [CrossRef]
- Matzek, L.W.; Carter, K.E. Activated persulfate for organic chemical degradation: A review. Chemosphere 2016, 151, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Arslan-Alaton, I.; Kolba, O.; Olmez-Hanci, T. Removal of an X-Ray contrast chemical from tertiary treated wastewater: Investigation of persulfate-mediated photochemical treatment systems. Catal. Today 2017, 313, 134–141. [Google Scholar] [CrossRef]
- Dong, Z.-Y.; Xu, B.; Hu, C.-Y.; Zhang, T.-Y.; Tang, Y.-L.; Pan, Y.; El-Din, M.G.; Xian, Q.-M.; Gao, N.-Y. The application of UV-C laser in persulfate activation for micropollutant removal: Case study with iodinated X-ray contrast medias. Sci. Total Environ. 2021, 779, 146340. [Google Scholar] [CrossRef] [PubMed]
- Geneste, F. Catalytic electrochemical pre-treatment for the degradation of persistent organic pollutants. Curr. Opin. Electrochem. 2018, 11, 19–24. [Google Scholar] [CrossRef]
- He, W.; Lou, Y.; Verlato, E.; Soutrel, I.; Floner, D.; Fourcade, F.; Amrane, A.; Musiani, M.; Geneste, F. Reductive dehalogenation of a chloroacetanilide herbicide in a flow electrochemical cell fitted with Ag-modified Ni foams. J. Chem. Technol. Biotechnol. 2017, 93, 1572–1578. [Google Scholar] [CrossRef]
- Lou, Y.-Y.; Geneste, F.; Soutrel, I.; Amrane, A.; Fourcade, F. Alachlor dechlorination prior to an electro-Fenton process: Influence on the biodegradability of the treated solution. Sep. Purif. Technol. 2020, 232, 115936. [Google Scholar] [CrossRef]
- Cheng, W.; Compton, R.G. Quantifying the Electrocatalytic Turnover of Vitamin B12-Mediated Dehalogenation on Single Soft Nanoparticles. Angew. Chem. Int. Ed. 2016, 55, 2545–2549. [Google Scholar] [CrossRef]
- Fontmorin, J.-M.; He, W.; Floner, D.; Fourcade, F.; Amrane, A.; Geneste, F. Reductive dehalogenation of 1, 3-dichloropropane by a [Ni (tetramethylcyclam)] Br2-Nafion® modified electrode. Electrochim. Acta 2014, 137, 511–517. [Google Scholar] [CrossRef] [Green Version]
- Lou, Y.-Y.; Fontmorin, J.-M.; Amrane, A.; Fourcade, F.; Geneste, F. Metallic nanoparticles for electrocatalytic reduction of halogenated organic compounds: A review. Electrochimica Acta 2021, 377, 138039. [Google Scholar] [CrossRef]
- Lou, Y.-Y.; Hapiot, P.; Floner, D.; Fourcade, F.; Amrane, A.; Geneste, F. Efficient Dechlorination of α-Halocarbonyl and α-Haloallyl Pollutants by Electroreduction on Bismuth. Environ. Sci. Technol. 2019, 54, 559–567. [Google Scholar] [CrossRef]
- Lou, Y.-Y.; He, W.; Verlato, E.; Musiani, M.; Floner, D.; Fourcade, F.; Amrane, A.; Li, C.; Tian, Z.-Q.; Merdrignac-Conanec, O.; et al. Ni-coated graphite felt modified with Ag nanoparticles: A new electrode material for electro-reductive dechlorination. J. Electroanal. Chem. 2019, 849, 113357. [Google Scholar] [CrossRef]
- He, W.; Fontmorin, J.-M.; Soutrel, I.; Floner, D.; Fourcade, F.; Amrane, A.; Geneste, F. Reductive dechlorination of a chloroacetanilide herbicide in water by a Co complex-supported catalyst. Mol. Catal. 2017, 432, 8–14. [Google Scholar] [CrossRef]
- Verlato, E.; He, W.; Amrane, A.; Barison, S.; Floner, D.; Fourcade, F.; Geneste, F.; Musiani, M.; Seraglia, R. Preparation of Silver-Modified Nickel Foams by Galvanic Displacement and Their Use as Cathodes for the Reductive Dechlorination of Herbicides. Chemelectrochem 2016, 3, 2084–2092. [Google Scholar] [CrossRef] [Green Version]
