Tannins-Based Extracts: Effects on Gut Chicken Spontaneous Contractility
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.2. Spontaneous Contractility
2.2.1. Duodenum
2.2.2. Caecum
2.2.3. Ileum
2.2.4. Colon
2.2.5. Gallbladder
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Chemical Analyses
4.3. “In Vitro” Studies
4.3.1. Animals
4.3.2. Spontaneous Contraction
5. Conclusions
- A better digestion and absorption of nutrients.
- The formation of stools of better consistency.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Cesare, A.; Sirri, F.; Manfreda, G.; Moniaci, P.; Giardini, A.; Zampiga, M.; Meluzzi, A. Effect of dietary supplementation with lactobacillus acidophilus D2/CSL (CECT 4529) on caecum microbioma and productive performance in broiler chickens. PLoS ONE 2017, 12, e0176309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CDC. Antibiotic Resistance Spreads in the Food Supply. Available online: https://www.cdc.gov/drugresistance/food.html (accessed on 18 October 2022).
- Radley-Gardner, O.; Beale, H.; Zimmermann, R. (Eds.) Fundamental Texts on European Private Law; Bloomsbury Publishing: London, UK, 2016; ISBN 978-1-78225-864-3. [Google Scholar]
- Budriesi, R.; Ioan, P.; Micucci, M.; Micucci, E.; Limongelli, V.; Chiarini, A. Stop fitan: Antispasmodic effect of natural extract of chestnut wood in guinea pig ileum and proximal colon smooth muscle. J. Med. Food 2010, 13, 1104–1110. [Google Scholar] [CrossRef]
- Micucci, M.; Ioan, P.; Aldini, R.; Cevenini, M.; Alvisi, V.; Ruffilli, C.; Chiarini, A.; Budriesi, R. Castanea sativa mill. extract contracts gallbladder and relaxes sphincter of Oddi in guinea pig: A natural approach to biliary tract motility disorders. J. Med. Food 2014, 17, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Chiarini, A.; Micucci, M.; Malaguti, M.; Budriesi, R.; Ioan, P.; Lenzi, M.; Fimognari, C.; Gallina Toschi, T.; Comandini, P.; Hrelia, S. Sweet chestnut (Castanea sativa mill.) bark extract: Cardiovascular activity and myocyte protection against oxidative damage. Oxidative Med. Cell Longev. 2013, 2013, 471790. [Google Scholar] [CrossRef] [Green Version]
- Micucci, M.; Budriesi, R.; Aldini, R.; Fato, R.; Bergamini, C.; Vivarelli, F.; Canistro, D.; Bolchi, C.; Chiarini, A.; Rizzardi, N.; et al. Castanea sativa mill. Bark extract cardiovascular effects in a rat model of high-fat diet. Phytother. Res. 2021, 35, 2145–2156. [Google Scholar] [CrossRef]
- Budriesi, R.; Vivarelli, F.; Canistro, D.; Aldini, R.; Babot Marquillas, C.; Corazza, I.; Fato, R.; Cirillo, S.; Bergamini, C.; D’Errico, A.; et al. Liver and intestinal protective effects of castanea sativa mill. bark extract in high-fat diet rats. PLoS ONE 2018, 13, e0201540. [Google Scholar] [CrossRef]
- Olsson, C.; Holmgren, S. Autonomic control of gut motility: A comparative view. Auton. Neurosci. 2011, 165, 80–101. [Google Scholar] [CrossRef]
- Reggi, S.; Giromini, C.; Dell’Anno, M.; Baldi, A.; Rebucci, R.; Rossi, L. In Vitro digestion of chestnut and quebracho tannin extracts: Antimicrobial effect, antioxidant capacity and cytomodulatory activity in swine intestinal IPEC-J2 cells. Animals 2020, 10, 195. [Google Scholar] [CrossRef] [Green Version]
- Redondo, E.A.; Redondo, L.M.; Bruzzone, O.A.; Diaz-Carrasco, J.M.; Cabral, C.; Garces, V.M.; Liñeiro, M.M.; Fernandez-Miyakawa, M.E. Effects of a blend of chestnut and quebracho tannins on gut health and performance of broiler chickens. PLoS ONE 2022, 17, e0254679. [Google Scholar] [CrossRef]
- Frankič, T.; Salobir, J. In Vivo antioxidant potential of sweet chestnut (Castanea sativa mill.) wood extract in young growing pigs exposed to n-3 PUFA-induced oxidative stress. J. Sci. Food Agric. 2011, 91, 1432–1439. [Google Scholar] [CrossRef] [PubMed]
