Phytochemicals Derived from Agricultural Residues and Their Valuable Properties and Applications
Abstract
:1. Introduction
2. Phytochemicals from Crop Residues
2.1. Sugarcane Bagasse
2.2. Maize Residues
2.3. Potato Waste
2.4. Soybean Residues
2.5. Tomato Residues
2.6. Banana Residues
2.7. Apple Residues
2.8. Winery Waste
2.9. Citrus Residues
2.10. Olive Waste
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Santana-Méridas, O.; González-Coloma, A.; Sánchez-Vioque, R. Agricultural residues as a source of bioactive natural products. Phytochem. Rev. 2012, 11, 447–466. [Google Scholar] [CrossRef]
- FAOSTAT (Statistics Division of Food and Agriculture Organization of the United Nations). Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 28 June 2022).
- Marić, M.; Grassino, A.N.; Zhu, Z.; Barba, F.J.; Brnčić, M.; Brnčić, S.R. An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends Food Sci. Technol. 2018, 76, 28–37. [Google Scholar] [CrossRef]
- Kasapidou, E.; Sossidou, E.; Mitlianga, P. Fruit and vegetable co-products as functional feed ingredients in farm animal nutrition for improved product quality. Agriculture 2018, 5, 1020–1034. [Google Scholar] [CrossRef] [Green Version]
- Casas-Godoy, L.; Campos-Valdez, A.R.; Alcázar-Valle, M.; Barrera-Martínez, I. Comparison of Extraction Techniques for the Recovery of Sugars, Antioxidant and Antimicrobial Compounds from Agro-Industrial Wastes. Sustainability 2022, 14, 5956. [Google Scholar] [CrossRef]
- Ngwasiri, P.N.; Ambindei, W.A.; Adanmengwi, V.A.; Ngwi, P.; Mah, A.T.; Ngangmou, N.T.; Fonmboh, D.J.; Ngwabie, N.M.; Ngassoum, M.B.; Aba, E.R. Review Paper on Agro-food Waste and Food by-Product Valorization into Value Added Products for Application in the Food Industry: Opportunities and Challenges for Cameroon Bioeconomy. Asian J. Biotechnol. Bioresour. Technol. 2022, 8, 32–61. [Google Scholar] [CrossRef]
- Rodrigues, F.; Nunes, M.A.; Alves, R.C.; Oliveira, M.B.P. Applications of recovered bioactive compounds in cosmetics and other products. In Handbook of Coffee Processing By-Products; Academic Press: London, UK, 2017; pp. 195–220. [Google Scholar]
- Pestana-Bauer, V.R.; Zambiazi, R.C.; Mendonça, C.R.; Beneito-Cambra, M.; Ramis-Ramos, G. γ-Oryzanol and tocopherol contents in residues of rice bran oil refining. Food Chem. 2012, 134, 1479–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, D.; Zhuang, D.; Fu, J.; Huang, Y.; Wen, K. Bioenergy potential from crop residues in China: Availability and distribution. Renew. Sustain. Energy Rev. 2012, 16, 1377–1382. [Google Scholar] [CrossRef]
- Searle, S.; Malins, C. Availability of Cellulosic Residues and Wastes in the EU 2013; The International Council on Clean Transportation: Washington, DC, USA, 2013; p. 11. [Google Scholar]
- Ben Taher, I.; Fickers, P.; Chniti, S.; Hassouna, M. Optimization of enzymatic hydrolysis and fermentation conditions for improved bioethanol production from potato peel residues. Biotechnol. Prog. 2017, 33, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Yanli, Y.; Peidong, Z.; Wenlong, Z.; Yongsheng, T.; Yonghong, Z.; Lisheng, W. Quantitative appraisal and potential analysis for primary biomass resources for energy utilization in China. Renew. Sustain. Energy Rev. 2010, 14, 3050–3058. [Google Scholar] [CrossRef]
- Oleszek, M.; Tys, J.; Wiącek, D.; Król, A.; Kuna, J. The possibility of meeting greenhouse energy and CO2 demands through utilisation of cucumber and tomato residues. BioEnergy Res. 2016, 9, 624–632. [Google Scholar] [CrossRef]
- Gabhane, J.; William, S.P.; Gadhe, A.; Rath, R.; Vaidya, A.N.; Wate, S. Pretreatment of banana agricultural waste for bio-ethanol production: Individual and interactive effects of acid and alkali pretreatments with autoclaving, microwave heating and ultrasonication. Waste Manag. 2014, 34, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Cruz, M.G.; Bastos, R.; Pinto, M.; Ferreira, J.M.; Santos, J.F.; Wessel, D.F.; Coelho, E.; Coimbra, M.A. Waste mitigation: From an effluent of apple juice concentrate industry to a valuable ingredient for food and feed applications. J. Clean. Prod. 2018, 193, 652–660. [Google Scholar] [CrossRef]
- Muhlack, R.A.; Potumarthi, R.; Jeffery, D.W. Sustainable wineries through waste valorisation: A review of grape marc utilisation for value-added products. Waste Manag. 2018, 72, 99–118. [Google Scholar] [CrossRef] [PubMed]
- Rezzadori, K.; Benedetti, S.; Amante, E.R. Proposals for the residues recovery: Orange waste as raw material for new products. Food Bioprod. Process. 2012, 90, 606–614. [Google Scholar] [CrossRef]
- Kusbiantoro, A.; Embong, R.; Aziz, A.A. Strength and microstructural properties of mortar containing soluble silica from sugarcane bagasse ash. Key Eng. Mater. 2018, 765, 269–274. [Google Scholar] [CrossRef]
- Zheng, R.; Su, S.; Zhou, H.; Yan, H.; Ye, J.; Zhao, Z.; You, L.; Fu, X. Antioxidant/antihyperglycemic activity of phenolics from sugarcane (Saccharum officinarum L.) bagasse and identification by UHPLC-HR-TOFMS. Ind. Crops Prod. 2017, 101, 104–114. [Google Scholar] [CrossRef]
- Ishak NA, I.M.; Kamarudin, S.K.; Timmiati, S.N.; Sauid, S.M.; Karim, N.A.; Basri, S. Green synthesis of platinum nanoparticles as a robust electrocatalyst for methanol oxidation reaction: Metabolite profiling and antioxidant evaluation. J. Clean. Prod. 2023, 382, 135111. [Google Scholar] [CrossRef]
- Rocha, G.J.; Nascimento, V.M.; Goncalves, A.R.; Silva, V.F.; Martin, C. Influence of mixed sugarcane bagasse samples evaluated by elemental and physical–chemical composition. Ind. Crops Prod. 2015, 64, 52–58. [Google Scholar] [CrossRef]
- Mohan, P.R.; Ramesh, B.; Redyy, O.V. Production and optimization of ethanol from pretreated sugarcane bagasse using Sacchromyces bayanus in simultaneous saccharification and fermentation. Microbiol. J. 2012, 2, 52–63. [Google Scholar] [CrossRef]
- Xi, Y.L.; Dai, W.Y.; Xu, R.; Zhang, J.H.; Chen, K.Q.; Jiang, M.; Wei, P.; Ouyang, P.K. Ultrasonic pretreatment and acid hydrolysis of sugarcane bagasse for succinic acid production using Actinobacillus succinogenes. Bioprocess Biosyst. Eng. 2013, 36, 1779–1785. [Google Scholar] [CrossRef]
- Zhao, Z.; Yan, H.; Zheng, R.; Khan, M.S.; Fu, X.; Tao, Z.; Zhang, Z. Anthocyanins characterization and antioxidant activities of sugarcane (Saccharum officinarum L.) rind extracts. Ind. Crops Prod. 2018, 113, 38–45. [Google Scholar] [CrossRef]
- Nieder-Heitmann, M.; Haigh, K.F.; Görgens, J.F. Process design and economic analysis of a biorefinery co-producing itaconic acid and electricity from sugarcane bagasse and trash lignocelluloses. Bioresour. Technol. 2018, 262, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, M.; Zhao, Z.; Yu, S. The antibiotic activity and mechanisms of sugarcane (Saccharum officinarum L.) bagasse extract against food-borne pathogens. Food Chem. 2015, 185, 112–118. [Google Scholar] [CrossRef]
- Al Arni, S.; Drake, A.F.; Del Borghi, M.; Converti, A. Study of aromatic compounds derived from sugarcane bagasse. Part I: Effect of pH. Chem. Eng. Technol. 2010, 33, 895–901. [Google Scholar] [CrossRef]
- González-Bautista, E.; Santana-Morales, J.C.; Ríos-Fránquez, F.J.; Poggi-Varaldo, H.M.; Ramos-Valdivia, A.C.; Cristiani-Urbina, E.; Ponce-Noyola, T. Phenolic compounds inhibit cellulase and xylanase activities of Cellulomonas flavigena PR-22 during saccharification of sugarcane bagasse. Fuel 2017, 196, 32–35. [Google Scholar] [CrossRef]
- Zheng, R.; Su, S.; Li, J.; Zhao, Z.; Wei, J.; Fu, X.; Liu, R.H. Recovery of phenolics from the ethanolic extract of sugarcane (Saccharum officinarum L.) baggase and evaluation of the antioxidant and antiproliferative activities. Ind. Crops Prod. 2017, 107, 360–369. [Google Scholar] [CrossRef]
- Van der Pol, E.; Bakker, R.; Van Zeeland, A.; Garcia, D.S.; Punt, A.; Eggink, G. Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: Differences between autohydrolysis, alkaline and acid pretreatment. Bioresour. Technol. 2015, 181, 114–123. [Google Scholar] [CrossRef]
- Lv, G.; Wu, S.; Lou, R.; Yang, Q. Analytical pyrolysis characteristics of enzymatic/mild acidolysis lignin from sugarcane bagasse. Cellulose Chemistry and Technology 2010, 44, 335–342. [Google Scholar]
- Michelin, M.; Ximenes, E.; Polizeli, M.; Ladisch, M.R. Effect of phenolic compounds from pretreated sugarcane bagasse on cellulolytic and hemicellulolytic activities. Bioresour. Technol. 2016, 199, 275–278. [Google Scholar] [CrossRef]
- Juttuporn, W.; Thiengkaew, P.; Rodklongtan, A.; Rodprapakorn, M.; Chitprasert, P. Ultrasound-assisted extraction of antioxidant and antibacterial phenolic compounds from steam-exploded sugarcane bagasse. Sugar Technol. 2018, 20, 599–608. [Google Scholar] [CrossRef]
- Treedet, W.; Suntivarakorn, R. Design and operation of a low cost bio-oil fast pyrolysis from sugarcane bagasse on circulating fluidized bed reactor in a pilot plant. Fuel Process. Technol. 2018, 179, 17–31. [Google Scholar] [CrossRef]
- Krishnan, C.; Sousa, L.C.; Jin, M.; Chang, L.; Dale, B.E.; Balan, V. Alkalibased AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol. Biotechnol. Bioeng. 2010, 107, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.S.; Zhu, M.J.; Xu, W.X.; Liang, L. Production of bioethanol from sugarcane bagasse using NH4OH-H2O2 pretreatment and simultaneous saccharification and co-fermentation. Biotechnol. Bioprocess Eng. 2012, 17, 316–325. [Google Scholar] [CrossRef]
- Guilherme, A.A.; Dantas, P.V.; Santos, E.S.; Fernandes, F.A.; Macedo, G.R. Evaluation of composition, characterization and enzymatic hydrolysis of pretreated sugarcane bagasse. Braz. J. Chem. Eng. 2015, 32, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Chandel, A.K.; da Silva, S.S.; Carvalho, W.; Singh, O.V. Sugarcane bagasse and leaves: Foreseeable biomass of biofuel and bio-products. J. Chem. Technol. Biotechnol. 2012, 87, 11–20. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, J.; Wang, W.; Liu, T.; Xin, Z. Isolation and identification of bound compounds from corn bran and their antioxidant and angiotensin I-converting enzyme inhibitory activities. Eur. Food Res. Technol. 2015, 241, 37–47. [Google Scholar] [CrossRef]
- Bujang, J.S.; Zakaria, M.H.; Ramaiya, S.D. Chemical constituents and phytochemical properties of floral maize pollen. PLoS ONE 2021, 16, e0247327. [Google Scholar] [CrossRef]
- Dong, J.; Cai, L.; Zhu, X.; Huang, X.; Yin, T.; Fang, H.; Ding, Z. Antioxidant activities and phenolic compounds of cornhusk, corncob and stigma maydis. J. Braz. Chem. Soc. 2014, 25, 1956–1964. [Google Scholar] [CrossRef]
- Li, Q.; Somavat, P.; Singh, V.; Chatham, L.; Gonzalez de Mejia, E. A comparative study of anthocyanin distribution in purple and blue corn coproducts from three conventional fractionation processes. Food Chem. 2017, 231, 332–339. [Google Scholar] [CrossRef]
- Haslina, H.; Eva, M. Extract corn silk with variation of solvents on yield, total phenolics, total flavonoids and antioxidant activity. Indones. Food Nutr. Prog. 2017, 14, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.; Sun, Y.; Chen, Z. Extraction of flavonoids from corn silk and biological activities in vitro. J. Food Qual. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Lao, F.; Giusti, M.M. Extraction of purple corn (Zea mays L.) cob pigments and phenolic compounds using food-friendly solvents. J. Cereal Sci. 2018, 80, 87–93. [Google Scholar] [CrossRef]
- Chen, L.; Yang, M.; Mou, H.; Kong, Q. Ultrasound-assisted extraction and characterization of anthocyanins from purple corn bran. J. Food Preserv. 2017, 42, e13377. [Google Scholar] [CrossRef]
- Barba, F.J.; Rajha, H.N.; Debs, E.; Abi-Khattar, A.M.; Khabbaz, S.; Dar, B.N.; Simirgiotis, M.J.; Castagnini, J.M.; Maroun, R.G.; Louka, N. Optimization of Polyphenols’ Recovery from Purple Corn Cobs Assisted by Infrared Technology and Use of Extracted Anthocyanins as a Natural Colorant in Pickled Turnip. Molecules 2022, 27, 5222. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Aulis, F.; Hernandez-Vazquez, L.; Aguilar-Osorio, G.; Arrieta-Baez, D.; Navarro-Ocana, A. Extraction and identification of anthocyanins in corn cob and corn husk from Cacahuacintle maize. J. Food Sci. 2019, 84, 954–962. [Google Scholar] [CrossRef] [PubMed]
- Wille, J.J.; Berhow, M.A. Bioactives derived from ripe corn tassels: A possible new natural skin whitener, 4-hydroxy-1-oxindole-3-acetic acid. Curr. Bioact. Compd. 2011, 7, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Khamphasan, P.; Lomthaisong, K.; Harakotr, B.; Ketthaisong, D.; Scott, M.P.; Lertrat, K.; Suriharn, B. Genotypic variation in anthocyanins, phenolic compounds, and antioxidant activity in cob and husk of purple field corn. Agronomy 2018, 8, 271. [Google Scholar] [CrossRef] [Green Version]
- Brobbey, A.A.; Somuah-Asante, S.; Asare-Nkansah, S.; Boateng, F.O.; Ayensu, I. Preliminary phytochemical screening and scientific validation of the antidiabetic effect of the dried husk of Zea mays L. (Corn, Poaceae). Int. J. Phytopharm. 2017, 7, 1–5. [Google Scholar]
- Thapphasaraphong, S.; Rimdusit, T.; Priprem, A.; Puthongking, P. Crops of waxy purple corn: A valuable source of antioxidative phytochemicals. Int. J. Adv. Agric. Environ. Eng. 2016, 3, 73–77. [Google Scholar]
- Simla, S.; Boontang, S.; Harakotr, B. Anthocyanin content, total phenolic content, and antiradical capacity in different ear components of purple waxy corn at two maturation stages. Aust. J. Crop Sci. 2016, 10, 675–682. [Google Scholar] [CrossRef]
- Deineka, V.I.; Sidorov, A.N.; Deineka, L.A. Determination of purple corn husk anthocyanins. J. Anal. Chem. 2016, 71, 1145–1150. [Google Scholar] [CrossRef]
- Suryanto, E.; Momuat, L.I.; Rotinsulu, H.; Mewengkang, D.S. Anti-photooxidant and photoprotective activities of ethanol extract and solvent fractions from corn cob (Zea mays). Int. J. ChemTech Res. 2018, 11, 25–37. [Google Scholar]
- Duangpapeng, P.; Lertrat, K.; Lomthaisong, K.; Scott, M.P.; Suriharn, B. Variability in anthocyanins, phenolic compounds and antioxidant capacity in the tassels of collected waxy corn germplasm. Agronomy 2019, 9, 158. [Google Scholar] [CrossRef] [Green Version]
- Duangpapeng, P.; Ketthaisong, D.; Lomthaisong, K.; Lertrat, K.; Scott, M.P.; Suriharn, B. Corn tassel: A new source of phytochemicals and antioxidant potential for value-added product development in the agro-industry. Agronomy 2018, 8, 242. [Google Scholar] [CrossRef]
- Žilić, S.; Vančetović, J.; Janković, M.; Maksimović, V. Chemical composition, bioactive compounds, antioxidant capacity and stability of floral maize (Zea mays L.) pollen. J. Funct. Foods 2014, 10, 65–74. [Google Scholar] [CrossRef]
- Sarepoua, E.; Tangwongchai, R.; Suriharn, B.; Lertrat, K. Influence of variety and harvest maturity on phytochemical content in corn silk. Food Chem. 2015, 169, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Rasane, P.; Nanda, V.; Kaur, S. Bioactive compounds of corn silk and their role in management of glycaemic response. J. Food Sci. Technol. 2022, 1–16. [Google Scholar] [CrossRef]
- Ren, S.C.; Qiao, Q.Q.; Ding, X.L. Antioxidative activity of five flavones glycosides from corn silk (Stigma maydis). Czech J. Food Sci. 2013, 31, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Galanakis, C.M. Functionality of food components and emerging technologies. Foods 2021, 10, 128. [Google Scholar] [CrossRef]
- Roh, K.B.; Kim, H.; Shin, S.; Kim, Y.S.; Lee, J.A.; Kim, M.O.; Jung, E.; Lee, J.; Park, D. Anti-inflammatory effects of Zea mays L. husk extracts. BMC Complement. Altern. Med. 2016, 16, 298–306. [Google Scholar] [CrossRef] [Green Version]
- Boeira, C.P.; Flores, D.C.B.; Lucas, B.N.; Santos, D.; Flores, E.M.M.; Reis, F.L.; Morandini, M.L.B.; Morel, A.F.; Rosa, C.S.D. Extraction of antioxidant and antimicrobial phytochemicals from corn stigma: A promising alternative to valorization of agricultural residues. Ciência Rural. 2022, 52, e20210535. [Google Scholar] [CrossRef]
- Wang, L.; Yu, Y.; Fang, M.; Zhan, C.; Pan, H.; Wu, Y.; Gong, Z. Antioxidant and antigenotoxic activity of bioactive extracts from corn tassel. J. Huazhong Univ. Sci. Technol.-Med. Sci. 2014, 34, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Habeebullah, S.F.; Grejsen, H.D.; Jacobsen, C. Potato peel extract as a natural antioxidant in chilled storage of minced horse mackerel (Trachurus trachurus): Effect on lipid and protein oxidation. Food Chem. 2012, 131, 843–851. [Google Scholar]
- Mohdaly, A.A.; Hassanien, M.F.; Mahmoud, A.; Sarhan, M.A.; Smetanska, I. Phenolics extracted from potato, sugar beet, and sesame processing by-products. Int. J. Food Prop. 2013, 16, 1148–1168. [Google Scholar] [CrossRef]
- Lappalainen, K.; Kärkkäinen, J.; Joensuu, P.; Lajunen, M. Modification of potato peel waste with base hydrolysis and subsequent cationization. Carbohydr. Polym. 2015, 132, 97–103. [Google Scholar] [CrossRef]
- Chang, K. Polyphenol antioxidants from potato peels: Extraction optimization and application to stabilizing lipid oxidation in foods. In Proceedings of the National Conference on Undergraduate Research (NCUR) 2019, New York, NY, USA, 11–13 April 2019. [Google Scholar]
- Wijngaard, H.H.; Ballay, M.; Brunton, N. The optimisation of extraction of antioxidants from potato peel by pressurised liquids. Food Chem. 2012, 133, 1123–1130. [Google Scholar] [CrossRef]
- Frontuto, D.; Carullod, D.; Harrison, S.M.; Brunton, N.P.; Ferrari, G.; Lyng, J.G.; Patar, G. Optimization of pulsed electric fields-assisted extraction of polyphenols from potato peels using response surface methodology. Food Bioprocess Technol. 2019, 12, 1708–1720. [Google Scholar] [CrossRef]
- Javed, A.; Ahmad, A.; Tahir, A.; Shabbir, U.; Nouman, M.; Hameed, A. Potato peel waste-its nutraceutical, industrial and biotechnological applacations. AIMS Agric. Food 2019, 4, 807–823. [Google Scholar] [CrossRef]
- Samarin, A.M.; Poorazarang, H.; Hematyar, N.; Elhamirad, A. Phenolics in potato peels: Extraction and utilization as natural antioxidants. World Appl. Sci. J. 2012, 18, 191–195. [Google Scholar]
- Chamorro, S.; Cueva-Mestanza, R.; de Pascual-Teresa, S. Effect of spray drying on the polyphenolic compounds present in purple sweet potato roots: Identification of new cinnamoylquinic acids. Food Chem. 2021, 345, 128679. [Google Scholar] [CrossRef]
- Paniagua-García, A.I.; Hijosa-Valsero, M.; Garita-Cambronero, J.; Coca, M.; Díez-Antolínez, R. Development and validation of a HPLC-DAD method for simultaneous determination of main potential ABE fermentation inhibitors identified in agro-food waste hydrolysates. Microchem. J. 2019, 150, 104147. [Google Scholar] [CrossRef]
- Sarwari, G.; Sultana, B.; Sarfraz, R.A.; Zia, M.A. Cytotoxicity, antioxidant and antimutagenic potential evaluation of peels of edible roots and tubers. Int. Food Res. J. 2019, 26, 1773–1779. [Google Scholar]
- Wu, Z.G.; Xu, H.Y.; Ma, Q.; Cao, Y.; Ma, J.N.; Ma, C.M. Isolation, identification and quantification of unsaturated fatty acids, amides, phenolic compounds and glycoalkaloids from potato peel. Food Chem. 2012, 135, 2425–2429. [Google Scholar] [CrossRef] [PubMed]
- Silva-Beltran, N.P.; Chaidez-Quiroz, C.; Lopez-Cuevas, O.; Ruiz-Cruz, S.; Lopez-Mata, M.A.; Del-Toro-Sanchez, C.L.; Marquez-Rios, E.; Ornelas-Paz, J. Phenolic compounds of potato peel extracts: Their antioxidant activity and protection against human enteric viruses. J. Microbiol. Biotechnol. 2017, 27, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.C.; Lin, C.; Chen, M.H.; Chiang, P.Y. Stability and quality of anthocyanin in purple sweet potato extracts. Foods 2019, 8, 393. [Google Scholar] [CrossRef] [Green Version]
- Ji, X.; Rivers, L.; Zielinski, Z.; Xu, M.; MacDougall, E.; Jancy, S.; Zhang, S.; Wang, Y.; Chapman, R.G.; Keddy, P.; et al. Quantitative analysis of phenolic components and glycoalkaloids from 20 potato clones and in vitro evaluation of antioxidant, cholesterol uptake, and neuroprotective activities. Food Chem. 2012, 133, 1177–1187. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.B.; Aguilo-Aguayo, I.; Lyng, J.G.; Brunton, N.P.; Rai, D.K. Effect of pulsed electric field and pulsed light pre-treatment on the extraction of steroidal alkaloids from potato peels. Innov. Food Sci. Emerg. Technol. 2015, 29, 9–14. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, B.; Gullón, B.; Yáñez, R. Identification and recovery of valuable bioactive compounds from potato peels: A comprehensive review. Antioxidants 2021, 10, 1630. [Google Scholar] [CrossRef]
- Albishi, T.; John, J.A.; Al-Khalifa, A.S.; Shahidi, F. Phenolic content and antioxidant activities of selected potato varieties and their processing by-products. J. Funct. Foods 2013, 5, 590–600. [Google Scholar] [CrossRef]
- Kumari, B.; Tiwari, B.K.; Hossain, M.B.; Rai, D.K.; Brunton, N.P. Ultrasound-assisted extraction of polyphenols from potato peels: Profiling and kinetic modelling. Int. J. Food Sci. Technol. 2017, 52, 1432–1439. [Google Scholar] [CrossRef] [Green Version]
- Friedman, M.; Kozukue, N.; Kim, H.J.; Choi, S.H.; Mizuno, M. Glycoalkaloid, phenolic, and flavonoid content and antioxidative activities of conventional nonorganic and organic potato peel powders from commercial gold, red and Russet potatoes. J. Food Compos. Anal. 2017, 62, 69–75. [Google Scholar] [CrossRef]
- Alves-Filho, E.G.; Sousa, V.M.; Ribeiro, P.R.; Rodrigues, S.; de Brito, E.S.; Tiwari, B.K.; Fernandes, F.A. Single-stage ultrasound-assisted process to extract and convert α-solanine and α-chaconine from potato peels into β-solanine and β-chaconine. Biomass Convers. Biorefinery 2018, 8, 689–697. [Google Scholar] [CrossRef]
- Hossain, M.B.; Tiwari, B.K.; Gangopadhyay, N.; O’Donnell, C.P.; Brunton, N.P.; Rai, D.K. Ultrasonic extraction of steroidal alkaloids from potato peel waste. Ultrason. Sonochemistry 2014, 21, 1470–1476. [Google Scholar] [CrossRef] [PubMed]