- Hammerich, O.; Speiser, B. Organic Electrochemistry: Revised and Expanded; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Yan, M.; Chen, Z.; Li, N.; Zhou, Y.; Zhang, C.; Korshin, G. Electrochemical reductive dehalogenation of iodine-containing contrast agent pharmaceuticals: Examination of reactions of diatrizoate and iopamidol using the method of rotating ring-disc electrode (RRDE). Water Res. 2018, 136, 104–111. [Google Scholar] [CrossRef]
- Zwiener, C.; Glauner, T.; Sturm, J.; Wörner, M.; Frimmel, F.H. Electrochemical reduction of the iodinated contrast medium iomeprol: Iodine mass balance and identification of transformation products. Anal. Bioanal. Chem. 2009, 395, 1885–1892. [Google Scholar] [CrossRef]
- El-Athman, F.; Adrian, L.; Jekel, M.; Putschew, A. Abiotic reductive deiodination of iodinated organic compounds and X-ray contrast media catalyzed by free corrinoids. Chemosphere 2019, 221, 212–218. [Google Scholar] [CrossRef]
- El-Athman, F.; Jekel, M.; Putschew, A. Reaction kinetics of corrinoid-mediated deiodination of iodinated X-ray contrast media and other iodinated organic compounds. Chemosphere 2019, 234, 971–977. [Google Scholar] [CrossRef]
- Zhang, W.; Soutrel, I.; Amrane, A.; Fourcade, F.; Geneste, F. Electro-reductive deiodination of iohexol catalyzed by vitamin B12 and biodegradability investigation. J. Electroanal. Chem. 2021, 897, 115559. [Google Scholar] [CrossRef]
- Zhang, W.; Soutrel, I.; Amrane, A.; Fourcade, F.; Geneste, F. Improvement of the biodegradability of diatrizoate by electroreduction of its amido groups. Sep. Purif. Technol. 2022, 285, 120317. [Google Scholar] [CrossRef]
- Stieber, M.; Putschew, A.; Jekel, M. Treatment of Pharmaceuticals and Diagnostic Agents Using Zero-Valent Iron—Kinetic Studies and Assessment of Transformation Products Assay. Environ. Sci. Technol. 2011, 45, 4944–4950. [Google Scholar] [CrossRef]
- Dong, H.; Qiang, Z.; Lian, J.; Li, J.; Yu, J.; Qu, J. Deiodination of iopamidol by zero valent iron (ZVI) enhances formation of iodinated disinfection by-products during chloramination. Water Res. 2017, 129, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Stieber, M.; Putschew, A.; Jekel, M. Reductive dehalogenation of iopromide by zero-valent iron. Water Sci. Technol. 2008, 57, 1969–1975. [Google Scholar] [CrossRef] [PubMed]
- He, C.-S.; Ding, R.-R.; Zhou, G.-N.; He, D.; Fan, P.; Guan, X.-H.; Mu, Y. Coexistence of humic acid enhances the reductive removal of diatrizoate via depassivating zero-valent iron under aerobic conditions. J. Mater. Chem. A 2020, 8, 14634–14643. [Google Scholar] [CrossRef]
- Xu, H.; Wang, L.; Li, X.; Chen, Z.; Zhang, T. Thiourea Dioxide Coupled with Trace Cu(II): An Effective Process for the Reductive Degradation of Diatrizoate. Environ. Sci. Technol. 2021, 55, 12009–12018. [Google Scholar] [CrossRef]
- Yang, J.; Luo, Y.; Fu, X.; Dong, Z.; Wang, C.; Liu, H.; Jiang, C. Unexpected degradation and deiodination of diatrizoate by the Cu(II)/S(IV) system under anaerobic conditions. Water Res. 2021, 198, 117137. [Google Scholar] [CrossRef]
- Hennebel, T.; De Corte, S.; Vanhaecke, L.; Vanherck, K.; Forrez, I.; De Gusseme, B.; Verhagen, P.; Verbeken, K.; Van Der Bruggen, B.; Vankelecom, I. Removal of diatrizoate with catalytically active membranes incorporating microbially produced palladium nanoparticles. Water Res. 2010, 44, 1498–1506. [Google Scholar] [CrossRef]