- Pasch, H.; Pizzi, A. Considerations on the macromolecular structure of chestnut ellagitannins by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. J. Appl. Polym. Sci. 2002, 85, 429–437. [Google Scholar] [CrossRef]
- Radebe, N.; Rode, K.; Pizzi, A.; Giovando, S.; Pasch, H. MALDI-TOF-CID for the microstructure elucidation of polymeric hydrolysable tannins. J. Appl. Polym. Sci. 2013, 128, 97–107. [Google Scholar] [CrossRef]
- Pasch, H.; Pizzi, A.; Rode, K. MALDI–TOF mass spectrometry of polyflavonoid tannins. Polymer 2001, 42, 7531–7539. [Google Scholar] [CrossRef]
- Venter, P.B.; Senekal, N.D.; Amra-Jordaan, M.; Bonnet, S.L.; Van der Westhuizen, J.H. Analysis of commercial proanthocyanidins. Part 2: An electrospray mass spectrometry investigation into the chemical composition of sulfited quebracho (Schinopsis lorentzii and Schinopsis balansae) heartwood extract. Phytochemistry 2012, 78, 156–169. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.; Naveed, M.; BiBi, J.; Kamboh, A.A.; Arain, M.A.; Shah, Q.A.; Alagawany, M.; El-Hack, M.E.A.; Abdel-Latif, M.A.; Yatoo, M.I.; et al. The promising pharmacological effects and therapeutic/medicinal applications of punica granatum l. (pomegranate) as a functional food in humans and animals. Recent Pat. Inflamm. Allergy Drug Discov. 2018, 12, 24–38. [Google Scholar] [CrossRef]
- Bozkurt, M.; Giannenas, I.; Küçükyilmaz, K.; Christaki, E.; Florou-Paneri, P. An update on approaches to controlling coccidia in poultry using botanical extracts. Br. Poult. Sci. 2013, 54, 713–727. [Google Scholar] [CrossRef]
- Liu, H.S.; Mahfuz, S.U.; Wu, D.; Shang, Q.H.; Piao, X.S. Effect of chestnut wood extract on performance, meat quality, antioxidant status, immune function, and cholesterol metabolism in broilers. Poult. Sci. 2020, 99, 4488–4495. [Google Scholar] [CrossRef]
- Caprarulo, V.; Hejna, M.; Giromini, C.; Liu, Y.; Dell’Anno, M.; Sotira, S.; Reggi, S.; Sgoifo-Rossi, C.A.; Callegari, M.L.; Rossi, L. Evaluation of dietary administration of chestnut and quebracho tannins on growth, serum metabolites and fecal parameters of weaned piglets. Animals 2020, 10, E1945. [Google Scholar] [CrossRef] [PubMed]
- Minieri, S.; Buccioni, A.; Serra, A.; Galigani, I.; Pezzati, A.; Rapaccini, S.; Antongiovanni, M. Nutritional characteristics and quality of eggs from laying hens fed on a diet supplemented with chestnut tannin extract (Castanea sativa miller). Br. Poult. Sci. 2016, 57, 824–832. [Google Scholar] [CrossRef]
- Schiavone, A.; Guo, K.; Tassone, S.; Gasco, L.; Hernandez, E.; Denti, R.; Zoccarato, I. Effects of a natural extract of chestnut wood on digestibility, performance traits, and nitrogen balance of broiler chicks. Poult. Sci. 2008, 87, 521–527. [Google Scholar] [CrossRef]
- Cardullo, N.; Muccilli, V.; Cunsolo, V.; Tringali, C. Mass spectrometry and 1h-nmr study of schinopsis lorentzii (quebracho) tannins as a source of hypoglycemic and antioxidant principles. Molecules 2020, 25, 3257. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.C.; Vodovnik, M.; Min, B.R.; Pinchak, W.E.; Krueger, N.A.; Harvey, R.B.; Nisbet, D.J. Bactericidal effect of hydrolysable and condensed tannin extracts on Campylobacter jejuni in vitro. Folia Microbiol. 2012, 57, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Lupini, C.; Cecchinato, M.; Scagliarini, A.; Graziani, R.; Catelli, E. In vitro antiviral activity of chestnut and quebracho woods extracts against avian reovirus and metapneumovirus. Res. Veter. Sci. 2009, 87, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Casanova, N.A.; Redondo, L.M.; Redondo, E.A.; Joaquim, P.E.; Dominguez, J.E.; Fernández-Miyakawa, M.E.; Chacana, P.A. Efficacy of chestnut and quebracho wood extracts to control salmonella in poultry. J. Appl. Microbiol. 2021, 131, 135–145. [Google Scholar] [CrossRef]