- Rytel, E.; Czopek, A.T.; Aniolowska, M.; Hamouz, K. The influence of dehydrated potatoes processing on the glycoalkaloids content in coloured-fleshed potato. Food Chem. 2013, 141, 2495–2500. [Google Scholar] [CrossRef]
- Singh, L.; Kaur, S.; Aggarwal, P. Techno and bio functional characterization of industrial potato waste for formulation of phytonutrients rich snack product. Food Biosci. 2022, 49, 101824. [Google Scholar] [CrossRef]
- Hillebrand, S.; Husing, B.; Schliephake, U.; Trautz, D.; Herrmann, M.E.; Winterhalter, P. Effect of thermal processing on the content of phenols in pigmented potatoes (Solanum tuberosum L.). Ernaehrungs-Umsch. 2011, 58, 349–353. [Google Scholar]
- Singh, A.; Sabally, K.; Kubow, S.; Donnelly, D.J.; Gariepy, Y.; Orsat, V.; Raghavan, G.S. Microwave-assisted extraction of phenolic antioxidants from potato peels. Molecules 2011, 16, 2218–2232. [Google Scholar] [CrossRef] [Green Version]
- Maldonado, A.F.; Mudge, E.; Gänzle, M.G.; Scheber, A. Extraction and fractionation of phenolic acids and glycoalkaloids from potato peels using acidified water/ethanol-based solvents. Food Res. Int. 2014, 65, 27–34. [Google Scholar] [CrossRef]
- Akyol, H.; Riciputi, Y.; Capanoglu, E.; Caboni, M.F.; Verardo, V. Phenolic compounds in the potato and its by-products: An overview. Int. J. Mol. Sci. 2016, 17, 835. [Google Scholar] [CrossRef]
- Venturi, F.; Bartolini, S.; Sanmartin, C.; Orlando, M.; Taglieri, I.; Macaluso, M.; Lucchesini, M.; Trivellini, A.; Zinnai, A.; Mensuali, A. Potato peels as a source of novel green extracts suitable as antioxidant additives for fresh-cut fruits. Appl. Sci. 2019, 9, 2431. [Google Scholar] [CrossRef] [Green Version]
- Gebrechristos, H.Y.; Chen, W. Utilization of potato peel as eco-friendly products: A review. Food Sci. Nutr. 2018, 6, 1352–1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amado, I.R.; Franco, D.; Sanchez, M.; Zapata, C.; Vazques, J.A. Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chem. 2014, 165, 290–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, Y.L.; Yeh, Y.H.; Lee, Y.T.; Huang, C.Y. Dietary potato peel extract reduces the toxicity of cholesterol oxidation products in rats. J. Funct. Foods 2016, 27, 461–471. [Google Scholar] [CrossRef]
- Yang, G.; Cheon, S.Y.; Chung, K.S.; Lee, S.J.; Hong, C.H.; Lee, K.T.; Jang, D.S.; Jeong, J.C.; Kwon, O.K.; Nam, J.H.; et al. Solanum tuberosum L. young epidermis extract inhibits mite antigen-induced atopic dermatitis in NC/Nga mice by regulating the Th1/Th2 balance and expression of filaggrin. J. Med. Food 2015, 18, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Khawla, B.J.; Sameh, M.; Imen, G.; Donyes, F.; Dhouha, G.; Raoudha, E.G.; Oumèma, N.E. Potato peel as feedstock for bioethanol production: A comparison of acidic and enzymatic hydrolysis. Ind. Crops Prod. 2014, 52, 144–149. [Google Scholar] [CrossRef]
- Wu, D. Recycle technology for potato peel waste processing: A review. Procedia Environ. Sci. 2016, 31, 103–107. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Han, Y.; Wei, L.; McDonald, A.G. Production and characterization of bio-oil and bio-char from pyrolysis of potato peel wastes. Biomass Convers. Biorefin. 2015, 5, 237–246. [Google Scholar] [CrossRef]
- Abdelraof, M.; Hasanin, M.S.; El-Saied, H. Ecofriendly green conversion of potato peel wastes to high productivity bacterial cellulose. Carbohydr. Polym. 2019, 211, 75–83. [Google Scholar] [CrossRef]
- Elkahoui, S.; Levin, C.; Bartley, G.; Yokoyama, W.; Friedman, M. Dietary supplementation of potato peel powders prepared from conventional and organic russet and nonorganic gold and red potatoes reduces weight gain in mice on a high-fat diet. J. Agric. Food Chem. 2018, 66, 6064–6072. [Google Scholar] [CrossRef]
- Chimonyo, M. A review of the utility of potato by-products as a feed resource for smallholder pig production. Anim. Feed. Sci. Technol. 2017, 227, 107–117. [Google Scholar]
- Apel, C.; Lyng, J.G.; Papoutsis, K.; Harrison, S.M.; Brunton, N.P. Screening the effect of different extraction methods (ultrasound-assisted extraction and solid–liquid extraction) on the recovery of glycoalkaloids from potato peels: Optimization of the extraction conditions using chemometric tools. Food Bioprod. Process. 2019, 119, 277–286. [Google Scholar] [CrossRef]
- Khan, M.T.; Shah, A.S.; Safdar, N.; Rani, S.; Bilal, H.; Hashim, M.M.; Basir, A.; Rahman ZShah, S.A. Polyphenoles extraction from the potato peel and their utilization in biscuit. Pure Appl. Biol. 2017, 6, 1269–1275. [Google Scholar] [CrossRef]
- Ding, X.; Zhu, F.; Yang, Y.; Li, M. Purification, antitumor activity in vitro of steroidal glycoalkaloids from black nightshade (Solanum nigrum L.). Food Chem. 2013, 141, 1181–1186. [Google Scholar] [CrossRef] [PubMed]
- Kenny, O.M.; McCarthy, C.M.; Brunton, N.P.; Hossain, M.B.; Rai, D.K.; Collins, S.G.; Jones, P.W.; Maguire, A.R.; O’Brien, N.M. Anti-inflammatory properties of potato glycoalkaloids in stimulated Jurkat and Raw 264.7 mouse macrophages. Life Sci. 2013, 92, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Anjum, S.; Rana, S.; Dasila, K.; Agnihotri, V.; Pandey, A.; Pande, V. Comparative nutritional and antimicrobial analysis of Himalayan black and yellow soybean and their okara. J. Sci. Food Agric. 2022, 102, 5358–5367. [Google Scholar] [CrossRef]
- Park, J.; Choi, I.; Kim, Y. Cookies formulated from fresh okara using starch, soy flour and hydroxypropyl methylcellulose have high quality and nutritional value. LWT-Food Sci. Technol. 2015, 63, 660–666. [Google Scholar] [CrossRef]
- Ostermann-Porcel, M.V.; Quiroga-Panelo, N.; Rinaldoni, A.N.; Campderrós, M.E. Incorporation of okara into gluten-free cookies with high quality and nutritional value. J. Food Qual. 2017, 2017, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, R.M.; Silva, T.E.; Lemes, A.C.; Boldrin MC, F.; da Silva MA, P.; Silva, F.G.; Egea, M.B. Okara: A soybean by-product as an alternative to enrich vegetable paste. LWT 2018, 92, 593–599. [Google Scholar] [CrossRef]
- Šibul, F.; Orčić, D.; Vasić, M.; Anačkov, G.; Nađpal, J.; Savić, A.; Mimica-Dukić, N. Phenolic profile, antioxidant and anti-inflammatory potential of herb and root extracts of seven selected legumes. Ind. Crops Prod. 2016, 83, 641–653. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, H.X.; Wu, Z.L.; Wang, Y.J.; Wang, L.J. Recovery of isoflavone aglycones from soy whey wastewater using foam fractionation and acidic hydrolysis. J. Agric. Food Chem. 2013, 61, 7366–7372. [Google Scholar] [CrossRef]
- Kumar, V.; Chauhan, S.S. Daidzein Induces Intrinsic Pathway of Apoptosis along with ER α/β Ratio Alteration and ROS Production. Asian Pac. J. Cancer Prev. APJCP 2021, 22, 603. [Google Scholar] [CrossRef] [PubMed]
- Pabich, M.; Marciniak, B.; Kontek, R. Phenolic Compound Composition and Biological Activities of Fractionated Soybean Pod Extract. Appl. Sci. 2021, 11, 10233. [Google Scholar] [CrossRef]
- Singh, P.; Krishnaswamy, K. Sustainable zero-waste processing system for soybeans and soy by-product valorization. Trends Food Sci. Technol. 2022, 128, 331–344. [Google Scholar] [CrossRef]
- Bragagnolo, F.S.; Funari, C.S.; Ibáñez, E.; Cifuentes, A. Metabolomics as a tool to study underused soy parts: In search of bioactive compounds. Foods 2021, 10, 1308. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.H.; Chen, S.Y.; Lin, J.H.; Yen, G.C. Application of saponins extract from food byproducts for the removal of pesticide residues in fruits and vegetables. Food Control 2022, 136, 108877. [Google Scholar] [CrossRef]
- Freitas, S.C.; Alves da Silva, G.; Perrone, D.; Vericimo, M.A.; dos S. Baião, D.; Pereira, P.R.; Paschoalin, V.M.F.; Del Aguila, E.M. Recovery of antimicrobials and bioaccessible isoflavones and phenolics from soybean (Glycine max) meal by aqueous extraction. Molecules 2018, 24, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, F.D.O.; Perrone, D. Characterization and Stability of Bioactive Compounds from Soybean Meal. LWT Food Sci. Technol. 2015, 63, 992–1000. [Google Scholar] [CrossRef]
- Wang, Q.; Ge, X.; Tian, X.; Zhang, Y.; Zhang, J.; Zhang, P. Soy isoflavone: The multipurpose phytochemical (Review). Biomed. Rep. 2013, 1, 697–701. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Shen, P.; Wang, W.; Zhou, J.; Raj, R.; Du, Z.; Xu, S.; Wang, W.; Yu, B.; Zhang, J. Derivatization of Soyasapogenol A through Microbial Transformation for Potential Anti-inflammatory Food Supplements. J. Agric. Food Chem. 2021, 69, 6791–6798. [Google Scholar] [CrossRef]
- Laranjeira, T.; Costa, A.; Faria-Silva, C.; Ribeiro, D.; de Oliveira, J.M.P.F.; Simões, S.; Ascenso, A. Sustainable valorization of tomato by-products to obtain bioactive compounds: Their potential in inflammation and cancer management. Molecules 2022, 27, 1701. [Google Scholar] [CrossRef]
- Alsuhaibani, A.M. Chemical composition and ameliorative effect of tomato on isoproterenol-induced myocardial infarction in rats. Asian J. Clin. Nutr. 2018, 10, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Padalino, L.; Conte, A.; Lecce, L.; Likyova, D.; Sicari, V.; Pellicano, T.M.; Poiana, M.; Del Nobile, M.A. Functional pasta with tomato by-product as a source of antioxidant compounds and dietary fibre. Czech J. Food Sci. 2017, 35, 48–56. [Google Scholar]
- Bakic, M.T.; Pedisic, S.; Zoric, Z.; Dragovic-Uzelac, V.; Grassino, A.N. Effect of microwave-assisted extraction on polyphenols recovery from tomato peel waste. Acta Chim. Slov. 2019, 66, 367–377. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-del-Río, I.; López-Ibáñez, S.; Magadán-Corpas, P.; Fernández-Calleja, L.; Pérez-Valero, Á.; Tuñón-Granda, M.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Plant Nutraceuticals as Natural Antioxidant Agents in Food Preservation. Antioxidants 2021, 10, 1264. [Google Scholar] [CrossRef]
- Valta, K.; Damala, P.; Panaretou, V.; Orli, E.; Moustakas, K.; Loizidou, M. Review and assessment of waste and wastewater treatment from fruits and vegetables processing industries in Greece. Waste Biomass Valorization 2017, 8, 1629–1648. [Google Scholar] [CrossRef]
- Fritsch, C.; Staebler, A.; Happel, A.; Cubero Márquez, M.A.; Aguiló-Aguayo, I.; Abadias, M.; Gallur, M.; Cigognini, I.M.; Montanari, A.; López, M.J.; et al. Processing, valorization and application of bio-waste derived compounds from potato, tomato, olive and cereals: A Review. Sustainability 2017, 9, 1492. [Google Scholar] [CrossRef] [Green Version]
- Perea-Dominguez, X.P.; Hernandez-Gastelum, L.Z.; Olivas-Olguin, H.R.; Espinosa-Alonso, L.G.; Valdez-Morales, M.; Medina-Godoy, S. Phenolic composition of tomato varieties and an industrial tomato by-product: Free, conjugated and bound phenolics and antioxidant activity. J. Food Sci. Technol. 2018, 55, 3453–3461. [Google Scholar] [CrossRef]
- Coelho, M.; Pereira, R.; Rodrigues, A.S.; Teixeira, J.A.; Pintado, M.E. Extraction of tomato by-products’ bioactive compounds using ohmic technology. Food Bioprod. Process. 2019, 117, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Nour, V.; Panaite, T.D.; Ropota, M.; Turcu, R.; Trandafir, I.; Corbu, A.R. Nutritional and bioactive compounds in dried tomato processing waste. CyTA J. Food 2018, 16, 222–229. [Google Scholar] [CrossRef]
- Elbadrawy, E.; Sello, A. Evaluation of nutritional value and antioxidant activity of tomato peel extracts. Arab. J. Chem. 2016, 9, S1010–S1018. [Google Scholar] [CrossRef]
- Ćetković, G.; Savatović, S.; Čanadović-Brunet, J.; Djilas, S.; Vulić, J.; Mandić, A.; Četojević-Simin, D. Valorisation of phenolic composition, antioxidant and cell growth activities of tomato waste. Food Chem. 2012, 133, 938–945. [Google Scholar] [CrossRef]
- Aires, A.; Carvalho, R.; Saavedra, M.J. Reuse potential of vegetable wastes (broccoli, green bean and tomato) for the recovery of antioxidant phenolic acids and flavonoids. Int. J. Food Sci. Technol. 2017, 52, 98–107. [Google Scholar] [CrossRef]
- Navarro-González, I.; García-Valverde, V.; García-Alonso, M.; Periago, M.J. Chemical profile, functional and antioxidant properties of tomato peel fiber. Food Res. Int. 2011, 44, 1528–1535. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Chiou, A.; Pyriochou, V.; Peristeraki, A.; Karathanos, V.T. Bioactive phytochemicals in industrial tomatoes and their processing by-products. LWT-Food Sci. Technol. 2012, 49, 213–216. [Google Scholar] [CrossRef]
- Di Donato, P.; Taurisano, V.; Tommonaro, G.; Pasquale, V.; Jimenez, J.M.; de Pascual, T.S.; Poli, A.; Nicolaus, B. Biological properties of polyphenols extracts from agro industry’s wastes. Waste Biomass Valorization 2018, 9, 1567–1578. [Google Scholar] [CrossRef]
- García-Valverde, V.; Navarro-González, I.; García Alonso, J.; Periago, M. Antioxidant bioactive compounds in selected industrial processing and fresh consumption tomato cultivars. Food Bioprocess Technol. 2013, 6, 391–402. [Google Scholar] [CrossRef]
- Szabo, K.; Diaconeasa, Z.; Catoi, A.F.; Vodnar, D.C. Screening of ten tomato varieties processing waste for bioactive components and their related antioxidant and antimicrobial activities. Antioxidants 2019, 8, 292. [Google Scholar] [CrossRef] [Green Version]
- Valdez-Morales, M.; Espinosa-Alonso, L.G.; Espinoza-Torres, L.C.; Delgado-Vargas, F.; Medina-Godoy, S. Phenolic content and antioxidant and antimutagenic activities in tomato peel, seeds and by-products. J. Agric. Food Chem. 2014, 62, 5281–5289. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Bhuyan, D.J.; Punia, S.; Grasso, S.; Sa, A.G.A.; Carciofi, B.A.M.; Arrutia, F.; Changan, S.; Singh, S.; et al. Tomato (Solanum lycopersicum L.) seed: A review on bioactives and biomedical activities. Biomed. Pharmacother. 2021, 142, 112018. [Google Scholar] [CrossRef]
- Concha-Meyer, A.; Palomo, I.; Plaza, A.; Gadioli Tarone, A.; Junior MR, M.; Sáyago-Ayerdi, S.G.; Fuentes, E. Platelet anti-aggregant activity and bioactive compounds of ultrasound-assisted extracts from whole and seedless tomato pomace. Foods 2020, 9, 1564. [Google Scholar] [CrossRef]
- Fărcaş, A.C.; Socaci, S.A.; Michiu, D.; Biriş, S.; Tofană, M. Tomato waste as a source of biologically active compounds. Bull. UASVM Food Sci. Technol. 2019, 76, 85–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markovic, K.; Krbavcic, I.P.; Krpan, M.; Bicanic, D.; Vahcic, N. The lycopene content in pulp and peel of five fresh tomato cultivars. Acta Aliment. 2010, 39, 90–98. [Google Scholar] [CrossRef]
- Stoica, R.M.; Tomulescu, C.; Cășărică, A.; Soare, M.G. Tomato by-products as a source of natural antioxidants for pharmaceutical and food industries—A mini-review. Sci. Bull. Ser. F Biotechnol. 2018, 22, 200–204. [Google Scholar]
- Górecka, D.; Wawrzyniak, A.; Jędrusek-Golińska, A.; Dziedzic, K.; Hamułka, J.; Kowalczewski, P.Ł.; Walkowiak, J. Lycopene in tomatoes and tomato products. Open Chem. 2020, 18, 752–756. [Google Scholar] [CrossRef]
- Campestrini, L.H.; Melo, P.S.; Peres, L.E.; Calhelha, R.C.; Ferreira, I.C.; Alencar, S.M. A new variety of purple tomato as a rich source of bioactive carotenoids and its potential health benefits. Heliyon 2019, 5, e02831. [Google Scholar] [CrossRef] [PubMed]
- Grassino, A.N.; Djakovic, S.; Bosiljkov, T.; Halambek, J.; Zorić, Z.; Dragović-Uzelac, V.; Petrović, M.; Brnčić, S.R. Valorisation of tomato peel waste as a sustainable source for pectin, polyphenols and fatty acids recovery using sequential extraction. Waste Biomass Valorization 2019, 11, 4593–4611. [Google Scholar] [CrossRef]
- Grassino, A.N.; Pedistić, S.; Dragović-Uzelac, V.; Karlović, S.; Ježek, D.; Bosiljkov, T. Insight into high-hydrostatic pressure extraction of polyphenols from tomato peel waste. Plant Foods Hum. Nutr. 2020, 75, 427–433. [Google Scholar] [CrossRef]
- Lucera, A.; Costa, C.; Marinelli, V.; Saccotelli, M.A.; Del Nobile, M.A.; Conte, A. Fruit and vegetable by-products to fortify spreadable cheese. Antioxidants 2018, 7, 61. [Google Scholar] [CrossRef] [Green Version]
- Lim, W.; Li, J. Co-expression of onion chalcone isomerase in Del/Ros1-expressing tomato enhances anthocyanin and flavonol production. Plant Cell Tissue Organ Cult. 2017, 128, 113–124. [Google Scholar] [CrossRef]
- Zuorro, A.; Lavecchia, R.; Medici, F.; Piga, L. Enzyme-assisted production of tomato seed oil enriched with lycopene from tomato pomace. Food Bioprocess Technol. 2013, 6, 3499–3509. [Google Scholar] [CrossRef]
- Eller, F.J.; Moser, J.K.; Kenar, J.A.; Taylor, S.L. Extraction and analysis of tomato seed oil. J. Am. Oil Chem. Soc. 2010, 87, 755–762. [Google Scholar] [CrossRef]
- Pellicanò, T.M.; Sicari, V.; Loizzo, M.R.; Leporini, M.; Falco, T.; Poiana, M. Optimizing the supercritical fluid extraction process of bioactive compounds from processed tomato skin by-products. Food Sci. Technol. 2019, 40, 692–697. [Google Scholar] [CrossRef] [Green Version]
- Marti, R.; Rosello, S.; Cebolla-Cornejo, J. Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. Cancers 2016, 8, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savatović, S.; Cetkovic, G.; Canadanovic-Brunet, J.; Djilas, S. Tomato waste: A potential source of hydrophilic antioxidants. Int. J. Food Sci. Nutr. 2012, 63, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Nour, V.; Ionica, M.E.; Trandafir, I. Bread enriched in lycopene and other bioactive compounds by addition of dry tomato waste. J. Food Sci. Technol. 2015, 52, 8260–8267. [Google Scholar] [CrossRef] [Green Version]
- Abid, Y.; Azabou, S.; Jridi, M.; Khemakhem, I.; Bouaziz, M.; Attia, H. Storage stability of traditional Tunisian butter enriched with antioxidant extract from tomato processing by-products. Food Chem. 2017, 15, 476–482. [Google Scholar] [CrossRef]
- Trombino, S.; Cassano, R.; Procopio, D.; Di Gioia, M.L.; Barone, E. Valorization of tomato waste as a source of carotenoids. Molecules 2021, 26, 5062. [Google Scholar] [CrossRef]
- Ho, K.K.; Ferruzzi, M.G.; Liceaga, A.M.; San Martin-Gonzales, M.F. Microwave-assisted extraction of lycopene in tomato peels: Effect of extraction conditions on all-trans and cis-isomer yields. LWT-Food Sci. Technol. 2015, 62, 160–168. [Google Scholar] [CrossRef]
- Horuz, T.I.; Belibagli, K.B. Encapsulation of tomato peel extract into nanofibers and its application in model food. Food Process. Preserv. 2019, 43, e14090. [Google Scholar] [CrossRef]
- Hernández-Carranza, P.; Ávila-Sosa, R.; Guerrero-Beltrán, J.A.; Navarro-Cruz, A.R.; Corona-Jiménez, E.; Ochoa-Velasco, C.E. Optimization of antioxidant compounds extraction from fruit by-products: Apple pomace, orange and banana peel. J. Food Process. Preserv. 2016, 40, 103–115. [Google Scholar] [CrossRef]
- Afsharnezhad, M.; Shahangian, S.S.; Panahi, E.; Sariri, R. Evaluation of the antioxidant activity of extracts from some fruit peels. Casp. J. Environ. Sci. 2017, 15, 213–222. [Google Scholar]
- Kabir, M.R.; Hasan, M.M.; Islam, M.R.; Haque, A.R.; Hasan, S.K. Formulation of yogurt with banana peel extracts to enhance storability and bioactive properties. J. Food Process. Preserv. 2021, 45, e15191. [Google Scholar] [CrossRef]
- Chaudhry, F.; Ahmad, M.L.; Hayat, Z.; Ranjha MM, A.N.; Chaudhry, K.; Elboughdiri, N.; Asmari, M.; Uddin, J. Extraction and Evaluation of the Antimicrobial Activity of Polyphenols from Banana Peels Employing Different Extraction Techniques. Separations 2022, 9, 165. [Google Scholar] [CrossRef]
- Rebello LP, G.; Ramos, A.M.; Pertuzatti, P.B.; Barcia, M.T.; Castillo-Muñoz, N.; Hermosín-Gutiérrez, I. Flour of banana (Musa AAA) peel as a source of antioxidant phenolic compounds. Food Res. Int. 2014, 55, 397–403. [Google Scholar] [CrossRef]
- Behiry, S.I.; Okla, M.K.; Alamri, S.A.; El-Hefny, M.; Salem, M.Z.; Alaraidh, I.A.; Ali, H.M.; Al-Ghtani, S.M.; Monroy, J.C.; Salem, A.Z. Antifungal and antibacterial activities of Musa paradisiaca L. peel extract: HPLC analysis of phenolic and flavonoid contents. Processes 2019, 7, 215. [Google Scholar] [CrossRef] [Green Version]
- Kandasamy, S.; Ramu, S.; Aradhya, S.M. In vitro functional properties of crude extracts and isolated compounds from banana pseudostem and rhizome. J. Sci. Food Agric. 2016, 96, 1347–1355. [Google Scholar] [CrossRef] [PubMed]
- Avram, I.; Gatea, F.; Vamanu, E. Functional Compounds from Banana Peel Used to Decrease Oxidative Stress Effects. Processes 2022, 10, 248. [Google Scholar] [CrossRef]
- Nofianti, T.; Ahmad, M.; Irda, F. Comparison of antihyperglycemic activity of different parts of klutuk banana (Musa balbisiana colla). Int. J. Appl. Pharm. 2021, 13, 57–61. [Google Scholar] [CrossRef]
- Vu, H.T.; Scarlett, C.J.; Vuong, Q.V. Encapsulation of phenolic-rich extract from banana (Musa cavendish) peel. J. Food Sci. Technol. 2020, 57, 2089–2098. [Google Scholar] [CrossRef]
- Buendía-Otero, M.J.; Jiménez-Corzo, D.J.; Caamaño De Ávila, Z.I.; Restrepo, J.B. Chromatographic analysis of phytochemicals in the peel of Musa paradisiaca to synthesize silver nanoparticles. Rev. Fac. De Ing. Univ. De Antioq. 2022, 103, 130–137. [Google Scholar] [CrossRef]
- Padam, B.S.; Tin, H.S.; Chye, F.Y.; Abdullah, M.I. Banana by-products: An under-utilized renewable food biomass with great potential. J. Food Sci. Technol. 2014, 51, 3527–3545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vani, R.; Bhandari, A.; Jain, Y.A. Inhibition Effects Of Banana And Orange Peel Extract On The Corrosion Of Bright Steel In Acidic Media. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1065, p. 012029. [Google Scholar] [CrossRef]
- CSO (Central Statistical Office in Poland). Production of Agricultural and Horticultural Crops in 2021. 2022. Available online: https://stat.gov.pl/en/topics/agriculture-forestry/agricultural-and-horticultural-crops/production-of-agricultural-and-horticultural-crops-in-2021,2,6.html (accessed on 29 June 2022).