- De Gusseme, B.; Hennebel, T.; Vanhaecke, L.; Soetaert, M.; Desloover, J.; Wille, K.; Verbeken, K.; Verstraete, W.; Boon, N. Biogenic Palladium Enhances Diatrizoate Removal from Hospital Wastewater in a Microbial Electrolysis Cell. Environ. Sci. Technol. 2011, 45, 5737–5745. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.-N.; He, C.-S.; Wang, Y.-X.; He, P.-P.; Liu, J.; Mu, Y.; Zhang, L.-S. Aerobic removal of iodinated contrast medium by nano-sized zero-valent iron: A combination of oxidation and reduction. J. Hazard. Mater. 2019, 373, 417–424. [Google Scholar] [CrossRef]
- Velo-Gala, I.; López-Peñalver, J.J.; Sánchez-Polo, M.; Rivera-Utrilla, J. Ionic X-ray contrast media degradation in aqueous solution induced by gamma radiation. Chem. Eng. J. 2012, 195–196, 369–376. [Google Scholar] [CrossRef]
- Knitt, L.E.; Shapley, J.R.; Strathmann, T.J. Rapid Metal-Catalyzed Hydrodehalogenation of Iodinated X-Ray Contrast Media. Environ. Sci. Technol. 2007, 42, 577–583. [Google Scholar] [CrossRef]
- Jeong, J.; Jung, J.; Cooper, W.J.; Song, W. Degradation mechanisms and kinetic studies for the treatment of X-ray contrast media compounds by advanced oxidation/reduction processes. Water Res. 2010, 44, 4391–4398. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.D.; Yang, S.Q.; Xue, W.J.; Cui, Y.H.; Liu, Z.Q. Performance of Cu-cathode/Fe(3+)/peroxymonosulfate process on iohexol degradation. J. Hazard. Mater. 2019, 366, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Ji, Y.; Kong, D.; Lu, J.; Yin, X.; Zhou, Q. Degradation of iohexol by Co2+ activated peroxymonosulfate oxidation: Kinetics, reaction pathways, and formation of iodinated byproducts. Chem. Eng. J. 2019, 373, 1348–1356. [Google Scholar] [CrossRef]
- Liu, H.; Yu, Q.; Fu, H.; Wan, Y.; Qu, X.; Xu, Z.; Yin, D.; Zheng, S. Pt supported on ordered microporous carbon as highly active catalyst for catalytic hydrodeiodination of iodinated X-ray contrast media. Appl. Catal. B Environ. 2018, 222, 167–175. [Google Scholar] [CrossRef]
- Dong, H.; Qiang, Z.; Liu, S.; Li, J.; Yu, J.; Qu, J. Oxidation of iopamidol with ferrate (Fe(VI)): Kinetics and formation of toxic iodinated disinfection by-products. Water Res. 2017, 130, 200–207. [Google Scholar] [CrossRef]
- Zhao, C.; Arroyo-Mora, L.E.; DeCaprio, A.P.; Sharma, V.K.; Dionysiou, D.D.; O’Shea, K.E. Reductive and oxidative degradation of iopamidol, iodinated X-ray contrast media, by Fe(III)-oxalate under UV and visible light treatment. Water Res. 2014, 67, 144–153. [Google Scholar] [CrossRef]
- Mu, Y.; Radjenovic, J.; Shen, J.; Rozendal, R.A.; Rabaey, K.; Keller, J. Dehalogenation of Iodinated X-ray Contrast Media in a Bioelectrochemical System. Environ. Sci. Technol. 2010, 45, 782–788. [Google Scholar] [CrossRef]
- Eversloh, C.L.; Henning, N.; Schulz, M.; Ternes, T. Electrochemical treatment of iopromide under conditions of reverse osmosis concentrates—Elucidation of the degradation pathway. Water Res. 2014, 48, 237–246. [Google Scholar] [CrossRef]
Diatrizoic Acid | Iohexol | Iopamidol | Iopromide | Ioxithalamic Acid | Iomeprol | |
---|---|---|---|---|---|---|
Structure | ||||||
Log Kow a | 1.8 | −3 | −2.4 | −2.1 | 1.2 | −2.3 |