- Fernandes, P.A.; Ferreira, S.S.; Bastos, R.; Ferreira, I.; Cruz, M.T.; Pinto, A.; Coelho, E.; Passos, C.P.; Coimbra, M.A.; Cardoso, S.M.; et al. Apple pomace extract as a sustainable food ingredient. Antioxidants 2019, 8, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uyttebroek, M.; Vandezande, P.; Van Dael, M.; Vloemans, S.; Noten, B.; Bongers, B.; Porto-Carrero, M.; Unamunzaga, M.M.; Bulut, M.; Lemmens, B. Concentration of phenolic compounds from apple pomace extracts by nanofiltration at lab and pilot scale with a techno-economic assessment. J. Food Process Eng. 2018, 41, e12629. [Google Scholar] [CrossRef]
- Barreira, J.C.; Arraibi, A.A.; Ferreira, I.C. Bioactive and functional compounds in apple pomace from juice and cider manufacturing: Potential use in dermal formulations. Trends Food Sci. Technol. 2019, 90, 76–87. [Google Scholar] [CrossRef]
- Waldbauer, K.; McKinnon, R.; Kopp, B. Apple pomace as potential source of natural active compounds. Planta Med. 2017, 83, 994–1010. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Yang, R.; Ying, D.; Yu, J.; Sanguansri, L.; Augustin, M.A. Analysis of polyphenols in apple pomace: A comparative study of different extraction and hydrolysis procedures. Ind. Crops Prod. 2020, 147, 112250. [Google Scholar] [CrossRef]
- Gorjanović, S.; Micić, D.; Pastor, F.; Tosti, T.; Kalušević, A.; Ristić, S.; Zlatanović, S. Evaluation of apple pomace flour obtained industrially by dehydration as a source of biomolecules with antioxidant, antidiabetic and antiobesity effects. Antioxidants 2020, 9, 413. [Google Scholar] [CrossRef]
- Perussello, C.A.; Zhang, Z.; Marzocchella, A.; Tiwari, B.K. Valorization of apple pomace by extraction of valuable compounds. Compr. Rev. Food Sci. Food Saf. 2017, 16, 776–796. [Google Scholar] [CrossRef] [Green Version]
- Oleszek, M.; Pecio, Ł.; Kozachok, S.; Lachowska-Filipiuk, Ż.; Oszust, K.; Frąc, M. Phytochemicals of apple pomace as prospect bio-fungicide agents against mycotoxigenic fungal species—In vitro experiments. Toxins 2019, 11, 361. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Ambrosi, M.; Abad-Garcia, B.; Viloria-Bernal, M.; Garmon-Lobato, S.; Berrueta, L.A.; Gallo, B. A new ultrahigh performance liquid chromatography with diode array detection coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry analytical strategy for fast analysis and improved characterization of phenolic compounds in apple products. J. Chromatogr. A 2013, 1316, 78–91. [Google Scholar]
- Mohammed, E.T.; Mustafa, Y.F. Coumarins from Red Delicious apple seeds: Extraction, phytochemical analysis, and evaluation as antimicrobial agents. Syst. Rev. Pharm. 2020, 11, 64–70. [Google Scholar]
- Khalil, R.R.; Mustafa, Y.F. Phytochemical, antioxidant and antitumor studies of coumarins extracted from Granny Smith apple seeds by different methods. Syst. Rev. Pharm. 2020, 11, 57–63. [Google Scholar]
- Pingret, D.; Fabiano-Tixier, A.S.; Le Bourvellec, C.; Renard, C.M.; Chemat, F. Lab and pilot-scale ultrasound-assisted water extraction of polyphenols from apple pomace. J. Food Eng. 2012, 111, 73–81. [Google Scholar] [CrossRef]
- Woźniak, Ł.; Szakiel, A.; Pączkowski, C.; Marszałek, K.; Skąpska, S.; Kowalska, H.; Jędrzejczak, R. Extraction of triterpenic acids and phytosterols from apple pomace with supercritical carbon dioxide: Impact of process parameters, modelling of kinetics, and scaling-up study. Molecules 2018, 23, 2790. [Google Scholar] [CrossRef]
- Delgado-Pelayo, R.; Gallardo-Guerrero, L.; Hornero-Méndez, D. Chlorophyll and carotenoid pigments in the peel and flesh of commercial apple fruit varieties. Food Res. Int. 2014, 65, 272–281. [Google Scholar] [CrossRef] [Green Version]
- Walia, M.; Rawat, K.; Bhushan, S.; Padwad, Y.S.; Singh, B. Fatty acid composition, physicochemical properties, antioxidant and cytotoxic activity of apple seed oil obtained from apple pomace. J. Sci. Food Agric. 2014, 94, 929–934. [Google Scholar] [CrossRef]
- Skinner, R.C.; Gigliotti, J.C.; Ku, K.M.; Tou, J.C. A comprehensive analysis of the composition, health benefits, and safety of apple pomace. Nutr. Rev. 2018, 76, 893–909. [Google Scholar] [CrossRef]
- Gołębiewska, E.; Kalinowska, M.; Yildiz, G. Sustainable Use of Apple Pomace (AP) in Different Industrial Sectors. Materials 2022, 15, 1788. [Google Scholar] [CrossRef]
- Rana, S.; Kumar, S.; Rana, A.; Padwad, Y.; Bhushan, S. Biological activity of phenolics enriched extracts from industrial apple pomace. Ind. Crops Prod. 2021, 160, 113158. [Google Scholar] [CrossRef]
- Cargnin, S.T.; Gnoatto, S.B. Ursolic acid from apple pomace and traditional plants: A valuable triterpenoid with functional properties. Food Chem. 2017, 220, 477–489. [Google Scholar] [CrossRef]
- Silva, G.N.; Maria, N.R.; Schuck, D.C.; Cruz, L.N.; de Moraes, M.S.; Nakabashi, M.; Graebin, C.; Gosmann, G.; Garcia, C.R.S.; Gnoatto, S.C. Two series of new semisynthetic triterpene derivatives: Differences in anti-malarial activity, cytotoxicity and mechanism of action. Malar. J. 2013, 12, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arraibi, A.A.; Liberal, Â.; Dias, M.I.; Alves, M.J.; Ferreira, I.C.; Barros, L.; Barreira, J.C. Chemical and bioactive characterization of Spanish and Belgian apple pomace for its potential use as a novel dermocosmetic formulation. Foods 2021, 10, 1949. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wei, X.; Miao, Z.; Hassan, H.; Song, Y.; Fan, M. Screening for antioxidant and antibacterial activities of phenolics from Golden Delicious apple pomace. Chem. Cent. J. 2016, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haghighi, M.; Rezaei, K. Designing an all-apple-pomace-based functional dessert formulation. Br. Food J. 2013, 115, 409–424. [Google Scholar] [CrossRef]
- Liu, B.; Liu, J.; Zhang, C.; Liu, J.; Jiao, Z. Enzymatic preparation and antioxidant activity of the phloridzin oxidation product. J. Food Biochem. 2018, 42, e12475. [Google Scholar] [CrossRef]
- Vera, R.; Figueredo, F.; Díaz-Gómez, A.; Molinari, A. Evaluation of Fuji apple peel extract as a corrosion inhibitor for carbon steel in a saline medium. Int. J. Electrochem. Sci. 2018, 13, 4139–4159. [Google Scholar] [CrossRef]
- Kruczek, M.; Gumul, D.; Kačániová, M.; Ivanišhová, E.; Mareček, J.; Gambuś, H. Industrial Apple Pomace By-Products As A Potential Source Of Pro-Health Compounds In Functional Food. J. Microbiol. Biotechnol. Food Sci. 2017, 7, 22–26. [Google Scholar] [CrossRef]
- Rabetafika, H.N.; Bchir, B.; Blecker, C.; Richel, A. Fractionation of apple by-products as source of new ingredients: Current situation and perspectives. Trends Food Sci. Technol. 2014, 40, 99–114. [Google Scholar] [CrossRef]
- Luo, H.; Li, L.; Tang, J.; Zhang, F.; Zhao, F.; Sun, D.; Zheng, F.; Wang, X. Amygdalin inhibits HSC-T6 cell proliferation and fibrosis through the regulation of TGF-β/CTGF. Mol. Cell. Toxicol. 2016, 12, 265–271. [Google Scholar] [CrossRef]
- Song, Z.; Xu, X. Advanced research on anti-tumor effects of amygdalin. J. Cancer Res. Ther. 2014, 10, 3–7. [Google Scholar]
- Teixeira, A.; Baenas, N.; Dominguez-Perles, R.; Barros, A.; Rosa, E.; Moreno, D.A.; Garcia-Viguera, C. Natural bioactive compounds from winery by-products as health promoters: A review. Int. J. Mol. Sci. 2014, 15, 15638–15678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pintać, D.; Majkić, T.; Torović, L.; Orčić, D.; Beara, I.; Simin, N.; Mimica–Dukić, N.; Lesjak, M. Solvent selection for efficient extraction of bioactive compounds from grape pomace. Ind. Crops Prod. 2018, 111, 379–390. [Google Scholar] [CrossRef]
- Eyiz, V.; Tontul, I.; Turker, S. Optimization of green extraction of phytochemicals from red grape pomace by homogenizer assisted extraction. J. Food Meas. Charact. 2020, 14, 39–47. [Google Scholar] [CrossRef]
- Farías-Campomanes, A.M.; Rostagno, M.A.; Meireles MA, A. Production of polyphenol extracts from grape bagasse using supercritical fluids: Yield, extract composition and economic evaluation. J. Supercrit. Fluids 2013, 77, 70–78. [Google Scholar] [CrossRef]
- Wang, X.; Tong, H.; Chen, F.; Gangemi, J.D. Chemical characterization and antioxidant evaluation of muscadine grape pomace extract. Food Chem. 2010, 123, 1156–1162. [Google Scholar] [CrossRef]
- Daniel, T.; Ben-Shachar, M.; Drori, E.; Hamad, S.; Permyakova, A.; Ben-Cnaan, E.; Tam, J.; Kerem, Z.; Rosenzweig, T. Grape pomace reduces the severity of non-alcoholic hepatic steatosis and the development of steatohepatitis by improving insulin sensitivity and reducing ectopic fat deposition in mice. J. Nutr. Biochem. 2021, 98, 108867. [Google Scholar] [CrossRef] [PubMed]
- Wittenauer, J.; Mäckle, S.; Sußmann, D.; Schweiggert-Weisz, U.; Carle, R. Inhibitory effects of polyphenols from grape pomace extract on collagenase and elastase activity. Fitoterapia 2015, 101, 179–187. [Google Scholar] [CrossRef]
- Jara-Palacios, M.J.; Hernanz, D.; Cifuentes-Gomez, T.; Escudero-Gilete, M.L.; Heredia, F.J.; Spencer, J.P. Assessment of white grape pomace from winemaking as source of bioactive compounds, and its antiproliferative activity. Food Chem. 2015, 183, 78–82. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, G.A.; Soares, A.A.; Correa, R.C.; Barros, L.; Haminiuk, C.W.; Peralta, R.M.; Ferreira, I.C.F.R.; Bracht, A. Merlot grape pomace hydroalcoholic extract improves the oxidative and inflammatory states of rats with adjuvant-induced arthritis. J. Funct. Foods 2017, 33, 408–418. [Google Scholar] [CrossRef]
- Jara-Palacios, M.J.; Rodríguez-Pulido, F.J.; Hernanz, D.; Escudero-Gilete, M.L.; Heredia, F.J. Determination of phenolic substances of seeds, skins and stems from white grape marc by near-infrared hyperspectral imaging. Aust. J. Grape Wine Res. 2016, 22, 11–15. [Google Scholar] [CrossRef]
- Balea, Ş.S.; Pârvu, A.E.; Pârvu, M.; Vlase, L.; Dehelean, C.A.; Pop, T.I. Antioxidant, Anti-Inflammatory and Antiproliferative Effects of the Vitis vinifera L. var. Fetească Neagră and Pinot Noir Pomace Extracts. Front. Pharmacol. 2020, 11, 990. [Google Scholar] [CrossRef] [PubMed]
- Drosou, C.; Kyriakopoulou, K.; Bimpilas, A.; Tsimogiannis, D.; Krokida, M. A comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification byproducts. Ind. Crops Prod. 2015, 75, 141–149. [Google Scholar] [CrossRef]
- Negro, C.; Aprile, A.; Luvisi, A.; De Bellis, L.; Miceli, A. Antioxidant activity and polyphenols characterization of four monovarietal grape pomaces from Salento (Apulia, Italy). Antioxidants 2021, 10, 1406. [Google Scholar] [CrossRef] [PubMed]
- Iora, S.R.; Maciel, G.M.; Zielinski, A.A.; da Silva, M.V.; Pontes PV, D.A.; Haminiuk, C.W.; Granato, D. Evaluation of the bioactive compounds and the antioxidant capacity of grape pomace. Int. J. Food Sci. Technol. 2015, 50, 62–69. [Google Scholar] [CrossRef]
- Silva DS, M.E.; Grisi CV, B.; da Silva, S.P.; Madruga, M.S.; da Silva, F.A.P. The technological potential of agro-industrial residue from grape pulping (Vitis spp.) for application in meat products: A review. Food Biosci. 2022, 49, 101877. [Google Scholar] [CrossRef]
- Gerardi, G.; Cavia-Saiz, M.; Muniz, P. From winery by-product to healthy product: Bioavailability, redox signaling and oxidative stress modulation by wine pomace product. Crit. Rev. Food Sci. Nutr. 2021, 62, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Anastasiadi, M.; Pratsinis, H.; Kletsas, D.; Skaltsounis, A.L.; Haroutounian, S.A. Grape stem extracts: Polyphenolic content and assessment of their in vitro antioxidant properties. LWT-Food Sci. Technol. 2012, 48, 316–322. [Google Scholar] [CrossRef]
- Aliakbarian, B.; Fathi, A.; Perego, P.; Dehghani, F. Extraction of antioxidants from winery wastes using subcritical water. J. Supercrit. Fluids 2012, 65, 18–24. [Google Scholar] [CrossRef]
- Álvarez, E.; Rodiño-Janeiro, B.K.; Jerez, M.; Ucieda-Somoza, R.; Núñez, M.J.; González-Juanatey, J.R. Procyanidins from grape pomace are suitable inhibitors of human endothelial NADPH oxidase. J. Cell. Biochem. 2012, 113, 1386–1396. [Google Scholar] [CrossRef]
- Mendoza, L.; Yañez, K.; Vivanco, M.; Melo, R.; Cotoras, M. Characterization of extracts from winery by-products with antifungal activity against Botrytis cinerea. Ind. Crops Prod. 2013, 43, 360–364. [Google Scholar] [CrossRef]
- Aizpurua-Olaizola, O.; Navarro, P.; Vallejo, A.; Olivares, M.; Etxebarria, N.; Usobiaga, A. Microencapsulation and storage stability of polyphenols from Vitis vinifera grape wastes. Food Chem. 2016, 190, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Alibade, A.; Kaltsa, O.; Bozinou, E.; Athanasiadis, V.; Palaiogiannis, D.; Lalas, S.; Makris, D.P. Stability of microemulsions containing red grape pomace extract obtained with a glycerol/sodium benzoate deep eutectic solvent. OCL 2022, 29, 28. [Google Scholar] [CrossRef]
- Soares SC, S.; de Lima, G.C.; Laurentiz, A.C.; Féboli, A.; Dos Anjos, L.A.; de Paula Carlis, M.S.; da Silva Filardi, R.; de Laurentiz RD, S. In vitro anthelmintic activity of grape pomace extract against gastrointestinal nematodes of naturally infected sheep. Int. J. Vet. Sci. Med. 2018, 6, 243–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silvan, J.M.; Gutiérrez-Docio, A.; Moreno-Fernandez, S.; Alarcón-Cavero, T.; Prodanov, M.; Martinez-Rodriguez, A.J. Procyanidin-rich extract from grape seeds as a putative tool against Helicobacter pylori. Foods 2020, 9, 1370. [Google Scholar] [CrossRef]
- Quiñones, M.; Guerrero, L.; Suarez, M.; Pons, Z.; Aleixandre, A.; Arola, L.; Muguerza, B. Low-molecular procyanidin rich grape seed extract exerts antihypertensive effect in males spontaneously hypertensive rats. Food Res. Int. 2013, 51, 587–595. [Google Scholar] [CrossRef]
- Tournour, H.H.; Segundo, M.A.; Magalhães, L.M.; Barreiros, L.; Queiroz, J.; Cunha, L.M. Valorization of grape pomace: Extraction of bioactive phenolics with antioxidant properties. Ind. Crops Prod. 2015, 74, 397–406. [Google Scholar] [CrossRef]
- Della Vedova, L.; Ferrario, G.; Gado, F.; Altomare, A.; Carini, M.; Morazzoni, P.; Aldini, G.; Baron, G. Liquid Chromatography–High-Resolution Mass Spectrometry (LC-HRMS) Profiling of Commercial Enocianina and Evaluation of Their Antioxidant and Anti-Inflammatory Activity. Antioxidants 2022, 11, 1187. [Google Scholar] [CrossRef]
- Hübner, A.A.; Sarruf, F.D.; Oliveira, C.A.; Neto, A.V.; Fischer, D.C.; Kato, E.T.; Lourenço, F.R.; Baby, A.R.; Bacchi, E.M. Safety and photoprotective efficacy of a sunscreen system based on grape pomace (Vitis vinifera L.) phenolics from winemaking. Pharmaceutics 2020, 12, 1148. [Google Scholar] [CrossRef]
- Gavrilaș, S.; Calinovici, I.; Chiș, S.; Ursachi, C.Ș.; Raț, M.; Munteanu, F.D. White Grape Pomace Valorization for Remediating Purposes. Appl. Sci. 2022, 12, 1997. [Google Scholar] [CrossRef]
- Olt, V.; Báez, J.; Jorcin, S.; López, T.; Fernández, A.; Medrano, A. Development of a potential functional yogurt using bioactive compounds obtained from the by-product of the production of Tannat red wine. Biol. Life Sci. Forum 2021, 6, 93. [Google Scholar]
- Asmat-Campos, D.; Bravo Huivin, E.; Avalos-Vera, V. Valorization of agro-industrial waste in a circular economy environment: Grape pomace as a source of bioactive compounds for its application in nanotechnology. In Proceedings of the 19th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Prospective and Trends in Technology and Skills for Sustainable Social Development” “Leveraging Emerging Technologies to Construct the Future”, Buenos Aires, Argentina, 21–23 July 2021. [Google Scholar] [CrossRef]
- Andrés, A.I.; Petrón, M.J.; Adámez, J.D.; López, M.; Timón, M.L. Food by-products as potential antioxidant and antimicrobial additives in chill stored raw lamb patties. Meat Sci. 2017, 129, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Biniari, K.; Xenaki, M.; Daskalakis, I.; Rusjan, D.; Bouza, D.; Stavrakaki, M. Polyphenolic compounds and antioxidants of skin and berry grapes of Greek Vitis vinifera cultivars in relation to climate conditions. Food Chem. 2020, 307, 125518. [Google Scholar] [CrossRef] [PubMed]
- Bordiga, M.; Travaglia, F.; Locatelli, M. Valorisation of grape pomace: An approach that is increasingly reaching its maturity–a review. Int. J. Food Sci. Technol. 2019, 54, 933–942. [Google Scholar] [CrossRef]
- Chen, Y.; Wen, J.; Deng, Z.; Pan, X.; Xie, X.; Peng, C. Effective utilization of food wastes: Bioactivity of grape seed extraction and its application in food industry. J. Funct. Foods 2020, 73, 104113. [Google Scholar] [CrossRef]
- Crupi, P.; Dipalmo, T.; Clodoveo, M.L.; Toci, A.T.; Coletta, A. Seedless table grape residues as a source of polyphenols: Comparison and optimization of non-conventional extraction techniques. Eur. Food Res. Technol. 2018, 244, 1091–1100. [Google Scholar] [CrossRef]
- Mainente, F.; Menin, A.; Alberton, A.; Zoccatelli, G.; Rizzi, C. Evaluation of the sensory and physical properties of meat and fish derivatives containing grape pomace powders. Int. J. Food Sci. Technol. 2019, 54, 952–958. [Google Scholar] [CrossRef]
- Gárcia-Lomillo, J.; González-SanJosé, M. Applications of wine pomace in the food industry: Approaches and functions. Compr. Rev. Food Sci. Food Saf. 2017, 16, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Li, X.; Zhao, P.; Zhang, X.; Qiao, O.; Huang, L.; Gao, W. A review of chemical constituents and health-promoting effects of citrus peels. Food Chem. 2021, 365, 130585. [Google Scholar] [CrossRef]
- Yaqoob, M.; Aggarwal, P.; Rasool, N.; Baba, W.N.; Ahluwalia, P.; Abdelrahman, R. Enhanced functional properties and shelf stability of cookies by fortification of kinnow derived phytochemicals and residues. J. Food Meas. Charact. 2021, 15, 2369–2376. [Google Scholar] [CrossRef]
- Karetha, K.; Gadhvi, K.; Vyas, S. Peelings of citrus fruits as a precious resource of phytochemical and vital bioactive medicines during Covid: 19 periods. Int. J. Bot. Stud. 2020, 5, 342–344. [Google Scholar]
- Benayad, O.; Bouhrim, M.; Tiji, S.; Kharchoufa, L.; Addi, M.; Drouet, S.; Hano, C.; Lorenzo, J.M.; Bendaha, H.; Bnouham, M.; et al. Phytochemical profile, α-glucosidase, and α-amylase inhibition potential and toxicity evaluation of extracts from Citrus aurantium (L) peel, a valuable by-product from Northeastern Morocco. Biomolecules 2021, 11, 1555. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, P.D.P.M.; Ruviaro, A.R.; Macedo, G.A. Comparison of different Brazilian citrus by-products as source of natural antioxidants. Food Sci. Biotechnol. 2018, 27, 1301–1309. [Google Scholar] [CrossRef] [PubMed]
- Liew, S.S.; Ho, W.Y.; Yeap, S.K.; Sharifudin SA, B. Phytochemical composition and in vitro antioxidant activities of Citrus sinensis peel extracts. PeerJ 2018, 6, e5331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorge, N.; Silva AC, D.; Aranha, C.P. Antioxidant activity of oils extracted from orange (Citrus sinensis) seeds. An. Da Acad. Bras. De Ciên. 2016, 88, 951–958. [Google Scholar] [CrossRef] [Green Version]
- Olfa, T.; Gargouri, M.; Akrouti, A.; Brits, M.; Gargouri, M.; Ben Ameur, R.; Pieters, L.; Foubert, K.; Magné, C.; Soussi, A.; et al. A comparative study of phytochemical investigation and antioxidative activities of six citrus peel species. Flavour Fragr. J. 2021, 36, 564–575. [Google Scholar] [CrossRef]
- Lee, G.J.; Lee, S.Y.; Kang, N.G.; Jin, M.H. A multi-faceted comparison of phytochemicals in seven citrus peels and improvement of chemical composition and antioxidant activity by steaming. LWT 2022, 160, 113297. [Google Scholar] [CrossRef]
- Šafranko, S.; Ćorković, I.; Jerković, I.; Jakovljević, M.; Aladić, K.; Šubarić, D.; Jokić, S. Green extraction techniques for obtaining bioactive compounds from mandarin peel (Citrus unshiu var. Kuno): Phytochemical analysis and process optimization. Foods 2021, 10, 1043. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, J.; Hu, C.; Wang, N.; Zhang, L.; Mo, X.; Li, G.; Liao, H.; Huang, H.; Ji, S.; et al. Integrative analyses of transcriptome and carotenoids profiling revealed molecular insight into variations in fruits color of Citrus Reticulata Blanco induced by transplantation. Genomics 2022, 114, 110291. [Google Scholar] [CrossRef]
- Saini, A.; Panesar, P.S.; Bera, M.B. Valuation of Citrus reticulata (kinnow) peel for the extraction of lutein using ultrasonication technique. Biomass Convers. Biorefinery 2021, 11, 2157–2165. [Google Scholar] [CrossRef]
- Lopresto, C.G.; Petrillo, F.; Casazza, A.A.; Aliakbarian, B.; Perego, P.; Calabrò, A. A non-conventional method to extract D-limonene from waste lemon peels and comparison with traditional Soxhlet extraction. Sep. Purif. Technol. 2014, 137, 13–20. [Google Scholar] [CrossRef]
- Okino Delgado, C.H.; Fleuri, L.F. Orange and mango by-products: Agro-industrial waste as source of bioactive compounds and botanical versus commercial description—A review. Food Rev. Int. 2016, 32, 1–14. [Google Scholar] [CrossRef]
- Yang, X.; Kang, S.M.; Jeon, B.T.; Kim, Y.D.; Ha, J.H.; Kim, Y.T.; Jeon, Y.J. Isolation and identification of an antioxidant flavonoid compound from citrus-processing by-product. J. Sci. Food Agric. 2011, 91, 1925–1927. [Google Scholar] [CrossRef] [PubMed]
- Fava, F.; Zanaroli, G.; Vannini, L.; Guerzoni, E.; Bordoni, A.; Viaggi, D.; Robertson, J.; Waldron, K.; Bald, C.; Esturo, A.; et al. New advances in the integrated management of food processing by-products in Europe: Sustainable exploitation of fruit and cereal processing by-products with the production of new food products (NAMASTE EU). New Biotechnol. 2013, 30, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Lv, K.; Zhang, L.; Zhao, H.; Ho, C.T.; Li, S. Recent study on the anticancer activity of nobiletin and its metabolites. J. Food Bioact. 2021, 14. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, Z.Y.; Guo, Y.; Chu, C.; Zheng, G.D.; Liu, E.H.; Li, F. Enrichment of polymethoxyflavones from Citrus reticulata ‘Chachi’peels and their hypolipidemic effect. J. Chromatogr. B 2019, 1124, 226–232. [Google Scholar] [CrossRef]
- Zeng, S.-L.; Li, S.-Z.; Xiao, P.-T.; Cai, Y.-Y.; Chu, C.; Chen, B.-Z.; Li, P.; Li, J.; Liu, E.-H. Citrus polymethoxyflavones attenuate metabolic syndrome by regulating gut microbiome and amino acid metabolism. Sci. Adv. 2020, 6, eaax6208. [Google Scholar] [CrossRef]
- Chiechio, S.; Zammataro, M.; Barresi, M.; Amenta, M.; Ballistreri, G.; Fabroni, S.; Rapisarda, P. A standardized extract prepared from red orange and lemon wastes blocks high-fat diet-induced hyperglycemia and hyperlipidemia in mice. Molecules 2021, 26, 4291. [Google Scholar] [CrossRef]
- Barbosa PD, P.M.; Ruviaro, A.R.; Martins, I.M.; Macedo, J.A.; LaPointe, G.; Macedo, G.A. Enzyme-assisted extraction of flavanones from citrus pomace: Obtention of natural compounds with anti-virulence and anti-adhesive effect against Salmonella enterica subsp. enterica serovar Typhimurium. Food Control 2021, 120, 107525. [Google Scholar] [CrossRef]
- Lamine, M.; Gargouri, M.; Rahali, F.Z.; Mliki, A. Recovering and characterizing phenolic compounds from citrus by-product: A way towards agriculture of subsistence and sustainable bioeconomy. Waste Biomass Valorization 2021, 12, 4721–4731. [Google Scholar] [CrossRef]
- Gunwantrao, B.B.; Bhausaheb, S.K.; Ramrao, B.S.; Subhash, K.S. Antimicrobial activity and phytochemical analysis of orange (Citrus aurantium L.) and pineapple (Ananas comosus (L.) Merr.) peel extract. Ann. Phytomed. 2016, 5, 156–160. [Google Scholar] [CrossRef]
- Khan, N.H.; Qian, C.J.; Perveen, N. Phytochemical screening, antimicrobial and antioxidant activity determination of citrus maxima peel. Pharm. Pharmacol. Int. J. 2018, 6, 279–285. [Google Scholar]
- Khan, J.; Sakib, S.A.; Mahmud, S.; Khan, Z.; Islam, M.N.; Sakib, M.A.; Emran, T.B.; Simal-Gandara, J. Identification of potential phytochemicals from Citrus limon against main protease of SARS-CoV-2: Molecular docking, molecular dynamic simulations and quantum computations. J. Biomol. Struct. Dyn. 2021, 40, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Achimón, F.; Leal, L.E.; Pizzolitto, R.P.; Brito, V.D.; Alarcón, R.; Omarini, A.B.; Zygadlo, J.A. Insecticidal and antifungal effects of lemon, orange, and grapefruit peel essential oils from Argentina. Agriscientia 2022, 39, 71–82. [Google Scholar]
- Liu, Y.; Benohoud, M.; Yamdeu JH, G.; Gong, Y.Y.; Orfila, C. Green extraction of polyphenols from citrus peel by-products and their antifungal activity against Aspergillus flavus. Food Chem. X 2021, 12, 100144. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Chen, H.; Jin, C.; Mo, J.; Wang, H. Nobiletin flavone inhibits the growth and metastasis of human pancreatic cancer cells via induction of autophagy, G0/G1 cell cycle arrest, and inhibition of NF-kB signalling pathway. J. Buon 2020, 25, 1070–1075. [Google Scholar]
- Ozkan, A.D.; Kaleli, S.; Onen, H.I.; Sarihan, M.; Eskiler, G.G.; Yigin, A.K.; Akdogan, M. Anti-inflammatory effects of nobiletin on TLR4/TRIF/IRF3 and TLR9/IRF7 signaling pathways in prostate cancer cells. Immunopharmacol. Immunotoxicol. 2020, 42, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Hanafy, S.M.; El-Shafea, A.; Mohamed, Y.; Saleh, W.D.; Fathy, H.M. Chemical profiling, in vitro antimicrobial and antioxidant activities of pomegranate, orange and banana peel-extracts against pathogenic microorganisms. J. Genet. Eng. Biotechnol. 2021, 19, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Abbattista, R.; Ventura, G.; Calvano, C.D.; Cataldi, T.R.; Losito, I. Bioactive compounds in waste by-products from olive oil production: Applications and structural characterization by mass spectrometry techniques. Foods 2021, 10, 1236. [Google Scholar] [CrossRef]
- Martakos, I.; Katsianou, P.; Koulis, G.; Efstratiou, E.; Nastou, E.; Nikas, S.; Dasenaki, M.; Pentogennis, M.; Thomaidis, N. Development of Analytical Strategies for the Determination of Olive Fruit Bioactive Compounds Using UPLC-HRMS and HPLC-DAD. Chemical Characterization of Kolovi Lesvos Variety as a Case Study. Molecules 2021, 26, 7182. [Google Scholar] [CrossRef]
- Dermeche, S.; Nadour, M.; Larroche, C.; Moulti-Mati, F.; Michaud, P. Olive mill wastes: Biochemical characterizations and valorization strategies. Process Biochem. 2013, 48, 1532–1552. [Google Scholar] [CrossRef]
- Darvishzadeh, P.; Orsat, V. Microwave-assisted extraction of antioxidant compounds from Russian olive leaves and flowers: Optimization, HPLC characterization and comparison with other methods. J. Appl. Res. Med. Aromat. Plants 2022, 27, 100368. [Google Scholar] [CrossRef]
- Russo, E.; Spallarossa, A.; Comite, A.; Pagliero, M.; Guida, P.; Belotti, V.; Caviglia, D.; Schito, A.M. Valorization and Potential Antimicrobial Use of Olive Mill Wastewater (OMW) from Italian Olive Oil Production. Antioxidants 2022, 11, 903. [Google Scholar] [CrossRef] [PubMed]
- D’Antuono, I.; Kontogianni, V.G.; Kotsiou, K.; Linsalata, V.; Logrieco, A.F.; Tasioula-Margari, M.; Cardinali, A. Polyphenolic characterization of Olive Mill Waste Waters, coming from Italian and Greek olive cultivars, after membrane technology. Food Res. Int. 2014, 65, 301–310. [Google Scholar] [CrossRef]
- Alu’datt, M.H.; Alli, I.; Ereifej, K.; Alhamad, M.; Al-Tawaha, A.R.; Rababah, T. Optimisation, characterisation and quantification of phenolic compounds in olive cake. Food Chem. 2010, 123, 117–122. [Google Scholar] [CrossRef]
- Zhao, H.; Avena-Bustillos, R.J.; Wang, S.C. Extraction, Purification and In Vitro Antioxidant Activity Evaluation of Phenolic Compounds in California Olive Pomace. Foods 2022, 11, 174. [Google Scholar] [CrossRef]
- Benincasa, C.; Pellegrino, M.; Romano, E.; Claps, S.; Fallara, C.; Perri, E. Qualitative and Quantitative Analysis of Phenolic Compounds in Spray-Dried Olive Mill Wastewater. Front. Nutr. 2022, 8, 782693. [Google Scholar] [CrossRef]
- Ladhari, A.; Zarrelli, A.; Ghannem, M.; Ben Mimoun, M. Olive wastes as a high-potential by-product: Variability of their phenolic profiles, antioxidant and phytotoxic properties. Waste Biomass Valorization 2021, 12, 3657–3669. [Google Scholar] [CrossRef]
- Poerschmann, J.; Weiner, B.; Baskyr, I. Organic compounds in olive mill wastewater and in solutions resulting from hydrothermal carbonization of the wastewater. Chemosphere 2013, 92, 1472–1482. [Google Scholar] [CrossRef]
- Uribe, E.; Pasten, A.; Lemus-Mondaca, R.; Vega-Gálvez, A.; Quispe-Fuentes, I.; Ortiz, J.; Di Scala, K. Comparison of Chemical Composition, Bioactive Compounds and Antioxidant Activity of Three Olive-Waste Cakes. J. Food Biochem. 2015, 39, 189–198. [Google Scholar] [CrossRef]
- Akli, H.; Grigorakis, S.; Kellil, A.; Loupassaki, S.; Makris, D.P.; Calokerinos, A.; Mati, A.; Lydakis-Simantiris, N. Extraction of Polyphenols from Olive Leaves Employing Deep Eutectic Solvents: The Application of Chemometrics to a Quantitative Study on Antioxidant Compounds. Appl. Sci. 2022, 12, 831. [Google Scholar] [CrossRef]
- Taamalli, A.; Arraez-Roman, D.; Barrajon-Catalan, E.; Ruiz-Torres, V.; Perez-Sanchez, A.; Herrero, M.; Ibanñez, E.; Micol, V.; Zarrouk, M.; Segura-Carretero, A.; et al. Use of advanced techniques for the extraction of phenolic compounds from Tunisian olive leaves: Phenolic composition and cytotoxicity against human breast cancer cells. Food Chem. Toxicol. 2012, 50, 1817–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Servian-Rivas, L.D.; Pachón, E.R.; Rodríguez, M.; González-Miquel, M.; González, E.J.; Díaz, I. Techno-economic and environmental impact assessment of an olive tree pruning waste multiproduct biorefinery. Food Bioprod. Process. 2022, 134, 95–108. [Google Scholar] [CrossRef]
- Yeniçeri, M.; Filik, A.G.; Filik, G. The Effect of Some Selected Fruit Wastes for Poultry Feed on Growth Performance of Broilers. Palandöken J. Anim. Sci. Technol. Econ. 2022, 1, 33–41. [Google Scholar]
- Kreatsouli, K.; Fousteri, Z.; Zampakas, K.; Kerasioti, E.; Veskoukis, A.S.; Mantas, C.; Gkoutsidis, P.; Ladas, D.; Petrotos, K.; Kouretas, D.; et al. A Polyphenolic Extract from Olive Mill Wastewaters Encapsulated in Whey Protein and Maltodextrin Exerts Antioxidant Activity in Endothelial Cells. Antioxidants 2019, 8, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lafka, T.I.; Lazou, A.E.; Sinanoglou, V.J.; Lazos, E.S. Phenolic and antioxidant potential of olive oil mill wastes. Food Chem. 2011, 125, 92–98. [Google Scholar] [CrossRef]
- Visioli, F.; Romani, A.; Mulinacci, N.; Zarini, S.; Conte, D.; Vincieri, F.F.; Galli, G. Antioxidant and other biological activities of olive mill waste waters. J. Agric. Food Chem. 1999, 47, 3397–3401. [Google Scholar] [CrossRef]
- Di Mauro, M.D.; Fava, G.; Spampinato, M.; Aleo, D.; Melilli, B.; Saita, M.G.; Centonze, G.; Maggiore, R.; D’Antona, N. Polyphenolic Fraction from Olive MillWastewater: Scale-Up and in Vitro Studies for Ophthalmic Nutraceutical Applications. Antioxidants 2019, 8, 462. [Google Scholar] [CrossRef] [Green Version]
- Robles-Almazan, M.; Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Rodriguez-Garcia, C.; Quiles, J.L.; Ramirez-Tortosa, M.C. Hydroxytyrosol: Bioavailability, toxicity, and clinical applications. Food Res. Int. 2018, 105, 654–667. [Google Scholar] [CrossRef]
- Bernini, R.; Merendino, N.; Romani, A.; Velotti, F. Naturally occurring hydroxytyrosol: Synthesis and anticancer potential. Curr. Med. Chem. 2013, 20, 655–670. [Google Scholar] [CrossRef]
- Benincasa, C.; La Torre, C.; Plastina, P.; Fazio, A.; Perri, E.; Caroleo, M.C.; Gallelli, L.; Cannataro, R.; Cione, E. Hydroxytyrosyl Oleate: Improved Extraction Procedure from Olive Oil and By-Products, and In Vitro Antioxidant and Skin Regenerative Properties. Antioxydants 2019, 8, 233. [Google Scholar] [CrossRef]
- Obied, H.K.; Allen, M.S.; Bedgood, D.R. Bioscreening of Australian olive mill waste extracts: Biophenol content, antioxidant, antimicrobial and molluscicidal activities. Food Chem. Toxicol. 2007, 45, 1238–1248. [Google Scholar] [CrossRef] [PubMed]
- Yangui, T.; Sayadi, S.; Gargoubi, A.; Dhouib, A. Fungicidal effect of hydroxytyrosol rich preparations from olive mill wastewater against Verticillium dahliae. Crop Prot. 2010, 29, 1208–1213. [Google Scholar] [CrossRef]
- Abdel-Razek, A.G.; Badr, A.; Shehata, G. Characterization of Olive Oil By-products: Antioxidant Activity, Its Ability to Reduce Aflatoxigenic Fungi Hazard and Its Aflatoxins. Annu. Res. Rev. Biol. 2017, 14, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Abi-Khattar, A.M.; Rajha, N.; Abdel-Massih, M.; Maroun, G.; Louka, N.; Debs, E. Intensification of Polyphenol Extraction from Olive Leaves Using Ired-Irrad, an Environmentally-Friendly Innovative Technology. Antioxidants 2019, 8, 227. [Google Scholar] [CrossRef] [Green Version]
- Bavaro, S.L.; D’Antuono, I.; Cozzi, G.; Haidukowski, M.; Cardinali, A.; Logrieco, A.F. Inhibition of aflatoxin B1 production by verbascoside and other olive polyphenols. World Mycotoxin J. 2016, 9, 545–553. [Google Scholar] [CrossRef]
- Schaffer, S.; Müller, W.E.; Eckert, G.P. Cytoprotective effects of olive mill waste water extract and its main constituent hydroxytyrosol in PC12 cells. Pharmacol. Res. 2010, 62, 322–327. [Google Scholar] [CrossRef]
- Palos-Hernández, A.; Fernández MY, G.; Burrieza, J.E.; Pérez-Iglesias, J.L.; González-Paramás, A.M. Obtaining green extracts rich in phenolic compounds from underexploited food by-products using natural deep eutectic solvents. Opportunities and challenges. Sustain. Chem. Pharm. 2022, 29, 100773. [Google Scholar] [CrossRef]
Crop | Global Crop Production * [Million Ton] | Residue to Crop Ratio | Amount of Residue ** [Million Ton] | References |
---|---|---|---|---|
Sugarcane | 1869.7 | 0.1 | 189.1 | Jiang et al. [9] |
Maize | 1162.4 | 2.0 | 2324.8 | Jiang et al. [9] |
Wheat | 760.9 | 1.18 | 897.9 | Searle and Malins [10] |
Rice | 756.7 | 1.0 | 756.7 | Jiang et al. [9] |
Potato | 359.1 | 0.4 | 143.6 | Ben Taher et al. [11] |
Soybean | 353.5 | 1.5 | 530.3 | Yanli et al. [12] |
Sugar beet | 253.0 | 0.27 | 68.3 | Searle and Malins [10] |
Tomato | 186.8 | 3.5 | 653.8 | Oleszek et al. [13] |
Barley | 157.0 | 1.18 | 185.3 | Searle and Malins [10] |
Banana | 119.8 | 0.6 | 71.9 | Gabhane et al. [14] |