Ionicity | Ionic | Nonionic | Nonionic | Nonionic | Ionic | Nonionic |
pKa | 2.17 | 11.73 | 11.00 | 11.09 | 2.13 | 11.73 |
Concentrations b (μg L−1) | ||||||
Hospital wastewater | 17.1–61 | 0.07–3810 | 0.03–2599 | 0.008–3.2 | 15–550 | 0.05–2400 |
Surface water | 0.032–4.55 | 0.01–1.326 | 0.008–3.2 | 0.01–13 | 0.01–0.438 | 0.023–6.1 |
Ground water | 0.02–9.6 | 0.003–0.187 | 0.006–0.47 | 0.003–0.687 | 0.204 | 0.003–1.655 |
Drinking water | 0.0009–1.2 | 0.001–0.034 | 0.02–0.27 | 0.0005–0.084 | - | 0.0013–0.034 |
Entry | Contaminant | Microorganism | Type of Reactor | Concentration | pH | T (°C) | Degradation Time | Conclusions | Refs. |
---|---|---|---|---|---|---|---|---|---|
1 | Iopromide | Nitrifying Activated Sludge | Batch (flask containing 5 L biomass with liquor-suspended solids) | 0.10–0.27 g μL−1 | 7.5 | - | 96 h | In a full-scale municipal wastewater treatment plant (WWTP), iopromide (0.10 to 0.27 μg L−1) was removed at an efficiency of 61% and has a higher solid retention time (49 days) than conventionally activated sludge (6 days) | [49] |
2 | Diatrizoate Iopromide | Activated sludge | 250 mL gas scrubbing cylinders + 100 mL activated sludge | 1.5 nmol L−1 1.85 nmol L−1 | 6.0-7.5 | Room | 54 h | Degradation of DTR was negligible. Around 85% of iopromide was transformed into two metabolites. | [51] |
3 | Diatrizoate | Activated Sludge 200 mg L−1 from municipal sewage treatment plant | Guidelines for Testing of Chemicals: 302 B Zahn-Wellens Test and 301 A Confirmatory Test, adopted by the Council on 17 July 1992 | 0.14 mg L−1 | 6.0-7.5 | 21-25 | 30 days | Diatrizoate was biotransformed into 2,4,6-triiodo-3,5-diamino-benzoic acid in the modified Zahn-Wellens test | [50] |
4 | Diatrizoate Iohexol Iomeprol Iopamidol | Aerobic soil-water and river sediment | Batch system (Braunschweig soil, Braunschweig soil+LUFA 2.2 soil, river sediment) | 1 mg L−1 | Neutral | 20–22 | 0–104 days | Diatrizoate was not biotransformed Three other nonionic ICM were transformed into several biotransformation products. | [52] |
5 | Diatrizoate | Agricultural field soil sediment from a sulfate reducing zone of a polishing pond groundwater | Batch (500 mL amber glass in glovebox, acetate and Fe(III) were added) | 100 μg L−1 | - | 22 | 20 days | Seven by-products resulted from successive deiodinations and deacetylations. 3,5-diaminobenzoic acid was stable under anaerobic conditions. | [53] |
6 | Diatrizoate Iomeprol | Subsurface flow constructed wetland pond with floating plants | Test tubes made of quartz glass (32 mL) were positioned horizontally on a rack in the pond | 3.4 ± 1.0 6.3 ± 5.8 μg L−1 | Initial 8.8 | 17–19 | 18 days 22 days 10d | Both removal efficiency range from 43–66% in summer decreased in winter. Photodegradation was found to be an important process for the removal of diatrizoate and iopromide. | [54] |
7 | Iopromide Diatrizoate Iohexol Iomeprol Iopamidol Ioxitalamic | Organic sludge | Pilot-Scale MBR fed with an average influent of 1.2 m3 of wastewater per day Submerged ultrafiltration flat sheet membrane plates | 2600 μg L−1 | 7.8 | 29 | 1 year | The highest elimination efficiency within this pharmaceutical class was detected for iopromide (31%), while the elimination was negligible for the other ICM. | [55] |