Cucumber | 91.3 | 4.5 | 410.9 | Oleszek et al. [13] |
Apples | 86.4 | 0.25 | 21.6 | Cruz et al. [15] |
Grapes | 78.0 | 0.3 | 23.4 | Muhlack et al. [16] |
Oranges | 75.5 | 0.5 | 37.8 | Rezzadori et al. [17] |
Olives | 23.6 | 0.12 | 2.8 | Searle and Malins [10] |
Name | MW * [g mol−1] | CxHyOz | References |
---|---|---|---|
Phenolic acids—hydroxybenzoic acids | |||
p-Hydroxybenzoic acid | 138.12 | C7H6O3 | Zheng et al. [19] |
Vanillic acid | 168.14 | C8H8O4 | Zheng et al. [19] |
Benzoic acid | 122.12 | C7H6O2 | Zheng et al. [19] |
Protocatechuic acid | 154.12 | C7H6O4 | Zheng et al. [19] |
Gallic acid | 170.12 | C7H6O5 | Zhao et al. [26] |
Syringic acid | 198.17 | C9H10O5 | Zhao et al. [26] |
Phenolic acids—hydroxycinnamic acids | |||
p-Coumaric acid | 164.04 | C9H8O3 | González–Bautista et al. [28] |
Cinnamic acid | 148.16 | C9H8O2 | González–Bautista et al. [28] |
Ferulic acid | 194.18 | C10H10O4 | González–Bautista et al. [28] |
Caffeic acid | 180.16 | C9H8O4 | González–Bautista et al. [28] |
Chlorogenic acids | 354.31 | C16H18O9 | Zhao et al. [26] |
Sinapic acid | 224.21 | C11H12O5 | Zhao et al. [26] |
Flavonoids—flavonols | |||
Quercetin | 302.24 | C15H10O7 | Zheng et al. [19] |
Flavonoids—flavones | |||
Luteolin | 286.24 | C15H10O6 | Zheng et al. [29] |
Tricin | 330.29 | C17H14O7 | Zheng et al. [29] |
Flavonoid glycosides | |||
Diosmetin 6-C-glucoside | 462.40 | C22H22O11 | Zheng et al. [29] |
Tricin 7-O-β-glucopyranoside | 492.43 | C23H24O12 | Zheng et al. [29] |
Isoflavone | |||
Genistin | 432.37 | C21H20O10 | Zheng et al. [19] |
Genistein | 270.24 | C15H10O5 | Zheng et al. [19] |
Others | |||
Catechol | 110.11 | C6H6O2 | Zheng et al. [19] |
Phenol | 94.11 | C6H6O | Zheng et al. [19] |
Guaiacol | 124.14 | C7H8O2 | Zheng et al. [19] |
Vanillin | 152.15 | C8H8O3 | Zheng et al. [19] |
Isovanillin | 152.15 | C8H8O3 | Van der Pol et al. [30] |
Syringaldehyde | 182.17 | C9H10O4 | Zheng et al. [19] |
Piceol | 136.15 | C8H8O2 | Van der Pol et al. [30] |
Apocynin | 166.17 | C9H10O3 | Van der Pol et al. [30] |
Acetosyringone | 196.19 | C10H12O4 | Van der Pol et al. [30] |
Syringaldehyde | 182.17 | C9H10O4 | Van der Pol et al. [30] |
Creosol | 138.16 | C8H10O2 | Lv et al. [31] |
4-Ethylguaiacol | 152.19 | C9H12O2 | Lv et al. [31] |
Chavicol | 134.17 | C9H10O | Lv et al. [31] |
4-Vinylguaiacol | 150.17 | C9H10O2 | Lv et al. [31] |
4-Allylsyringol | 194.23 | C11H14O3 | Lv et al. [31] |
Material | Extract/Compound | Biological Activity/Application | References |
---|---|---|---|
Sugarcane bagasse | phenolic compounds | - natural antioxidant - used in pharmacology | Al Arni et al. [27] |
- antibacterial agents against the foodborne pathogens Escherichia coli, Listeria monocytogenes, Staphylococcus aureus, Salmonella typhimurium | Zhao et al. [26] | ||
gallic and tannic acids | - deactivate cellulolytic and hemicellulolytic enzymes | Michelin et al. [32] | |
extract | - antioxidant and radical scavenging activity - antimicrobial activity against Sta- phylococcus aureus TISTR029 and Escherichia coli O157:H7 - added value for the sugar industry | Juttuporn et al. [33] | |
- antihyperglycemic ability - useful therapeutic agents to treat T2D patients | Zheng et al. [19] | ||
- used for the low-cost bio-oil production | Treedet and Suntivarakorn [34] | ||
- feedstock for ethanol (bioethanol) production | Krishnan et al. [35] Zhu et al. [36] | ||
- raw material for the production of industrial enzymes, xylose, glucose, methane | Guilherme et al. [37] | ||
- raw material for the production of xylitol and organic acids | Chandel et al. [38] | ||
- used to prepare highly valued succinic acid | Xi et al. [23] | ||
- used as a reducing agent in synthesizing biogenic platinum nanoparticles | Ishak et al. [20] | ||
- used as a fuel to power sugar mills | Mohan et al. [22] |
Name | MW [g mol−1] | Molecular Formula | References |
---|---|---|---|
Phenolic acids—hydroxycinnamic acids | |||
p-Coumaric acid | 164.04 | C9H8O3 | Guo et al. [39] |
Ferulic acid | 194.18 | C10H10O4 | Guo et al. [39] |
trans-ferulic acid | 194.18 | C10H10O4 | Guo et al. [39] |
trans-ferulic acid methyl ester | 208.21 | C11H12O4 | Guo et al. [39] |
cis-ferulic acid | 194.18 | C10H10O4 | Guo et al. [39] |
cis-ferulic acid methyl ester | 208.21 | C11H12O4 | Guo et al. [39] |
Flavonoids—flavonols | |||
Rutin | 610.52 | C27H30O16 | Bujang et al. [40] |
Quercetin-3-O-glucoside | 463.37 | C21H19O12 | Dong et al. [41] |
Isorhamnetin-3-O-glucoside | 478.41 | C22H22O12 | Dong et al. [41] |
Kaempferol-3-O-glucoside | 447.37 | C21H19O11 | Li et al. [42] |
Maysin | 576.50 | C27H28O14 | Haslina and Eva [43] |
Isoorientin-2″-O-α-l-rhamnoside | 594.50 | C27H30O15 | Haslina and Eva [43] |
Maysin-3′-methyl ether | 590.50 | C28H30O15 | Tian et al. [44] |
ax-4″–OH–3′-Methoxymaysin | 592.50 | C28H32O14 | Tian et al. [44] |
2″-O-α-l-Rhamnosyl-6-C-fucosylluteolin | 578.50 | C27H30O14 | Tian et al. [44] |
Flavonoids—anthocyanins | |||
Pelargonidin-3-O-glucoside | 433.40 | C21H21O10 | Lao and Giusti [45] |
Pelargonidin-3-(6″malonylglucoside) | 519.23 | C24H23O13 | Chen et al. [46] |
Cyanidin-3-O-glucoside | 449.39 | C21H21O11 | Barba et al. [47] |
Cyanidin 3-(6″-malonylglucoside) | 535.11 | C24H23O14 | Fernandez-Aulis et al. [48] |
Peonidin-3-O-glucoside | 463.41 | C22H23O11 | Barba et al. [47] |
Peonidin-3-(6″malonylglucoside) | 549.50 | C25H25O14 | Fernandez-Aulis et al. [48] |
Other compounds | |||
p-Hydroxybenzaldehyde | 122.12 | C7H6O2 | Guo et al. [39] |
β-Sitosterol glucoside | 576.85 | C35H60O6 | Guo et al. [39] |
Indole-3-acetic acid | 175.06 | C10H9NO2 | Wille and Berhow [49] |
Vanillin | 154.05 | C8H8O3 | Guo et al. [39] |
Material | Extract/Compound | Biological Activity/Application | References |
---|---|---|---|
Corn bran | tocopherols and polyphenolic compounds | - antioxidant properties - used as bioactive compounds in cosmetics or natural substitutes (antioxidants, preservatives, stabilizers, emulsifiers, and colorings) in foods to prevent potential adverse effects associated with the consumption of artificial ingredients | Galanakis [62] |
Corn husk | extract | - used in the treatment of diabetes because it has shown high: - antidiabetic potential | Brobbey et al. [51] |
- anti-inflammatory effects | Roh et al. [63] | ||
Corn stigma | extract | - antifungal and antibacterial activities against 23 of the studied microorganisms - use as a functional ingredient in the food and pharmaceutical industry | Boeira et al. [64] |
Corn tassel | extract | - used as a traditional medicine in China - antioxidant capacity - the high ability to inhibit the proliferation of MGC80-3 gastric cancer cells | Wang et al. [65] |
tasselin A | - inhibition of melanin production - used as an ingredient in skin care whitener | Wille and Berhow [49] | |
Corn pollen | phenolic compounds | - antiradical activity | Bujang et al. [40] |
extract | - the source of functional and bioactive compounds for the nutraceutical and pharmaceutical industries | Bujang et al. [40] | |
- the source of antioxidants and is high in nutrients | Žilić et al. [58] |
Name | MW [g mol−1] | Molecular Formula | References |
---|---|---|---|
Phenolic acids—hydroxycinnamic acids | |||
p-Coumaric acid | 164.04 | C9H8O3 | Frontuto et al. [71] |
Ferulic acid | 194.18 | C10H10O4 | Javed et al. [72] |
Caffeic acid | 180.16 | C9H8O4 | Samarin et al. [73] |
Chlorogenic acid | 354.31 | C16H18O9 | Javed et al. [72] |
Sinapic acid | 224.21 | C11H12O5 | Mohdaly et al. [67] |
Cinnamic acid | 148.16 | C9H8O2 | Mohdaly et al. [67] |
Phenolic acids—hydroxybenzoic acids | |||
Gallic acid | 170.12 | C7H6O5 | Javed et al. [72] |
Vanillic acid | 168.15 | C8H8O4 | Javed et al. [72] |
Protocatechic acid | 154.12 | C7H6O4 | Frontuto et al. [71] |
p-Hydroxybenzoic acid | 138.12 | C7H6O3 | Chamorro et al. [74] |
3-Hydroxybenzoic acid | 138.12 | C7H6O3 | Paniagua–García et al. [75] |
4-Hydroxybenzoic acid | 138.12 | C7H6O3 | Paniagua–García et al. [75] |
2,5-Dihydroxybenzoic acid | 154.12 | C7H6O4 | Paniagua–García et al. [75] |
Syringic acid | 198.17 | C9H10O5 | Sarwari et al. [76] |
Cyclohexanecarboxylic acids | |||
Quinic acid | 192.17 | C7H12O6 | Wu et al. [77] |
Flavonoids—flavonols | |||
Rutin | 610.52 | C27H30O16 | Silva–Beltran et al. [78] |
Quercetin | 302.24 | C15H10O7 | Silva–Beltran et al. [78] |
Flavonoids—anthocyanin | |||
Pelargonidin-3-(p-coumaryoly rutinoside)- 5-glucoside | 919.81 | C42H47O23 | Chen et al. [79] |
Petunidin-3-(p-coumaroyl rutinoside)- 5-glucoside | 933.86 | C43H49O23 | Chen et al. [79] |
Alkaloids | |||
α-Chaconine | 852.06 | C45H73NO14 | Ji et al. [80] |
α-Solanine | 868.06 | C45H73NO15 | Ji et al. [80] |
Solanidine | 397.64 | C27H43NO | Hossain et al. [81] |
Demissidine | 399.65 | C27H45NO | Hossain et al. [81] |
Commersonine | 1048.20 | C51H85NO21 | Rodríguez–Martínez et al. [82] |
α-Tomatine | 1034.19 | C50H83NO21 | Rodríguez–Martínez et al. [82] |
Material | Extract/Compound | Biological Activity/Application | References |
---|---|---|---|
Potato peel | phenolic compounds | - antioxidant activity | Singh et al. [91] Albishi et al. [83] |
- used as a food preservative - pharmaceutical ingredient | Maldonado et al. [92] | ||
extract | - natural food additives as an antioxidant for fresh-cut fruits | Akyol et al. [93] Venturi et al. [94] | |
- food preservative - pharmaceutical ingredient | Gebrechristos and Chen [95] | ||
- limit oil oxidation | Amado et al. [96] | ||
- hepatoprotective effects, - protects erythrocytes against oxidative damage - lowers the toxicity of cholesterol oxidation products - attenuate diabetic alterations | Hsieh et al. [97] | ||
- protects atopic dermatitis | Yang et al. [98] | ||
- amylase and feed-stock for bioethanol production | Khawla et al. [99] | ||
- antioxidant, antibacterial, apoptotic, chemopreventive and anti-inflammatory | Wu [100] | ||
- bio-oil production | Liang et al. [101] | ||
- production of bacterial cellulose - biopolymer production | Abdelraof et al. [102] | ||
- antiobesity properties - used in the production of antiobesity functional food | Elkahoui et al. [103] Chimonyo [104] | ||
- a source of natural antioxidants against human enteric viruses (antiviral effect on the inhibition of Av-05 and MS2 bacteriophages, which were used as human enteric viral surrogates) | Silva-Beltran et al. [78] | ||
freeze-dried aqueous extracts | - use as food additives | Singh et al. [91] | |
glycoalkaloids | - the potential of being used by the pharmaceutical industry | Apel et al. [105] | |
Potato waste | extract | - as additives to biscuit | Khan et al. [106] |
glycoalkaloids | - precursors for the production of hormones, antibiotics and anticancer drugs - precursors for neurological and gastrointestinal disorders - anti-cancer and anti-proliferative activities in vitro | Hossain et al. [81] Hossain et al. [87] Ding et al. [107] Alves–Filho et al. [86] | |
steroidal alkaloids | - biological properties such as antimicrobial, anti-inflammatory and anticarcinogenic activities | Kenny et al. [108] |
Name | Soybean Residue | MW [g mol−1] | CxHyOz | Concentration | References |
---|---|---|---|---|---|
Phenolic acids—hydroxybenzoic acids | |||||
p-Hydroxybenzoic acid | herb root meal | 138.12 | C7H6O3 | 22.2–38.3 a,b 4.1–32.5 a,b 51 a | Šibul et al. [113] Šibul et al. [113] Freitas et al. [120] |
Salicylic acid | meal | 138.12 | C7H6O3 | 38 a | Freitas et al. [120] |
Protocatechuic acid | herb root | 154.12 | C7H6O4 | 4.4–14.4 a,b 2.35–4.71 a,b | Šibul et al. [113] |
Gentisic acid | herb root | 154.12 | C7H6O4 | <0.08–4.78 a,b <0.08–7.17 a,b | Šibul et al. [113] |
Vanillic acid | herb root meal | 168.14 | C8H8O4 | <0.4–44.9 a,b 43.0–75.2 a,b 91 a | Šibul et al. [113] Freitas et al. [120] |
Syringic acid | herb root meal | 198.17 | C9H10O5 | 12.0–14.2 a,b 20.6–42.0 a,b 81 a | Šibul et al. [113] Freitas et al. [120] |
Gallic acid | meal | 170.12 | C7H6O5 | 77 a | Freitas et al. [120] |
Phenolic acids—hydroxycinnamic acids | |||||
p-Coumaric acid | herb root meal | 164.04 | C9H8O3 | 7.45–14.5 a,b 1.61–2.89 a,b 20 a | Šibul et al. [113] Freitas et al. [120] |
Ferulic acid | herb root meal | 194.18 | C10H10O4 | 5.89–14.0 a,b 4.55–7.66 a,b 3 a | Šibul et al. [113] Freitas et al. [120] |
Caffeic acid | herb root meal | 180.16 | C9H8O4 | 14.2–24.9 a,b <0.08 a 61 a | Šibul et al. [113] Freitas et al. [120] |
Sinapic acid | meal | 224.21 | C11H12O5 | 27 a | Freitas et al. [120] |
Cyclohexanecarboxylic acids | |||||
Quinic acid | herb root | 192.17 | C7H12O6 | 399–532 a,b 111–249 a,b | Šibul et al. [113] |
5-O-Caffeoylquinic acid | herb root meal | 354.31 | C16H18O9 | <8–235 a,b <8 a 35 a | Šibul et al. [113] Freitas et al. [120] |
Flavonoids—flavonols | |||||
Kaempferol | herb root meal | 286.23 | C15H10O6 | <16–21.1 a,b <16 a 4 a | Šibul et al. [113] Freitas et al. [120] |
Quercetin | herb root | 302.24 | C15H10O7 | <16–278 a,b <16 a | Šibul et al. [113] |
Isorhamnetin | herb root | 316.26 | C16H12O7 | <40–159 a,b <40 a | Šibul et al. [113] |
Quercitrin | herb root | 448.38 | C21H20O11 | <0.06 a <0.06 a | Šibul et al. [113] |
Kaempferol 3-O-glucoside | herb root | 448.38 | C21H20O11 | 59.3–140 a,b 1.50–2.64 a,b | Šibul et al. [113] |
Hyperoside | herb root | 464.38 | C21H20O12 | <0.1–825 a,b <0.06 a | Šibul et al. [113] |
Quercetin 3-O-glucoside | herb root | 464.10 | C21H20O12 | <0.06–967 a,b <0.06 a,b | Šibul et al. [113] |
Rutin | herb root meal | 610.52 | C27H30O16 | 7.05–4636 a,b <2 a 49 a | Šibul et al. [113] Freitas et al. [120] |
Flavonoids—flavones | |||||
Apigenin | herb root | 270.24 | C15H10O5 | 17.4–759 a,b <8–22.3 a,b | Šibul et al. [113] |
Baicalein | herb root | 270.24 | C15H10O5 | 27.8–745 a,b <16–24.7 a,b | Šibul et al. [113] |
Luteolin | herb root | 286.24 | C15H10O6 | <40–194 a,b <40 a | Šibul et al. [113] |
Chrysoeriol | herb root | 300.26 | C16H12O6 | <4–9.57 a,b <4 a | Šibul et al. [113] |
Vitexin | herb root | 432.38 | C21H20O10 | 1.37–2.36 a,b 1.81–3.57 a,b | Šibul et al. [113] |
Apigenin 7-O-glucoside | herb root | 432.38 | C21H20O10 | 14.3–261 a,b <0.2–1.99 a,b | Šibul et al. [113] |
Luteolin 7-O-glucoside | herb root | 448.37 | C21H20O11 | <4–145 a,b <4 a | Šibul et al. [113] |
Apiin | herb root | 564.49 | C26H28O14 | <0.06–20.8 a,b <0.06 a | Šibul et al. [113] |
Flavonoids—flavanones | |||||
Naringenin | herb root meal | 272.26 | C15H12O5 | 3.46–8.46 a,b 6.52–15.9 a,b 25 a | Šibul et al. [113] Freitas et al. [120] |
Hesperidin | meal | 610.19 | C28H34O15 | 91 a | Freitas et al. [120] |
Flavonoids—flavanols | |||||
Catechin | herb root | 290.27 | C15H14O6 | <0.4 a <0.4 a | Šibul et al. [113] |
Epicatechin | herb root | 290.27 | C15H14O6 | <0.4 a <0.4–36.3 a,b | Šibul et al. [113] |
Isoflavones | |||||
Daidzin | okara meal | 416.38 | C21H20O9 | 920–1530 b,c 350 a | Anjum et al. [109] Freitas et al. [120] |
Daidzein | okara herb root meal | 254.23 | C15H10O4 | 310–639 b,c 40.7–122 a,b 40.5–1702 a,b 30 a | Anjum et al. [109] Šibul et al. [113] Freitas et al. [120] |
Genistin | okara meal | 432.37 | C21H20O10 | 3280–8360 b,c 490 a | Anjum et al. [109] Freitas et al. [120] |
Genistein | okara herb root meal | 270.24 | C15H10O5 | 380–650 b,c 15.1–39.2 a,b 159–270 a,b 50 a | Anjum et al. [109] Šibul et al. [113] Freitas et al. [120] |
Glycitin | okara | 446.40 | C22H22O10 | 450 c 160 a | Anjum et al. [109] Freitas et al. [120] |
Glycitein | okara meal | 284.26 | C16H12O5 | 58 c 3 a | Anjum et al. [109] Freitas et al. [120] |
Saponins | |||||
Soyasaponin B I | meal | 943.12 | C48H78O18 | 2510 c | Silva et al. [121] |
Soyasaponin B II + III | meal | 780 c | Silva et al. [121] |
Material | Extract/Compound | Biological Activity/Application | References |
---|---|---|---|
okara | methanolic and ethanolic extracts | - antioxidant activity - antibacterial activity against Bacillus subtilis, Bacillus megaterium, Escherichia coli, and Serratia marcescens | Anjum et al. [109] |
pod | Ethanolic extract and its 3 fractions | - antioxidant activity - anticancer activity against human colorectal carcinoma (HCT116) and prostate adenocarcinoma (PC-3) | Pabich et al. [116] |
soybean by-product | saponins | - used to remove pesticides residues in fruits and vegetables | Hsu et al. [119] |
defatted soy meal | isoflavones | - anti-cancerous, anti-estrogenic, anti-oxidant, anti-inflammatory, and phytoestrogen activities - preventions of cardiovascular and neurological disorders | Wang et al. [122] |
soybean by-products | saponins | - insecticidal properties | |
soybean meal | aqueous extract | - antioxidant activity - inhibition of lipid peroxidation - antimicrobial activity against several foodborne pathogens - antitumoral activity towards a human glioblastoma cell line | Freitas et al. [120] |
soybean cake | soyasapogenol A and its microbial transformation products | - application as anti-inflammatory food supplements | Zhou et al. [123] |
Name | MW [g mol−1] | Molecular Formula | References |
---|---|---|---|
Phenolic acids—hydroxycinnamic acids | |||
Chlorogenic acid | 354.31 | C16H18O9 | Bakic et al. [127] |
Isochlorogenic acid | 354.31 | C16H18O9 | Szabo et al. [141] |
p-Coumaric acid | 164.16 | C9H8O3 | Nour et al. [133] |
Ferulic acid | 194.18 | C10H10O4 | Perea–Dominguez et al. [131] |
Caffeic acid | 180.16 | C9H8O4 | Aires et al. [136] |
3,4,5-tricaffeoylquinic acid | 678.60 | C34H30O15 | Szabo et al. [141] |
Cinnamic acid | 148.16 | C9H8O2 | Kalogeropoulos et al. [138] |
Phloretic acid | 166.18 | C9H10O3 | Kalogeropoulos et al. [138] |
Sinapic acid | 224.21 | C11H12O5 | Kalogeropoulos et al. [138] |
Rosmarinic acid | 360.31 | C18H16O8 | Ćetković et al. [135] |
Phenolic acids—hydroxybenzoic acids | |||
Gallic acid | 170.12 | C7H6O5 | Nour et al. [133] |
Ellagic acid | 302.18 | C14H6O8 | Nour et al. [133] |
Vanillic acid | 168.15 | C8H8O4 | Nour et al. [133] |
Syringic acid | 198.17 | C9H10O5 | Nour et al. [133] |
Protocatechic acid | 154.12 | C7H6O4 | Elbadrawy and Sello [134] |
p-Hydroxybenzoic acid | 138.12 | C7H6O3 | Kalogeropoulos et al. [138] |
Flavonoids | |||
Quercetin | 302.24 | C15H10O7 | Elbadrawy and Sello [134] |
Quercetin-3-β-O-glucoside | 463.40 | C21H19O12 | Valdez–Morales et al. [142] |
Quercetin-3-O-sophorosid | 626.50 | C27H30O17 | Kumar et al. [143] |
Apigenin-7-O-glucoside | 432.40 | C21H20O10 | Concha-Meyer et al. [144] |
Isorhamnetin | 316.26 | C16H12O7 | Kumar et al. [143] |
Isorhamnetin-3-O-gentiobioside | 640.50 | C28H32O17 | Kumar et al. [143] |
Rutin | 610.52 | C27H30O16 | Aires et al. [136] |
Kaempferol | 286.23 | C15H10O6 | Perea–Dominguez et al. [131] |
Kaempferol-3-O-rutinoside | 394.52 | C27H30O15 | Aires et al. [136] |
Kaempferol-3-O-glucoside | 447.37 | C21H19O11 | Kumar et al. [143] |
Myricetin | 318.24 | C15H10O8 | Nour et al. [133] |
Naringenin | 272.26 | C15H12O5 | Elbadrawy and Sello [134] |
Catechin | 290.26 | C15H14O6 | Perea–Dominguez et al. [131] |
Epicatechin | 290.27 | C15H14O6 | Kalogeropoulos et al. [138] |
Chrysin | 254.24 | C15H10O4 | Kalogeropoulos et al. [138] |
Luteolin | 286.24 | C15H10O6 | Kalogeropoulos et al. [138] |
Luteolin-7-O-glucoside | 448.37 | C21H20O11 | Concha–Meyer et al. [144] |
Isoflavones | |||
Daidzein | 254.23 | C15H10O4 | Kumar et al. [143] |
Genistein | 270.24 | C15H10O5 | Kumar et al. [143] |
Stilbenes | |||
Resveratrol | 228.24 | C14H12O3 | Kalogeropoulos et al. [138] |
Carotenoids | |||
Lycopene | 536.89 | C40H56 | Fritsch et al. [130] |
β-Carotene | 536.89 | C40H56 | Kalogeropoulos et al. [138] |
Sterols | |||
β-Sitosterol | 414.72 | C29H50O | Kalogeropoulos et al. [138] |
∆5-Avenasterol | 412.70 | C29H48O | Kalogeropoulos et al. [138] |
Campesterol | 400.69 | C28H48O | Kalogeropoulos et al. [138] |
Cholestanol | 388.70 | C27H48O | Kalogeropoulos et al. [138] |
Cholesterol | 386.65 | C27H46O | Kalogeropoulos et al. [138] |
24-Oxocholesterol | 400.60 | C27H44O2 | Kalogeropoulos et al. [138] |
Stigmasterol | 412.69 | C29H48O | Kalogeropoulos et al. [138] |
Tocopherols | |||
Tocopherol | Kalogeropoulos et al. [138] | ||
Terpenes | |||
Squalene | 410.73 | C30H50 | Kalogeropoulos et al. [138] |
Cycloartenol | 426.72 | C30H50O | Kalogeropoulos et al. [138] |
β-Amyrin | 426.73 | C30H50O | Kalogeropoulos et al. [138] |
Oleanolic acid | 456.71 | C30H48O3 | Kalogeropoulos et al. [138] |
Ursolic acid | 456.70 | C30H48O3 | Kalogeropoulos et al. [138] |
Palmitic acid | 256.43 | C16H32O2 | Elbadrawy and Sello [134] |
Palmitoleic acid | 254.41 | C16H30O2 | Elbadrawy and Sello [134] |
Stearic acid | 284.48 | C18H36O2 | Elbadrawy and Sello [134] |
Oleic acid | 282.47 | C18H34O2 | Elbadrawy and Sello [134] |
Linolenic acid | 278.43 | C18H30O2 | Elbadrawy and Sello [134] |
Linoleic acid | 280.45 | C18H32O2 | Elbadrawy and Sello [134] |
Myristic acid | 228.37 | C14H28O2 | Elbadrawy and Sello [134] |
Material | Extract/Compound | Biological Activity/Application | References |
---|---|---|---|
Tomato seeds | polyphenols oil | - antioxidant activity | Zuorro et al. [154] |
- high nutritional quality | Eller et al. [155] | ||
Tomato by-products | extract | - natural antioxidants for the formulation of functional foods or to serve as additives in food systems to elongate their shelf-life - oxidative stability of dairy products - potential nutraceutical resource - animal feed | Savatović et al. [158] Elbadrawy and Sello [134] Nour et al. [159] Abid et al. [160] Ćetković et al. [135] Trombino et al. [161] |
Tomato peel | fiber | - food supplement, improving the different chemical, physical and nutritional properties of foods | Navarro–González et al. [137] |
lycopene | - natural color or bioactive ingredient | Ho et al. [162] | |
carotenoids | - natural antioxidants and colorants | Horuz and Belibagli [163] |
Name | Banana Residues | MW [g mol−1] | CxHyOz | Concentration | References |
---|---|---|---|---|---|
Total phenolics | 53,800 a | Kabir et al. [166] | |||
15,180–31,450 a,c | Chaudhry et al. [167] | ||||
29,200 a | Rebello et al. [168] | ||||
Total flavonoids | 16,440 b | Kabir et al. [166] | |||
10,800–22,110 b,c | Chaudhry et al. [167] | ||||
Phenolic acids—benzoic acids | |||||
Gallic acid | banana peel | 170.12 | C7H6O5 | 77.3 f | Behiry et al. [169] |
Ellagic acid | banana peel | 302.20 | C14H6O8 | 161.9 f | Behiry et al. [169] |
Salicylic acid | banana peel | 138.121 | C7H6O3 | 2.7 f | Behiry et al. [169] |
Phenolic acids—hydroxycinnamic acids | |||||
Chlorogenic acid | banana pseudostem and rhizome | 354.31 | C16H18O9 | Kandasamy et al. [170] | |
Ferulic acid | red banana peel yellow banana peel banana peel | 194.18 | C10H10O4 | 63.55 e 34.97 e 16.8 f | Avram et al. [171] Avram et al. [171] Behiry et al. [169] |
Sinapic acid | red banana peel yellow banana peel | 224.21 | C11H12O5 | 35.17 e 19.44 e | Avram et al. [171] Avram et al. [171] |
Cinnamic acid | banana peel | 148.16 | C9H8O2 | 0.7 f | Behiry et al. [169] |
o-coumaric acid | banana peel | 164.158 | C9H8O3 | 11.2 f | Behiry et al. [169] |
Flavonoids—flavonols | |||||
Kaempferol | red banana peel yellow banana peel | 286.239 | C15H10O6 | 28.80 e 9.30 e | Avram et al. [171] Avram et al. [171] |
Quercetin | red banana peel yellow banana peel | 302.236 | C15H10O7 | 6.14 e 1.14 e | Avram et al. [171] Avram et al. [171] |
Isoqercitrin | red banana peel yellow banana peel | 464.096 | C21H20O12 | 10.47 e 14.54 e | Avram et al. [171] Avram et al. [171] |
Rutin | banana peel | 610.517 | C27H30O16 | 9730.8 f | Behiry et al. [169] |
Myricetin | banana peel | 318.235 | C15H10O8 | 115.2 f | Behiry et al. [169] |
Myricetin-3-rutinoside | banana peel | 626.51 | C27H30O17 | 22.50 d | Behiry et al. [169] |
Quercetin-3-rutinoside-3-rhamnoside | banana peel | 756.7 | C33H40O20 | 12.91 d | Rebello et al. [168] |
Kaempherol-3-rutinoside-3-rhamnoside | banana peel | 740.7 | C33H40O19 | 5.32 d | Rebello et al. [168] |
Quercetin-7-rutinoside | banana peel | 610.5 | C27H30O16 | 8.78 d | Rebello et al. [168] |
Quercetin-3-rutinoside | banana peel | 610.5 | C27H30O16 | 29.87 d | Rebello et al. [168] |
Kaempferol-7-rutinoside | banana peel | 594.52 | C27H30O15 | 4.12 d | Rebello et al. [168] |
Laricitrin-3-rutinoside | banana peel | 640.16 | C28H32O17 | 2.22 d | Rebello et al. [168] |
Kaempferol-3-rutinoside | banana peel | 594.52 | C27H30O15 | 12.35 d | Rebello et al. [168] |
Isorhamnetin-3-rutinoside | banana peel | 624.5 | C28H32O16 | 1.31 d | Rebello et al. [168] |
Syringetin-3-rutinoside | banana peel | 654.6 | C29H34O17 | 0.63 d | Rebello et al. [168] |
Flavonoids—flavanones | |||||
Naringenin | banana peel | 84.7 f | Behiry et al. [169] | ||
Flavonoids-flavanols | |||||
Catechin | banana peel | 290.27 | C15H14O6 | 1.34 d | Rebello et al. [168] |
Epicatechin | banana peel | 290.27 | C15H14O6 | 2.55 d | Rebello et al. [168] |
Gallocatechin | banana peel | 306.27 | C15H14O7 | 4.20 d | Rebello et al. [168] |
Procyanidin B1 | banana peel | 578.14 | C30H26O12 | 1.27 d | Rebello et al. [168] |
Procyanidin B2 | banana peel | 578.14 | C30H26O12 | 81.95 d | Rebello et al. [168] |
Procyanidin B4 | banana peel | 578.14 | C30H26O12 | 7.90 d | Rebello et al. [168] |
Other compounds | |||||
Cycloeucalenol acetate | banana pseudostem and rhizome | 468.77 | C32H52O2 | Kandasamy et al. [170] | |
4-epicyclomusalenone | banana pseudostem and rhizome | 424.71 | C30H48O | Kandasamy et al. [170] |
Material | Extract/Compound | Biological Activity/Application | References |
---|---|---|---|
Banana peel | extract | - as additives for formulation of bioactive compounds-rich yogurts - antioxidants activity - DPPH• scavenging activity - ABTS+• scavenging activity - α-glucosidase inhibitory activity | Kabir et al. [166] |
Banana peel | acetonic, ethanoic, and methanolic extracts | - antioxidant activity - antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia Coli, Saccharomyces cerevisiae | Chaudhry et al. [167] |
Banana peel | extract | - application as corrosion inhibitors | Vani et al. [176] |
Banana pseudostem and rhizome | crude extracts (hexane, chloroform, ethyl acetate, and methanolic) Isolates: chlorogenic acid 4-epicyclomusalenone cycloeucalenol acetate | - antioxidant activity - platelet aggregation inhibitory activity - antimicrobial activity - cytotoxicity | Kandasamy et al. [170] |
Banana peel | extract | - antioxidant activity | Rebello et al. [168] |
Yellow and red banana peel | hydroalcoholic extracts | - the antioxidant, cytotoxic, and antimicrobial effects | Avram et al. [170] |
Banana peel | Methanolic extract | - application as biofungicide against the growth of Fusarium culmorum and Rhizoctonia solani, and as a bactericide against Agrobacterium tumefaciens for natural wood preservation during handling or in service. | Behiry et al. [169] |
Banana peel, pulp, seed, and flower | Ethanolic extract | - very strong antioxidant activity - antihyperglycemic activity at a dose of 350 mg/kg body weight | Nofianti et al. [172] |
Banana peel | Water extract contained ethanediol and butanediol | - highly reducing agent for metals used for the synthesis of silver nanoparticles | Buendía-Otero et al. [174] |
Banana inflorescence | - as good biocolorants with attractive colors, moderate stability in food systems, water-solubility, and benefits for health | Padam et al. [175] |
Name | MW [g mol−1] | CxHyOz | Concentration [mg/kg dm *] | References |
---|---|---|---|---|
Total phenolic content (TPC) | 2620–8560 a 1590–10,620 a 4399–8100 a | Waldbauer [181] Li et al. [182] Gorjanović et al. [183] | ||
Total flavonoid content (TFC) | 18,600–27,400 b | Gorjanović et al. [183] | ||
Phenolic acids—hydroxybenzoic acids | ||||
Gallic acid | 170.12 | C7H6O5 | 2.22–4.80 d | Gorjanović et al. [183] |
4-hydroxybenzoic acid | 137.02 | C7H5O3 | 17.66–69.56 c | Li et al. [182] |
Protocatechuic acid | 154.12 | C7H6O4 | 2.78–30.50 c | Li et al. [182] |
p-hudroxybenzoic acid | 138.22 | C7H6O3 | 1.16–5.80 d | Gorjanović et al. [183] |
Cyclohexanecarboxylic acids | ||||
Quinic acid | 192.17 | C7H12O6 | 227.4–418 c | Uyttebroek et al. [179] |
Phenolic acids—hydroxycinnamic acids | ||||
Chlorogenic acid | 354.31 | C16H18O9 | 41.80 –160.40 c 89.0–308.3 d 38.9–312.8 960 | Li et al. [182] Gorjanović et al. [183] Uyttebroek et al. [179] Pingret et al. [189] |
p-coumaroylquinic acid | 338.31 | C16H18O8 | 94 | Pingret et al. [189] |
Sinapic acid | 224.212 | C11H12O5 | 2.03–7.20 d | Gorjanović et al. [183] |
Caffeic acid | 180.16 | C9H8O4 | 0.12–0.35 d | Gorjanović et al. [183] |
p-Coumaric acid | 164.16 | C9H8O3 | 2.52–23.11 c 0.32–0.76 d | Li et al. [182] Gorjanović et al. [183] |
Ferulic acid | 194.18 | C10H10O4 | 1.70–4.21 c 13.24–23.80 d | Li et al. [182] Gorjanović et al. [183] |
Flavonoids—flavonols | ||||
Rutin | 610.52 | C27H30O16 | 7.99–46.93 d 19.32 2.24–3.26 c 10 b | Gorjanović et al. [183] Oleszek et al. [185] Uyttebroek et al. [179] Pingret et al. [189] |
Quercetin | 302.24 | C15H10O7 | 7.2–14.2 d 25.2 e | Gorjanović et al. [183] Oleszek et al. [185] |
Quercetin-3-O-galactoside | 464.38 | C21H20O12 | 80.8–165.2 d | Gorjanović et al. [183] |
Quercetin-3-O-pentosyl | 434.35 | C20H18O11 | 44.8 e | Oleszek et al. [185] |
Hyperoside | 464.38 | C21H20O12 | 434 e 122 b | Oleszek et al. [185] Pingret et al. [189] |
Isoquercetin | 464.38 | C21H20O12 | 70 e 42 | Oleszek et al. [185] Pingret et al. [189] |
Quercitrin | 448.38 | C21H20O11 | 442.4 e 70.14–109.5 c 40 b | Oleszek et al. [185] Uyttebroek et al. [179] Pingret et al. [189] |
Isoquercitrin | 464.0955 | C21H20O12 | 10.65–15.5 c | Uyttebroek et al. [179] |
Avicularin | 434.35 | C20H18O11 | 285.6 e 81.6–125.7 24 | Oleszek et al. [185] Uyttebroek et al. [179] Pingret et al. [189] |
Reynoutrin | 434.35 | C20H18O11 | 145.6 e 54 b | Oleszek et al. [185] Pingret et al. [189] |
Isorhamnetin | 1.10–17.62 d | Gorjanović et al. [183] | ||
Isorhamnetin-3-O-arabinofuranoside | 478.41 | C22H22O12 | Ramirez–Ambrosi et al. [186] | |
isorhamnetin-3-O-pentoside | 478.41 | C22H22O12 | Ramirez–Ambrosi et al. [186] | |
Isorhamnetin-3-O-rutinoside | 624.55 | C28H32O16 | 0.10–1.11 d | Gorjanović et al. [183] |
Isorhamnetin-3-O-rhamnoside | 462.41 | C22H22O11 | Ramirez–Ambrosi et al. [186] | |
Kaempferol | 286.24 | C15H10O6 | 0.62–2.46 d | Gorjanović et al. [183] |
Kaempferol-7-O-glucoside | 448.38 | C21H20O11 | 0.03–1.19 d | Gorjanović et al. [183] |
Quercetin-3-O-rhamnoside | 448.38 | C21H20O11 | 34.1–121.9 d | Gorjanović et al. [183] |
Guajavarin | 434.353 | C20H18O11 | 161 b | Pingret et al. [189] |
Hyperin | 463.371 | C21H19O12 | 64.02–92.4 c | Uyttebroek et al. [179] |
Flavonoids—flavanonols | ||||
Taxifolin | 304.254 | C15H12O7 | 0.16–0.46 d | Gorjanović et al. [183] |
Flavonoids—flavanols | ||||
Catechin | 290.27 | C15H14O6 | 1.50 –31.70 c 1.05–7.45 c 52 | Li et al. [182] Uyttebroek et al. [179] Pingret et al. [189] |
Epicatechin | 290.27 | C15H14O6 | 34.4–166.3 c 244 | Uyttebroek et al. [179] Pingret et al. [189] |
Procyanidin | 594.53 | C30H26O13 | 2900 3408 | Fernandes et al. [178] Pingret et al. [189] |
Procyanidin B2 | 578.52 | C30H26O12 | 42.8–208.1 | Uyttebroek et al. [179] |
Flavonoids—flavanones | ||||
Naringenin | 272.26 | C15H12O5 | 0.11–0.24 d | Gorjanović et al. [183] |
Eriodictyol | 288.26 | C15H12O6 | 0.11–0.21 d | Gorjanović et al. [183] |
Naringin | 580.541 | C27H32O14 | 0.22–0.60 d | Gorjanović et al. [183] |
Flavonoids—flavones | ||||
Apigenin | 270.24 | C15H10O5 | 0.31–0.48 d | Gorjanović et al. [183] |
Apigenin-7-O-glucoside | 432.38 | C21H20O10 | 0.47–1.01 d | Gorjanović et al. [183] |
Chrysin | 254.25 | C15H10O4 | 0.11–0.22 d | Gorjanović et al. [183] |
Luteolin | 286.24 | C15H10O6 | 0.10–0.26 d | Gorjanović et al. [183] |
Flavonoids—dihydrochalcones | ||||
Phloretin | 274.26 | C15H14O5 | 0.29–0.98 d | Gorjanović et al. [183] |
Phlorizin | 436.4 | C21H24O10 | 112–215 d 361.2 f 56.8–198.6 c 1008 | Gorjanović et al. [183] Oleszek et al. [185] Uyttebroek et al. [179] Pingret et al. [189] |
Phloretin 2-O-glucoside | 452.41 | C21H24O11 | Ramirez–Ambrosi et al. [186] | |
Phloretin -xylosyl-glucoside | 568.52 | C26H32O14 | 142 | Pingret et al. [189] |
3-hydroxyphloretin-2′-O-xylosylglucoside | 584.52 | C26H32O15 | Ramirez–Ambrosi et al. [186] | |
3-hydroxyphloretin-2′-O-glucoside | 452 | C21H24O11 | Ramirez–Ambrosi et al. [186] | |
Coumarins ** | ||||
Aesculin | 340.282 | C15H16O9 | 5.53–10.67 | Gorjanović et al. [183] |
(E)-12-(2′-Chlorovinyl) bergapten | 277.5 | C14H10O4Cl | Mohammed and Mustafa [187] | |
12-(1′,1′-dihydroxyethyl) bergapten | 276 | C14H12O6 | Mohammed and Mustafa [187] | |
12-(2′-chloropropan-2′-yl)-8-hydroxybergapten | 308.5 | C15H13O5Cl | Mohammed and Mustafa [187] | |
12-Hydroxy-11-chloromethylbergapten | 332.5 | C13H9O5Cl | Mohammed and Mustafa [187] | |
officinalin | 220 | C11H8O5 | Khalil and Mustafa [188] | |
8-(tert-butyl)officinalin | 276 | C15H16O5 | Khalil and Mustafa [188] | |
8-Hydroxyofficinalin | 236 | C11H8O6 | Khalil and Mustafa [188] | |
Officinalin-8-acetic acid | 278 | C13H10O7 | Khalil and Mustafa [188] | |
8-(2′-hydroxypropan-2′-yl) officinalin | 289 | C15H16O6 | Khalil and Mustafa [188] | |
Triterpenoids | ||||
α-amyrin | 426.72 | C30H50O | 94.0 | Woźniak et al. [190] |
β-amyrin | 426.72 | C30H50O | 41.4 | Woźniak et al. [190] |
Uvaol | 442.72 | C30H50O2 | 53.9 | Woźniak et al. [190] |
Erythtodiol | 442.72 | C30H50O2 | 18.0 | Woźniak et al. [190] |
Ursolic aldehyde | 440.70 | C30H48O2 | 73.9 | Woźniak et al. [190] |
Ursolic acid | 456.70 | C30H48O3 | 7125.1 | Woźniak et al. [190] |
Oleanolic acid | 456.70 | C30H48O3 | 1591.4 | Woźniak et al. [190] |
Pomolic acid | 472.70 | C30H48O4 | 870.3 | Woźniak et al. [190] |
Pigments *** | ||||
all-trans-neoxanthin | 600.884 | C40H56O4 | 1.14–7.11 d | Delgado–Pelayo [191] |
all-trans-violaxanthin | 600.870 | C40H56O4 | 1.70–18.26 d | Delgado–Pelayo [191] |
9-cis-violaxanthin | 600.870 | C40H56O4 | 0.23–2.37 d | Delgado–Pelayo [191] |
9-cis-Neoxanthin | 600.884 | C40H56O4 | 0.56–21.92 d | Delgado–Pelayo [191] |
13-cis-violaxanthin | 600.884 | C40H56O4 | 0.10–0.29 d | Delgado–Pelayo [191] |
all-trans-antheraxanthin | 584.885 | C40H56O3 | 0.09–0.57 d | Delgado–Pelayo [191] |
all-trans-zeaxanthin | 568.886 | C40H56O2 | 0.08–0.52 d | Delgado–Pelayo [191] |