Contaminant | Type of AOPS | Radical | Concentration | pH | Time | UV Intensity μW cm−2 | Rate Constant First-Order S−1 Second-Order M−1 S−1 | Main Results | Refs. |
---|---|---|---|---|---|---|---|---|---|
Diatrizoate | H2O2 | •OH | 25 mg L−1 DTR, 5 mg L−1 H2O2 | - | 24 h | - | - | 22.40% degradation of initial DTR | [87] |
UV | 25 mg L−1 DTR | 6.5 | 60 min | - | 1.02 × 105 s−1 | 80.60% degradation of initial DTR | |||
UV/ H2O2 | •OH | 25 mg L−1 DTR, 0.5 mM H2O2 | 6.5 | - | 1.48 × 105 s−1 | 91.3% degradation of initial DTR | |||
UV/ K2S2O8 | SO4•− | 25 mg L−1 DTR, 10 mM K2S2O8 | 6.5 | - | 1.27 × 105 s−1 | 78.3% degradation of initial DTR | |||
Diatrizoate | UV | 0.5 μM DTR | 6.0–7.5 | 36 min | - | - | 40% degradation of initial DTR | [75] | |
UV/ H2O2 | •OH | 0.5 μM DTR, 1.0 mM H2O2 | 7.4 | - | - | - | 50% degradation of initial DTR | ||
UV/ K2S2O8 | SO4•− | 0.5 μM DTR, 1.0 mM K2S2O8 | 7.4 | - | - | 3.7 × 109 M−1 s−1 | 100% degradation of initial DTR | ||
Diatrizoate | UV/ K2S2O8 | SO4•− | 30 mg L−1 DTR, 12 mM K2S2O8 | 6.5 | 1 h | - | 1.9 × 109 M−1 s−1 | 42% oxidation pathways: deiodination-hydroxylation, decarboxylation- hydroxylation, side chain cleavage | [59] |
Iopromide | UV/ K2S2O8 | SO4•− | 0.126 mM Iopromide, 2 mM K2S2O8 | 3-8 | 30 min | 9 x 10−6 | 1-2 × 104 M−1 s−1 | Complete removal and almost complete mineralization in 80 min | [88] |
Iohexol | UV/ H2O2 | •OH | 10 μM iohexol 100, 200 500 μM Na2S2O8 | 5-7 | 225 | 5.73 × 108 s−1 | Anions inhibitory effects: Cl− > HCO3− >> SO4•− UV/ SO4•− can effectively mineralize iohexol to CO2 but promoted the generation of toxic iodoform (CHI3) | [74] | |
UV/ K2S2O8 | SO4•− | 7-9 | 3.91 × 1010 M−1 s−1 | ||||||
Diatrizoate | UV/Chlorine | Reactive chlorine species | 10 μM DTR, 100 μM HOCl | 7 | 180 s | 245 | 3.05 x 10−2 s−1 | 95% degradation of initial DTR, the pseudo-first-order rate constant during UV/chlorination was 9.3 times higher than that during UV photolysis. Byproduct dichloroacetonitrile (C2HCl2N), which is carcinogenic | [69] |
Diatrizoate | UV/Chlorine | Reactive chlorine species | 10 μM DTR, 25 μM Chlorine 25 μM chloramine 4 mM phosphate buffer | 7 | 5 min | - | 8.45 × 10−3 s−1 | UV/chlorine degraded DTR more efficiently than UV/chloramine process. Degradation inhibited in natural waters. Formation of chloroform, dichloroacetonitrile, and iodoform. Both processes were restricted by water matrix | [78] |
UV/Chloramine | •OH | - | 4.19 × 10−3 s−1 | ||||||
Iohexol | UV/Chlorine | •OH | 10 μM iohexol 10 mM phosphate buffer 100 μM HOCl | 7 | 5 min | 3020 | 3.8 × 109 M−1 s−1 | Formation of iodinated trihalomethanes (I-THMs) during post-chlorination | [70] |
Iopamidol | UV-LED/chlorine | Reactive chlorine species •OH | [iopamidol]0 = 10 μM | 7.0 | - | 120.8 76.3 99.6 | - | The dual-wavelength system significantly accelerated iopamidol degradation during both direct photolysis and the UV-LED/chlorine process (p < 0.05) due to the promotion of photon excitation process | [71] |
Anode Material | Potential for O2 Evolution (V/SCE) |
---|---|
RuO2 | 1.4–1.7 |
IrO2 | 1.5–1.8 |
Pt | 1.6–1.9 |
Graphite | 1.7 |
PbO2 | 1.8–2.0 |
SnO2 | 1.9–2.2 |
BDD | 2.2–2.6 |
Pathways | Methods | by-Products | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|
Deiodination | Catalytic-Hydrodeiodination Gamma-Radiolysis | [151] [152] [153] | |||||||
Deacetylation | UV-H2O2 Gamma-Radiolysis | [93] [151] | |||||||