all-trans-lutein | 568.871 | C40H56O2 | 1.32–61.53 d | Delgado–Pelayo [191] |
9-cis-lutein | 568.871 | C40H56O2 | 0.06–1.61 d | Delgado–Pelayo [191] |
13-cis-lutein | 568.871 | C40H56O2 | 0.10–2.76 d | Delgado–Pelayo [191] |
all-trans-β-carotene | 536.8726 | C40H56 | 1.49–30.31 d | Delgado–Pelayo [191] |
Monoestrified xanthophylls | 3.01–10.18 d | Delgado–Pelayo [191] | ||
Diesterified xanthophylls | 4.93–38.39 d | Delgado–Pelayo [191] | ||
Chlorophyll a | 893.509 | C55H72MgN4O5 | 18.39–1049.26 d | Delgado–Pelayo [191] |
Chlorophyll b | 907.492 | C55H70MgN4O6 | 4.78–309.86 d | Delgado–Pelayo [191] |
Other compounds | ||||
Resveratrol | 228.24 | C14H12O3 | 0.16–0.89 | Gorjanović et al. [183] |
Pterostilbene | 256.296 | C16H16O3 | 0.19–0.90 | Gorjanović et al. [183] |
Pinocembrin | 256.25 | C15H12O4 | 0.22–0.39 | Gorjanović et al. [183] |
Palmitic acid | 256.4 | C16H32O2 | 7.25 f | Walia [192] |
Linoleic acid | 280.45 | C18H32O2 | 43.81 f | Walia [192] |
Oleic acid | 282.47 | C18H34O2 | 46.50 f | Walia [192] |
Stearic acid | 284.48 | C18H36O2 | 1.72 f | Walia [192] |
Arachidic acid | 312.54 | C20H40O2 | 0.72 f | Walia [192] |
Pinnatifidanoside D | 518 | C24H38O12 | 344.4 | Oleszek et al. [185] |
Material | Extract/Compound | Biological Activity/Application | References |
---|---|---|---|
Apple seeds | coumarins | - antioxidant activity - antitumor activity | Khalil and Mustafa [188] |
Apple pomace | phenolic-rich fractions: phloridzin, phloretin, quercitrin, and quercetin as major constituents | - anti-inflammatory, cytotoxic activity, anticancer activity (SiHa, KB, and HT-29 cell lines) | Rana et al. [195] |
Apple pomace | crude extract and four fractions | - antioxidant activity - antifungal activity against crop pathogens: Neosartorya fischeri, Fusarium oxysporum, Botrytis sp. Petriella setifera | Oleszek et al. [185] |
Flour from apple pomace | ethanolic extract | antioxidant, antidiabetic, and antiobesity effects | Gorjanović et al. [183] |
Apple pomace | Ursolic acid | antimicrobial, anti-inflammatory, and antitumor activities | Cargnin et al. [196] |
Apple peel | ursolic acid | antimalarial activity | Silva et al. [197] |
Apple pomace | ethanolic extract: 5-O-caffeoylquinic acid as the major compound | - antioxidant and antimicrobial activity (against Propionibacterium acnes) - application in dermal formulations | Arraibi et al. [198] |
Apple pomace | Extracts (boiling water with 1% acetic acid) and fractions (polyphenols and carbohydrates) | - antioxidant activity - anti-inflammatory activity - application as a food ingredient in yogurt formulation | Fernandes et al. [178] |
Apple pomace | phloretin, phloridzin | antioxidant and antibacterial activity (Staphylococcus aureus, Escherichia coli) | Zhang et al. [199] |
Apple pomace | Phloridzin oxidation products (POP) | application as natural yellow pigments in gelled desserts | Haghighi and Rezaei [200] |
Apple pomace | Phloridzin oxidation products (POP) | - strong antioxidant activity - application as a yellow pigment | Liu et al. [201] |
Apple peel | extract | - application as corrosion inhibitor for carbon steel | Vera et al. [202] |
Name | MW [g mol−1] | CxHyOz | Concentration [mg/kg dm] | References |
---|---|---|---|---|
Total phenolic content (TPC) | 280–7770 b,e,f 14,200–26,700 a,e | Pintać et al. [208] Eyiz et al. [209] | ||
Total flavonoid content (TFC) | 40–1150 b,e,f 2403–4178 a,e | Pintać et al. [208] Eyiz et al. [209] | ||
Total monomeric anthocyanins | 539–1598 a,e | Eyiz et al. [209] | ||
Total proanthocyanidin | 3.23–6.32 a,e | Eyiz et al. [209] | ||
Phenolic acids—hydroxybenzoic acid | ||||
Gallic acid | 170.12 | C7H6O5 | 24–246 a,e 250 a 4.86–70 a,e,f 75.5 a 596.36 a 3030 c | Farías–Campomanes et al. [210] Wang et al. [211] Pintać et al. [208] Daniel et al. [212] Wittenauer et al. [213] Jara-Palacios et al. [214] |
Digalloylquinic acid | 496.4 | C21H20O14 | 299 a | Gonçalves et al. [215] |
Ellagic acid | 302.197 | C14H6O8 | 620 a 8.37–64.1 b,e,f 4.315 a | Wang et al. [211] Pintać et al. [208] Daniel et al. [212] |
Protocatechuic acid | 154.12 | C7H6O4 | 9–63 a,e 940 c | Farías–Campomanes et al. [210] Jara–Palacios et al. [214] |
Vanillic acid | 168.15 | C8H8O4 | 24–237 a,e 0.53–13.0 b,e,f 10 a | Farías–Campomanes et al. [210] Pintać et al. [208] Daniel et al. [212] |
4-hydroxybenzoic acid | 138.122 | C7H6O3 | 9–63 a,e 0.16–1.71 b,e,f | Farías–Campomanes et al. [210] Pintać et al. [208] |
Syringic acid | 198.17 | C9H10O5 | 48–593 a,e 0.13–20.6 b,e,f | Farías–Campomanes et al. [210] Pintać et al. [208] |
Galloylshikimic acid | 326.25 | C14H14O9 | 438.1 a | Gonçalves et al. [215] |
Phenolic acids—hydroxycinnamic acid | ||||
Chlorogenic acid | 354.31 | C16H18O9 | 0.14–11.50 b,e,f 4.715 a | Pintać et al. [208] Daniel et al. [212] |
Caffeic acid | 180.16 | C9H8O4 | 0.41–1.68 b,e,f 9.735 a 630 c | Pintać et al. [208] Daniel et al. [212] Jara–Palacios et al. [214] |
Caftaric acid | 312.23 | C13H12O9 | 735.32 a 880 c 11–168 a,g | Wittenauer et al. [213] Jara–Palacios et al. [214] Jara–Palacios et al. [216] |
cis-Coutaric acid | 296.23 | C13H12O8 | 5.3–11.8 a,g | Jara–Palacios et al. [216] |
trans-coutaric | 296.23 | C13H12O8 | 5.5–20.7 a,g | Jara–Palacios et al. [216] |
p-Coumaric acid | 164.16 | C9H8O3 | 6–39 a,e 0.13–1.49 b,e,f 8.175 a 510 c | Farías–Campomanes et al. [210] Pintać et al. [208] Daniel et al. [212] Jara–Palacios et al. [214] |
Flavonoids—flavonols | ||||
Quercetin | 302.236 | C15H10O7 | 3–15 a,e 11.3–78.9 b,e,f 200 a 2.473–15.637 c 4.7 a 2870 c 344–403 c,f | Farías–Campomanes et al. [210] Pintać et al. [208] Wang et al. [211] Balea et al. [217] Daniel et al. [212] Jara–Palacios et al. [214] Drosou et al. [218] |
Quercetin-3-O-glucoside | 463.371 | C21H19O12 | 0.39–38.0 b,e,f 67.6 a 2374.32 a 16,900 c 475–609 c,f | Pintać et al. [208] Gonçalves et al. [215] Wittenauer et al. [213] Jara–Palacios et al. [214] Drosou et al. [218] |
Quercetin-3-O-glucuronide | 478.362 | C21H18O13 | 13.4 a 2432.29 a 15,800 c 990–1285 c,f | Gonçalves et al. [215] Wittenauer et al. [213] Jara–Palacios et al. [214] Drosou et al. [218] |
Quercetin-3-O-pentoside | 434.35 | C20H18O11 | 52.0 a | Gonçalves et al. [215] |
Quercetin-3-O-rhamnoside | 448.4 | C21H20O11 | 49.4 a | Gonçalves et al. [215] |
Quercetin-3-O-galactoside | 2120 c | Jara–Palacios et al. [214] | ||
Hyperoside | 464.38 | C21H20O12 | 0.17–5.67 b,e,f | Pintać et al. [208] |
Rutin | 610.52 | C27H30O16 | 0.11–8.19 b,e,f 2.136 c 5.3 a 690 c | Pintać et al. [208] Balea et al. [217] Daniel et al. [212] Jara–Palacios et al. [214] |
Isorhamnetin | 316.265 | C16H12O7 | 6.42–72.9 b,e,f | Pintać et al. [208] |
Isorhamnetin 3-O-glucoside | 478.406 | C22H22O12 | 66.3 a 145–175 c,f | Gonçalves et al. [215] Drosou et al. [218] |
Myricetin | 318.24 | C15H10O8 | 170 a 0.21–2.31 b,e,f 0.341–1.029 c 452–711 c,f | Wang et al. [211] Pintać et al. [208] Balea et al. [217] Drosou et al. [218] |
Myricetin-3-O-hexoside | 480.38 | C21H20O13 | 184.6 a | Gonçalves et al. [215] |
Myricetin-3-O-glucoside | 480.38 | C21H20O13 | 781–1044 c | Drosou et al. [218] |
Quercitrin | 448.38 | C21H20O11 | 0.21–3.99 b,e,f | Pintać et al. [208] |
Laricitrin-O-hexoside | 494.405 | C22H22O13 | 46.8 a 216–434 c,f | Gonçalves et al. [215] Drosou et al. [218] |
Kaemferol | 286.239 | C15H10O6 | 80 a 2.45–53.1 b,e,f 3.38–5.74 c 150 c | Wang et al. [211] Pintać et al. [208] Balea et al. [217] Jara–Palacios et al. [214] |
Kaempferol 3-O-glucoside | 448.38 | C21H20O11 | 0.05–23.0 b,e,f 3670 c | Pintać et al. [208] Jara–Palacios et al. [214] |
Kaempferol 3-glucuronide | 462.4 | C21H18O12 | 310 c | Jara–Palacios et al. [214] |
Syringetin 3-glucoside | 508.432 | C23H24O13 | 168–200 c,f | Drosou et al. [218] |
Quercitrin | 448.38 | C21H20O11 | 3.272–14.952 c | Balea et al. [217] |
Isoquercitrin | 464.0955 | C21H20O12 | 2.429–65.698 c | Balea et al. [217] |
Flavonoids—flavanols | ||||
Catechin | 290.27 | C15H14O6 | 1460 a 5.01–193 b,e,f 945 a 1101.7 a 10,496.63 a 12,200 c | Wang et al. [211] Pintać et al. [208] Gonçalves et al. [215] Daniel et al. [212] Wittenauer et al. [213] Jara–Palacios et al. [214] |
Epicatechin | 290.271 | C15H14O6 | 1280 a 5.80–309 b,e,f 949 a 322.5 a 8994.93 a 6340 c | Wang et al. [211] Pintać et al. [208] Gonçalves et al. [215] Daniel et al. [212] Wittenauer et al. [213] Jara–Palacios et al. [214] |
Epigallocatechin | 306.27 | C15H14O7 | 900 a | Wang et al. [211] |
Procyanidin dimers | 578.1424 | C30H26O12 | 3306 a | Gonçalves et al. [215] |
Procyanidin trimers | 866.77 | C45H38O18 | 1105 a 12,920 c | Gonçalves et al. [215] Jara–Palacios et al. [214] |
Procyanidin tetramer | 1155.0 | C60H50O24 | 806 a 16,540 c | Gonçalves et al. [215] Jara–Palacios et al. [214] |
Procyanidin B1 | 578.1424 | C30H26O12 | 4858.58 c 15,500 c | Wittenauer et al. [213] Jara–Palacios et al. [214] |
Procyanidin B2 | 578.1424 | C30H26O12 | 4277.04 c 4940 c | Wittenauer et al. [213] Jara–Palacios et al. [214] |
Procyanidin B3 | 578.1424 | C30H26O12 | 4350 c | Jara–Palacios et al. [214] |
Procyanidin B4 | 578.1424 | C30H26O12 | Jara–Palacios et al. [216] | |
Flavonoids—flavones | ||||
Apigenin | 270.24 | C15H10O5 | 0.58 b | Pintać et al. [208] |
Apigenin 7-O-glucoside | 432.38 | C21H20O10 | 0.02–12.7 b,e,f | Pintać et al. [208] |
Luteolin | 286.24 | C15H10O6 | 0.23–1.07 b,e,f | Pintać et al. [208] |
Luteolin-7-O-glucoside | 448.38 | C21H20O11 | 0.36–4.46 b,e,f | Pintać et al. [208] |
Flavonoids—flavanones | ||||
Chrysoeriol | 300.27 | C16H12O6 | 0.04–0.51 b,e,f | Pintać et al. [208] |
Naringenin | 272.26 | C15H12O5 | 0.11–0.83 b,e,f | Pintać et al. [208] |
Flavonoids-flavanonols | ||||
Astilbin | 450.396 | C21H22O11 | 3120–4200 b,e | Negro et al. [219] |
Flavonoids—anthocyanins | ||||
Delphinidin 3-O-glucoside | 465.387 | C21H21O12 | 4.68–54.7 b,e,f 775–936 c,f 7–57 a,e | Pintać et al. [208] Drosou et al. [218] Negro et al. [219] |
Cyanidin 3-O-glucoside | 449.388 | C21H21O11 | 2.21–11.3 b,e,f 3–37 b,e | Pintać et al. [208] Negro et al. [219] |
Petunidin-3-O-glucoside | 479.41 | C22H23O12 | 1.28–35.4 b,e,f 77.0 a 1295–1618 c,f | Pintać et al. [208] Gonçalves et al. [215] Drosou et al. [218] |
Peonidin-3-O-glucoside | 463.41 | C22H23O11 | 1.51–64.7 b,e,f 202.2 a 1591–2044 c,f | Pintać et al. [208] Gonçalves et al. [215] Drosou et al. [218] |
Malvidin 3-glucoside | 493.441 | C23H25O12 | 0.80–384 b,e,f 443.0 a 12,182–17,687 c,f | Pintać et al. [208] Gonçalves et al. [215] Drosou et al. [218] |
Peonidin-3-O-acetyl glucoside | 505.4 | C24H25O12+ | 90.2 a | Gonçalves et al. [215] |
Malvidin 3-O-acetyl glucoside | 535.5 | C25H27O13+ | 96.2 a 937–1182 c,f | Gonçalves et al. [215] Drosou et al. [218] |
Malvidin 3-caffeoyl glucoside | 655.6 | C32H31O15 | 1079–1450 c,f | Drosou et al. [218] |
Petunidin 3-coumaroyl glucoside | 625.5536 | C31H29O14 | 735–806 c,f | Drosou et al. [218] |
Peonidin 3-coumaroyl glucoside | 609.5542 | C31H29O13 | 796–1231 c,f | Drosou et al. [218] |
Malvidin-3-coumaroyl glucoside | 639.58 | C32H31O14 | 4700–7232 c,f | Drosou et al. [218] |
Delphinidin | 303.24 | C15H11O7 | 5570 a | Wang et al. [211] |
Cyanidin | 287.24 | C15H11O6 | 3620 a | Wang et al. [211] |
Petunidin | 317.27 | C16H13O7 | 15,500 a | Wang et al. [211] |
Peonidin | 301.27 | C16H13O6 | 25,320 a | Wang et al. [211] |
Malvidin | 331.30 | C17H15O7 | 10,390 a | Wang et al. [211] |
Terpenoids | ||||
Ursolic acid | 456.70 | C30H48O3 | 0.96–606 b,e,f | Pintać et al. [208] |
Coumarins | ||||
Esculetin | 178.14 | C9H6O4 | 0.23–0.66 b,e,f | Pintać et al. [208] |
Stilbenes | ||||
resveratrol | 228.243 | C14H12O3 | 0.07–3.37 b,e,f 5.3–6.2 a,e | Pintać et al. [208] Iora et al. [220] |
Fatty acids | ||||
Palmitic acid (16:1) | 256.4 | C16H32O2 | 85.43–110.97 d | Iora et al. [220] |
Palmitoleic acid (16:1 n-7) | 254.414 | C16H30O2 | 7.04–13.21 d | Iora et al. [220] |
Stearic acid (18:0) | 284.48 | C18H36O2 | 26.75–38.77 d | Iora et al. [220] |
Oleic acid (18:1 n-9) | 282.47 | C18H34O2 | 118.15–141.54 d | Iora et al. [220] |
Linoleic acid (18:2 n-6) | 280.4472 | C18H32O2 | 627.21–684.47 d | Iora et al. [220] |
Linolenic acid (18:3 n-3) | 278.43 | C18H30O2 | 11.26–19.97 d | Iora et al. [220] |
Arachidic acid (20:0) | 312.5304 | C20H40O2 | 3.12–3.45 d | Iora et al. [220] |
Eicosenoic acid 20:1 n-9 | 310.51 | C20H38O2 | 0.89–2.57 d | Iora et al. [220] |
Behenic acid 22:0 | 340.58 | C22H44O2 | 1.47–2.42 d | Iora et al. [220] |
Lignoceric acid 24:0 | 368.63 | C24H48O2 | 1.03–1.67 d | Iora et al. [220] |
SFA | 117.79–157.07 d | Iora et al. [220] | ||
MUFA | 131.56–156.95 d | Iora et al. [220] | ||
PUFA | 647.17–695.73 d | Iora et al. [220] | ||
n-6/n-3 | 31.43–60.80 d | Iora et al. [220] | ||
SFA/PUFA | 0.17–0.24 d | Iora et al. [220] | ||
TFA | 938.41–945.08 d | Iora et al. [220] | ||
Other compounds | ||||
Vanillin | 152.15 | C8H8O3 | 25.5 a | Daniel et al. [212] |
trans-piceid | 390.388 | C20H22O8 | 7.75 a | Daniel et al. [212] |
Material | Extract/Compound | Biological Activity/Application | References |
---|---|---|---|
Fresh and fermented grape pomace | Extract | - antioxidant, anti-inflammatory, and antiproliferative activity | Balea et al. [217] |
Grape pomace | Hydroalcoholic extract (saponins, tannins, and flavonoids as active constituents) | - anthelmintic activity | Soares et al. [229] |
Grape pomace | Whole apple pomace (phenolic compounds as main constituents) | - reduction of the severity of non-alcoholic hepatic steatosis - inhibition of steatohepatitis - improvement in insulin sensitivity - reduction of ectopic fat deposition in mice | Daniel et al. [212] |
Grape pomace | crude extract and four fractions: the most active free phenolic acids fraction | - inhibitory effect on collagenase and elastase | Wittenauer et al. [213] |
White grape pomace | extract: catechin, epicatechin, quercetin, and gallic acid as the main active constituents | - antiproliferative activity against adenocarcinoma cell | Jara–Palacios et al. [214] |
Grape pomace | Ethanolic extract | - antioxidant activity - potential application as additives to food enhancing nutritional value and improving storability | Iora et al. [220] |
Grape stem | extracts | - prevention of radical oxidation of the polyunsaturated fatty acids of low-density lipoproteins (LDL) - reduction of intracellular reactive oxygen species (ROS) - prevention of cardiovascular diseases | Anastasiadi et al. [223] |
Grape seeds | procyanidin-rich extract | - antibacterial activity against Helicobacter pylori (H. pylori) | Silvan et al. [230] |
Grape seeds | procyanidin-rich extract | - antihypertensive activity | Quiñones et al. [231] |
Grape pomace | phenolics | - antioxidant properties | Tournour et al. [232] |
Grape pomace | “Enocianina”—anthocyanin-rich extract | - radical scavenging, enzymatic, antioxidant and anti-inflammatory activity - application as a colorant in the food industry | Della Vedova et al. [233] |
Grape pomace | phenolics | - photoprotective activity - reduction of the negative effects of UV radiation on the skin, such as erythema and photoaging | Hübner et al. [234] |
Grape pomace | extracts | - wastewater remediation | Gavrilas et al. [235] |
Grape pomace | ethanolic extract | - application as additives to yogurt | Olt et al. [236] |
Grape pomace | alcoholic extract | - application as a reducing agent of the precursor silver nitrate, a process that has led to the obtaining of silver nanoparticles (NP Ag) by reducing the ions. | Asmat–Campos et al. [237] |
Grape skin | resveratrol | - as an antioxidant in the meat industry | Andrés et al. [238] |
Grape seeds | flavonoids | - antimicrobial activity in meat | Biniari et al. [239] |
Grape steam | procyanidins | - inhibition of toxic compounds | Bordiga et al. [240] |
Grape pulp | phenolic compounds | - pigment protection in meat | Chen et al. [241] |
Grape pomace | anthocyanins | - modulation of the sensory characteristic of meat | Crupi et al. [242] |
Grape pomace | stilbenes | - modulation of the sensory characteristic of meat | Mainente et al. [243] |
Grape seeds | Unsaturated fatty acids (linoleic and oleic acid) | - substitution nitrate and nitrite | Gárcia–Lomillo and González-San José [244] |
Name | Citrus Residues | MW [g mol−1] | CxHyOz | Concentration [mg/kg dm] | References |
---|---|---|---|---|---|
Total phenols | kinnow peel | 13,840–27,910 a,c | Yaqoob et al. [246] | ||
lime peel | 5.2 b | Karetha et al. [247] | |||
mandarin peel | 4.0 b | Karetha et al. [247] | |||
lemon peel | 4.7 b | Karetha et al. [247] | |||
pomelo peel | 6.4 b | Karetha et al. [247] | |||
rough lemon peel | 4.1 b | Karetha et al. [247] | |||
citron peel | 6.8 b | Karetha et al. [247] | |||
sour orange peel | 30.4–1354.4 a | Benayad et al. [248] | |||
lime and orange peel | 3860 | Barbosa et al. [249] | |||
orange peel | 7055–19,885 a | Liew et al. [250] | |||
orange seeds oil | 4430 | Jorge et al. [251] | |||
Total flavonoids | kinnow peel | 610–11,770 a | Yaqoob et al. [246] | ||
sour orange peel | 2.3–603.6 a | Benayad et al. [248] | |||
orange peel | 854.7–2975.4 a | Liew et al. [250] | |||