Hydroxylation | UV-SO•4− Electro-oxidation UV-H2O2 Electro-Fenton Gamma-Radiolysis | [82] [104] [153] [93] [97] [151] | |||||||
Cyclization | UV-SO•4− Electro-oxidation | [82] [104] | |||||||
Electroreduction | Lead electrode 20 mA cm−2 | [141] | |||||||
Cyclic ketones | UV-SO•4− Gamma-Radiolysis | [59] [151] |
Pathways | Methods | by-Products | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|
Deiodination | Cu cathode-SO•4− UV-AOPs Co2+-SO•4− | [154] [76] [155] | |||||||
Amide-Hydrolysis | Cu cathode-SO•4− UV-AOPs Co2+-SO•4− | [154] [76] [79] | |||||||
Hydrogen- Abstraction | Cu cathode-SO•4− UV-AOPs Co2+-SO•4− | [154] [76] [79] [155] | |||||||
Amino- Oxidation | Cu cathode-SO•4− Co2+-SO•4− | [154] [79] | |||||||
•OH- Addition | Cu cathode-SO•4− UV-AOPs | [154] [76] |
Pathways | Methods | by-Products | Ref. | |||||
---|---|---|---|---|---|---|---|---|
Deiodination | Electro-reduction | [137] | ||||||
Carboxylation | Co2+-SO•4− | [79] | ||||||
Carbamoyl | Co2+-SO•4− | [79] | ||||||
Dehydration | Co2+-SO•4− | [79] | ||||||
Hydrogen- Abstraction | Co2+-SO•4− | [79] | ||||||
•OH- Addition | Co2+-SO•4− | [79] |
Pathways | Methods | By-Products | Ref. | |||||
---|---|---|---|---|---|---|---|---|
Deiodination | UV-irradiation UV-•Cl Metal oxides-SO•4− Iron-SO•4− Ferrate-oxidation Catalytic-hydrodeiodination | [85] [71] [120] [116] [156] [157] | ||||||
Amine-Hydrolysis | Iron- SO•4− Metal oxides- SO•4− Ferrate-oxidation | [116] [120] [157] | ||||||
Amide-Oxidation | Iron-SO•4− Metal oxides-SO•4− Ferrate-oxidation | [116] [120] [157] | ||||||
•Cl-Addition | UV-•Cl | [71] | ||||||
Hydrogen- Abstraction | UV-irradiation Metal oxides-SO•4− Fe(III) oxalate UV-•Cl | [85] [120] [158] [71] | ||||||
•OH- Addition | UV-irradiation Metal oxides-SO•4− Fe(III) oxalate UV-•Cl | [85] [71] [120] [158] | ||||||
Pathways | Methods | by-Products | Ref. | ||||
---|---|---|---|---|---|---|---|
Deiodination | Catalytic-Hydrodeiodination Gamma-Radiolysis | [104] [142] [159] [160] | |||||
Amide-Hydrolysis | UV-H2O2 Gamma-Radiolysis | [104] [142] | |||||
Hydrogen-Abstraction | UV-SO•4− Electro-oxidation UV-H2O2 Electro-Fenton Gamma-Radiolysis | [104] [160] | |||||
•OH- Addition | UV-SO•4− Electro-oxidation | [104] [160] | |||||
Demethylation | UV-SO•4− Gamma-Radiolysis | [104] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Fourcade, F.; Amrane, A.; Geneste, F. Removal of Iodine-Containing X-ray Contrast Media from Environment: The Challenge of a Total Mineralization. Molecules 2023, 28, 341. https://doi.org/10.3390/molecules28010341
Zhang W, Fourcade F, Amrane A, Geneste F. Removal of Iodine-Containing X-ray Contrast Media from Environment: The Challenge of a Total Mineralization. Molecules. 2023; 28(1):341. https://doi.org/10.3390/molecules28010341
Chicago/Turabian StyleZhang, Wei, Florence Fourcade, Abdeltif Amrane, and Florence Geneste. 2023. "Removal of Iodine-Containing X-ray Contrast Media from Environment: The Challenge of a Total Mineralization" Molecules 28, no. 1: 341. https://doi.org/10.3390/molecules28010341
APA StyleZhang, W., Fourcade, F., Amrane, A., & Geneste, F. (2023). Removal of Iodine-Containing X-ray Contrast Media from Environment: The Challenge of a Total Mineralization. Molecules, 28(1), 341. https://doi.org/10.3390/molecules28010341