sour orange peel | 589.4 | Olfa et al. [252] | |||
lime peel | 95.3 | Olfa et al. [252] | |||
orange peel | 132.2 | Olfa et al. [252] | |||
lemon peel | 610.5 | Olfa et al. [252] | |||
mandarin peel | 275.9 | Olfa et al. [252] | |||
Total carotenoids | orange seeds oil | 19 | Jorge et al. [251] | ||
Organic acids | |||||
Lactic acid | orange peel | 90.08 | C3H6O3 | 5463–9861 a | Liew et al. [250] |
Citric acid | orange peel | 192.1 | C6H8O7 | 19,587–27,910 a | Liew et al. [250] |
L-mallic acid | orange peel | 134.1 | C4H6O5 | 3056–5064 a | Liew et al. [250] |
Kojic acid | orange peel | 141.1 | C6H6O4 | 111.2–116.4 a | Liew et al. [250] |
Ascorbic acid | orange peel | 176.1 | C6H8O6 | 1.12–7.32 a | Liew et al. [250] |
Phenolic acids—hydroxybenzoic acids | |||||
Ellagic acid | lime and orange peel | 302.20 | C14H6O8 | 109.7 | Barbosa et al. [249] |
Gallic acid | lime and orange peel sour orange peel orange peel | 170.12 | C7H6O5 | 5.7 111.3–866.7 a 8.84–17.81 a | Barbosa et al. [249] Benayad et al. [249] Liew et al. [250] |
Protocatechuic acid | orange peel | 154.12 | C7H6O4 | 24.55–65.92 a | Liew et al. [250] |
4-hydroxybenzoic acid | orange peel | 138.12 | C7H6O3 | 26.27–42.50 a | Liew et al. [250] |
Phenolic acids—hydroxycinnamic acids | |||||
Ferulic acid | sour orange peel orange peel yuzu peel sour orange peel mandarin peel lime peel grapefruit peel lemon peel orange peel | 194.18 | C10H10O4 | 360.0–17,237.7 a 154.8–477.3 a 135 139 101 18 29 18 19 | Benayad et al. [248] Liew et al. [250] Lee et al. [253] Lee et al. [253] Lee et al. [253] Lee et al. [253] Lee et al. [253] Lee et al. [253] Lee et al. [253] |
p-coumaric acid | sour orange peel yuzu peel sour orange peel mandarin peel lime peel grapefruit peel lemon peel orange peel | 164.16 | C9H8O3 | 242.4 101 123 52 76 16 48 18 | Benayad et al. [248] Lee et al. [253] Lee et al. [253] Lee et al. [253] Lee et al. [253] Lee et al. [253] Lee et al. [253] Lee et al. [253] |
Chlorogenic acid | mandarin peel sour orange peel yuzu peel sour orange peel mandarin peel | 354.31 | C16H18O9 | 0.08–68.58 a 4.494 39 96 40 | Šafranko et al. [254] Benayad et al. [248] Lee et al. [253] Lee et al. [253] Lee et al. [253] |
Caffeic acid | sour orange peel orange peel yuzu peel sour orange peel mandarin peel lime peel lemon peel | 180.16 | C9H8O4 | 384.0–1326.1 a 54.5–210.1 a 55 27 15 4 12 | Benayad et al. [248] Liew et al. [250] Lee et al. [253] Lee et al. [253] Lee et al. [253] Lee et al. [253] Lee et al. [253] |
Flavonoids—flavonols | |||||
Rutin | mandarin peel orange peel mandarin peel | 610.52 | C27H30O16 | 0.18–4.27 a 9.56–10.11 a 177 | Šafranko et al. [254] Liew et al. [250] Lee et al. [253] |
Flavonoids—flavanols | |||||
Catechin | sour orange peel orange peel | 290.26 | C15H14O6 | 378.3–1296 a 40.92–366.8 a | Benayad et al. [248] Liew et al. [250] |
Epigallocatechin | orange peel | 84.23–317.14 a | Liew et al. [250] | ||
Flavonoids-flavones | |||||
Apigenin | sour orange peel orange peel | 270.24 | C15H10O5 | 38,552.1 57.91–159.67 | Benayad et al. [248] Liew et al. [250] |
Diosmetin | lime and orange peel | 300.26 | C16H12O6 | 3.2 | Barbosa et al. [249] |
Vitexin | orange peel | 432.38 | C21H20O10 | 30.73–117.27 a | Liew et al. [250] |
Luteolin | orange peel | 286.24 | C15H10O6 | 93.47–275.14 a | Liew et al. [250] |
Tangeretin | lime and orange peel | 372.37 | C20H20O7 | 14.1 | Barbosa et al. [249] |
Flavonoids-flavanones | |||||
Naringenin | lime and orange peel sour orange peel | 272.25 | C15H12O5 | 4.7 5745.6–96,942 a | Barbosa et al. [249] Benayad et al. [248] |
Hesperetin | lime and orange peel | 302.28 | C16H14O6 | 10.5 | Barbosa et al. [249] |
Hesperidin | lime and orange peel mandarin peel yuzu peel mandarin peel lime peel lemon peel orange peel | 610.57 | C28H34O15 | 2326.5 0.16–15.07 a 5367 21,496 4862 6400 16,299 | Barbosa et al. [249] Šafranko et al. [254] Lee et al. [253] Lee et al. [253] Lee et al. [253] Lee et al. [253] Lee et al. [253] |
Naringin | lime and orange peel yuzu peel sour orange peel mandarin peel lime peel grapefruit peel lemon peel | 580.54 | C27H32O14 | 10.2 5255 19,750 146 36 31,314 41 | Barbosa et al. [249] Lee et al. [253] Lee et al. [253] Lee et al. [253] Lee et al. [253] Lee et al. [253] Lee et al. [253] |
Narirutin | lime and orange peel mandarin peel yuzu peel sour orange peel mandarin peel lime peel grapefruit peel lemon peel orange peel | 580.54 | C27H32O14 | 293.4 0.03–5.11 a 4734 64 10,642 559 2827 185 1342 | Barbosa et al. [249] Šafranko et al. [254] Lee et al. [253] Lee et al. [253] Lee et al. [253] Lee et al. [253] Lee et al. [253] Lee et al. [253] Lee et al. [253] |
Furanocumarins | |||||
Bergapten | sour orange peel lime peel lemon peel | 216.19 | C12H8O4 | 64 196 3 | Lee et al. [253] Lee et al. [253] Lee et al. [253] |
Bergamottin | lime peel grapefruit peel lemon peel | 338.40 | C21H22O4 | 81 25 16 | Lee et al. [253] Lee et al. [253] Lee et al. [253] |
Volatile compounds | |||||
Caprylaldehyde | sour orange peel | 128.21 | C8H16O | 180.5 b | Benayad et al. [248] |
Decanal | sour orange peel | 156.27 | C10H20O | 167.2 b | Benayad et al. [248] |
Decanol | sour orange peel | 158.28 | C10H22O | 129.8 b | Benayad et al. [248] |
Geranyl Acetate | sour orange peel | 196.29 | C12H20O2 | 172.7 b | Benayad et al. [248] |
D-limonene | sour orange peel | 136.24 | C10H16 | 3939.4 b | Benayad et al. [248] |
β-linalool | sour orange peel | 154.25 | C10H18O | 2038.7 b | Benayad et al. [248] |
Linalool oxide | sour orange peel | 170.25 | C10H18O2 | 282.0 b | Benayad et al. [248] |
Linalyl acetate | sour orange peel | 196.29 | C12H20O2 | 589.1 b | Benayad et al. [248] |
β-myrcene | sour orange peel | 136.23 | C10H16 | 1972.8 b | Benayad et al. [248] |
Nerol | sour orange peel | 154.25 | C10H18O | 106.2 b | Benayad et al. [248] |
β-ocimene | sour orange peel | 136.23 | C10H16 | 465.2 b | Benayad et al. [248] |
α-pinene | sour orange peel | 136.23 | C10H16 | 350.1 b | Benayad et al. [248] |
β-pinene | sour orange peel | 136.23 | C10H16 | 417.6 b | Benayad et al. [248] |
α-terpineol | sour orange peel | 154.25 | C10H18O | 389.5 b | Benayad et al. [248] |
Carotenoids | |||||
Violaxantin dilaurate | mandarin peel | 965.44 | C64H100O6 | 1.33 | Huang et al. [255] |
Violaxanthin dipalmitate | mandarin peel | 1077.7 | C72H116O6 | 2.07 | Huang et al. [255] |
Zeaxanthin | mandarin peel | 568.88 | C40H56O2 | 1.31 | Huang et al. [255] |
α-cryptoxanthin | mandarin peel | 552.85 | C40H56O | 0.10 | Huang et al. [255] |
β-cryptoxanthin | mandarin peel | 552.85 | C40H56O | 4.96 | Huang et al. [255] |
Lutein | kinnow peel mandarin peel | 568.87 | C40H56O2 | 9.26–28.89 a 0.88 | Saini et al. [256] Huang et al. [255] |
β-carotene | mandarin peel | 536.87 | C40H56 | 5.87 | Huang et al. [255] |
(E/Z)-phytoene | mandarin peel | 544.94 | C40H64 | 25.07 | Huang et al. [255] |
β-citraurin | mandarin peel | 432.6 | C30H40O2 | 1.57 | Huang et al. [255] |
Other compounds | |||||
α-tocopherol | orange seeds oil | 430.71 | C29H50O2 | 135.7 | Jorge et al. [251] |
phytosterol | orange seeds oil | 414.72 | C29H50O | 1304.2 | Jorge et al. [251] |
malic acid | sour orange peel | 134.09 | C4H6O5 | 122.4–2247 a | Benayad et al. [248] |
Material | Extract/Compound | Biological Activity/Application | References |
---|---|---|---|
sour orange peel | acetone extract chloroform extract ethanol-water extract naringenin gallic acid | - hypoglycaemic and antidiabetic actions - α-glucosidase inhibition - α-amylase inhibition | Benayad et al. [248] |
orange peel | ethanol and methanol extract | - antimicrobial activity against Xanthomonas, Bacillus subtilis, Azotobacter, Pseudomonas, Klebsiella | Gunwantrao et al. [267] |
pomelo peel | extract | - antimicrobial and antioxidants activity | Khan et al. [268] |
lemon peel | eriodictoyl, quercetin, and diosmetin | - antiviral activity against SARS-CoV-2 | Khan et al. [269] |
orange peel | extracts: methanol/water, ethanol/water and acetone/water | - antioxidant activity | Liew et al. [250] |
sour orange lime orange lemon mandarin | ethanol/water extracts | - antioxidant activity | Olfa et al. [252] |
kinnow peel and pomace | extract (supercritical CO2 extraction) | - antioxidant activity - for making functional cookies | Yaqoob et al. [246] |
citrus pomace (Persian lime and orange) | extract rich in aglycones of flavanones, mainly naringenin and hesperetin | - activity against Salmonella enterica subsp. enterica serovar Typhimurium | Barbosa et al. [265] |
lemon, orange andgrapefruit peel | essential oils (EOs) | - antifungal activity against Rhizoctonia solanii and Sclerotium rolfsii - insecticidal activity against Rhyzopertha dominica, Oryzaephilus sp., and Sitophilus granarius | Achimón et al. [270] |
mandarin peel | Extract rich in polyphenols, mainly narirutin and hesperidin | - inhibition of the growth of Aspergillus flavus | Liu et al. [271] |
citrus peel | nobiletin | - activity against pancreatic cancer through cell cycle arrest | Jiang et al. [272] |
citrus peel | nobiletin | - activity against prostate cancer thanks to its anti-inflammation properties | Ozkan et al. [273] |
mandarin peel | polymethoxyflavone-rich extract (PMFE) | - alleviating the metabolic syndrome by regulating the gut microbiome and amino acid metabolism | Zeng et al. [263] |
Mandarin peel | polymethoxyflavone-rich extract (PMFE) | - alleviating high-fat diet-induced hyperlipidemia | Gao et al. [262] |
Orange and lemon peel | Extract rich in flavanones | - reduction in glucose, cholesterol and triglycerides levels in the blood, with positive effects on the regulation of hyperglycemia and lipid metabolism | Chiechio et al. [264] |
Lime and orange peel | Extract rich in flavanones, mainly hesperetin, hesperidin, narirutin, and naringin | - antibacterial activity against Salmonella enterica | Barbosa et al. [265] |
Bitter orange peel | Extract rich in luteolin 7-O glucoside | - antioxidant activity - activity against gram-positive bacteria and Fusarium oxysporum | Lamine et al. [266] |
Mandarin peel | Extract rich in rutin | - activity against gram-negative bacteria and the three pathogenesis fungi: Bacillus subtilis, Candida albicans and Aspergillus flavus. | Lamine et al. [266] |
Orange peel | Extract rich in polymethoxyflavones | - antifungal activity against Aspergillus niger. | Lamine et al. [266] |
Pomegranate peel | Ethanolic and methanolic extract | - activity against gram-positive, gram-negative, and two fungal pathogenic strains - used as a natural food preserver | Hanafy et al. [274] |
Name | Olive Residue | MW [g mol−1] | CxHyOz | Concentration | References |
---|---|---|---|---|---|
Phenolic acids | |||||
Cinnamic acid | deffated olives | 148.16 | C9H8O2 | 2.3 a 12–205 b,c | Alu’datt et al. [281] Zhao et al. [282] |
p-coumaric acid | deffated olives olive pomace | 164.04 | C9H8O3 | 10.3 a 84–884 b,c 5.01 b | Alu’datt et al. [281] Zhao et al. [282] Benincasa et al. [283] |
o-coumaric acid | olive pomace | 164.04 | C9H8O3 | 70–1562 b,c | Zhao et al. [282] |
Caffeic acid | deffated olives leaves OMWW * olive pomace | 180.16 | C9H8O4 | 3.1 a 150 b 270 b 39–420 b,c | Alu’datt et al. [281] Ladhari et al. [284] Ladhari et al. [284] Zhao et al. [282] |
Protocatechuic acid | deffated olives | 154.12 | C7H6O4 | 22.2 a | Alu’datt et al. [281] |
Hydroxybenzoic acid | deffated olives | 138.12 | C7H6O3 | 4.2 a | Alu’datt et al. [281] |
Vanillic acid | deffated olives olive pomace | 168.14 | C8H8O4 | 9.0 a 203–2530 b,c | Alu’datt et al. [281] Zhao et al. [282] |
Ferulic acid | deffated olives olive pomace | 194.18 | C10H10O4 | 6.9 a 23–326 b,c | Alu’datt et al. [281] Zhao et al. [282] |
Gallic acid | deffated olives olive pomace | 170.12 | C7H6O5 | 7.1 a 7–223 b,c | Alu’datt et al. [281] Zhao et al. [282] |
Syringic acid | deffated olives | 198.17 | C9H10O5 | 4.1 a | Alu’datt et al. [281] |
Sinapic acid | deffated olives | 224.21 | C11H12O5 | 14.4 a | Alu’datt et al. [281] |
4-hydroxyphenyl acetic acid | olive pomace | 152.15 | C8H8O3 | 660–4450 b,c | Zhao et al. [282] |
Secoiridoids and derivatives | |||||
Oleuropein | leaves OMWW OMWW olive pomace | 540.54 | C25H32O13 | 13,050 b 9 b 103 b 811–12,231 b,c | Ladhari et al. [284] Benincasa et al. [283] Zhao et al. [282] |
Oleuropein aglycone | leaves OMWW | 378.4 | C19H22O8 | 3410 b 6 b | Ladhari et al. [284] |
Verbascoside | leaves OMWW OMSW ** olive pomace | 624.59 | C29H36O15 | 1160 b 6 b 5 b 833–10,159 b,c 700 b | Ladhari et al. [284] Zhao et al. [282] Benincasa et al. [283] |
Ligstroside | leaves OMWW OMSW | 524.51 | C25H32O12 | 360 b 21 b 56 b | Ladhari et al. [284] |
Tyrosol | leaves OMWW OMSW OMWW OMWW olive pomace | 138.16 | C8H10O2 | 450 b 1870 b 4 b 182 b 2043 b 162–3514 a,c | Ladhari et al. [284] Poerschmann et al. [285] Benincasa et al. [283] Zhao et al. [282] |
Hydroxytyrosol | leaves OMWW OMWW OMWW olive pomace | 154.16 | C8H10O3 | 130 b 4450 b 225 b 1481 b 1356–17,298 a,c | Ladhari et al. [284] Poerschmann et al. [285] Benincasa et al. [283] Zhao et al. [282] |
Flavonoids | |||||
Luteolin | leaves OMWW OMSW olive pomace OMWW | 286.24 | C15H10O6 | 2970 b 1010 b 4 b 10–3515 b,c 62.38 b | Ladhari et al. [284] Zhao et al. [282] Benincasa et al. [283] |
Luteolin 7-O-glucoside | leaves OMWW olive pomace | 448.37 | C21H20O11 | 7620 b 150 b 42–4086 b,c 88.55 b | Ladhari et al. [284] Zhao et al. [282] Benincasa et al. [283] |
Luteolin 7-O-rutinoside | 594.51 | C27H30O15 | |||
Luteolin 4′-O-glucoside | OMWW | 448.37 | C21H20O11 | 11.48 b | Benincasa et al. [283] |
Rutin | leaves OMWW deffated olives olive pomace | 610.52 | C27H30O16 | 110 b 110 b 3.3 a 770–11,048 b,c 48.52 b | Ladhari et al. [284] Alu’datt et al. [281] Uribe et al. [286] Zhao et al. [282] Benincasa et al. [283] |
Hesperidin | deffated olives | 610.56 | C28H34O15 | 7.4 a | Alu’datt et al. [281] |
Quercetin | leaves OMWW OMSW deffated olives | 302.24 | C15H10O7 | 4390 b 1060 b 37 b 5.7 a | Ladhari et al. [284] Alu’datt et al. [281] |
Apigenin | 270.24 | C15H10O5 | 7–469 b,c | Benincasa et al. [283] Zhao et al. [282] | |
Apigenin 7-O-glucoside | 432.38 | C21H20O10 | 55–1345 b,c | Zhao et al. [282] |
Material | Extract/Compound | Biological Activity/Application | References |
---|---|---|---|
olive leave | extract | - antioxidant, antimicrobial - antitumor activity - reduction of the risk of coronary heart disease | Taamalli et al. [288] |
OMWW * | phenolic extract | - antioxidant activity - DPPH radical-scavenging activity | Kreatsouli et al. [291] |
pressed olive cake | phenolic compounds | - superoxide anion scavenging - LDL oxidation - the protection of catalase against hypochlorous acid | Alu’datt et al. [281] |
Olive oil mill waste | SFE extract and ethanol extract (hydroxytyrosol as the main compound) | - antioxidant activity - DPPH radical-scavenging activity - application as an antioxidant act against peroxidation of virgin olive and sunflower oils | Lafka et al. [292] |
OMWW | polyphenolic fraction | - formulation of ophthalmic hydrogel containing a polyphenolic fraction | Di Mauro et al. [294] |
dried olive mill wastewater | polyphenols | - application as ingredients in the food industry for obtaining functional and nutraceutical foods, as well as in the pharmaceutical industry | Benincasa et al. [297] |
OMWW | polyphenol fraction | - antibacterial activities against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa | Obied et al. [298] |
- fungicidal activities | Yangui et al. [299] | ||
olive leaves and olive pomace | phenolic compounds | - ability as antimicrobial, antifungal, antitoxigenic to reduce aflatoxigenic fungi hazard and its aflatoxins - application as a manufacturing process, like, food supplement or preservatives | Abdel–Razek et al. [300] |
olive leaves | IR extract | - antiradical activity - antioxidant activity - inhibition of the growth of Aspergillus flavus and production of aflatoxin B1 - inhibition of 20 strains of Staphylococcus aureus | Abi–Khattar et al. [302] |
OMWW | hydroxytyrosol | cytoprotection of brain cell | Schaffer et al. [303] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oleszek, M.; Kowalska, I.; Bertuzzi, T.; Oleszek, W. Phytochemicals Derived from Agricultural Residues and Their Valuable Properties and Applications. Molecules 2023, 28, 342. https://doi.org/10.3390/molecules28010342
Oleszek M, Kowalska I, Bertuzzi T, Oleszek W. Phytochemicals Derived from Agricultural Residues and Their Valuable Properties and Applications. Molecules. 2023; 28(1):342. https://doi.org/10.3390/molecules28010342
Chicago/Turabian StyleOleszek, Marta, Iwona Kowalska, Terenzio Bertuzzi, and Wiesław Oleszek. 2023. "Phytochemicals Derived from Agricultural Residues and Their Valuable Properties and Applications" Molecules 28, no. 1: 342. https://doi.org/10.3390/molecules28010342
APA StyleOleszek, M., Kowalska, I., Bertuzzi, T., & Oleszek, W. (2023). Phytochemicals Derived from Agricultural Residues and Their Valuable Properties and Applications. Molecules, 28(1), 342. https://doi.org/10.3390/molecules28010342