- Redondo, L.; Chacana, P.; Dominguez, J.; Fernandez Miyakawa, M. Perspectives in the use of tannins as alternative to antimicrobial growth promoter factors in poultry. Front. Microbiol. 2014, 5, 118. [Google Scholar] [CrossRef] [Green Version]
- Díaz Carrasco, J.M.; Redondo, E.A.; Pin Viso, N.D.; Redondo, L.M.; Farber, M.D.; Fernández Miyakawa, M.E. Tannins and bacitracin differentially modulate gut microbiota of broiler chickens. BioMed Res. Int. 2018, 2018, e1879168. [Google Scholar] [CrossRef]
- Thumann, T.A.; Pferschy-Wenzig, E.-M.; Moissl-Eichinger, C.; Bauer, R. The role of gut microbiota for the activity of medicinal plants traditionally used in the european union for gastrointestinal disorders. J. Ethnopharmacol. 2019, 245, 112153. [Google Scholar] [CrossRef]
- Wu, S.-E.; Hashimoto-Hill, S.; Woo, V.; Eshleman, E.M.; Whitt, J.; Engleman, L.; Karns, R.; Denson, L.A.; Haslam, D.B.; Alenghat, T. Microbiota-derived metabolite promotes hdac3 activity in the gut. Nature 2020, 586, 108–112. [Google Scholar] [CrossRef]
- Kim, S.-H.; Jun, C.-D.; Suk, K.; Choi, B.-J.; Lim, H.; Park, S.; Lee, S.H.; Shin, H.-Y.; Kim, D.-K.; Shin, T.-Y. Gallic acid inhibits histamine release and pro-inflammatory cytokine production in mast cells. Toxicol. Sci. 2006, 91, 123–131. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, Y.; Tang, C.; Hou, Y.; Ai, X.; Chen, X.; Zhang, Y.; Wang, X.; Meng, X. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed. Pharmacother. 2021, 133, 110985. [Google Scholar] [CrossRef] [PubMed]
- Bolchi, C.; Bavo, F.; Appiani, R.; Roda, G.; Pallavicini, M. 1,4-Benzodioxane, an evergreen, versatile scaffold in medicinal chemistry: A review of its recent applications in drug design. Eur. J. Med. Chem. 2020, 200, 112419. [Google Scholar] [CrossRef] [PubMed]
- Luca, S.V.; Macovei, I.; Bujor, A.; Miron, A.; Skalicka-Woźniak, K.; Aprotosoaie, A.C.; Trifan, A. Bioactivity of dietary polyphenols: The role of metabolites. Crit. Rev. Food Sci. Nutr. 2020, 60, 626–659. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Banerjee, M.; Haribabu, B.; Jala, V.R. Urolithin a attenuates arsenic-induced gut barrier dysfunction. Arch. Toxicol. 2022, 96, 987–1007. [Google Scholar] [CrossRef]
- Ghosh, S.; Moorthy, B.; Haribabu, B.; Jala, V.R. Cytochrome P450 1A1 is essential for the microbial metabolite, urolithin a-mediated protection against colitis. Front. Immunol. 2022, 13, 1004603. [Google Scholar] [CrossRef]
- González-Sarrías, A.; Larrosa, M.; Tomás-Barberán, F.A.; Dolara, P.; Espín, J.C. NF-kappab-dependent anti-inflammatory activity of urolithins, gut microbiota ellagic acid-derived metabolites, in human colonic fibroblasts. Br. J. Nutr. 2010, 104, 503–512. [Google Scholar] [CrossRef] [Green Version]
- Xiao, H.-T.; Lin, C.-Y.; Ho, D.H.H.; Peng, J.; Chen, Y.; Tsang, S.-W.; Wong, M.; Zhang, X.-J.; Zhang, M.; Bian, Z.-X. Inhibitory effect of the gallotannin corilagin on dextran sulfate sodium-induced murine ulcerative colitis. J. Nat. Prod. 2013, 76, 2120–2125. [Google Scholar] [CrossRef]
- Shah, T.A.; Parikh, M.; Patel, K.V.; Patel, K.G.; Joshi, C.G.; Gandhi, T.R. Evaluation of the effect of punica granatum juice and punicalagin on NFκB modulation in inflammatory bowel disease. Mol. Cell Biochem. 2016, 419, 65–74. [Google Scholar] [CrossRef]
- Larrosa, M.; González-Sarrías, A.; Yáñez-Gascón, M.J.; Selma, M.V.; Azorín-Ortuño, M.; Toti, S.; Tomás-Barberán, F.; Dolara, P.; Espín, J.C. Anti-inflammatory properties of a pomegranate extract and its metabolite urolithin-a in a colitis rat model and the effect of colon inflammation on phenolic metabolism. J. Nutr. Biochem. 2010, 21, 717–725. [Google Scholar] [CrossRef]
- Küntzel, A. Die quantitative gerbstoffanalyse nacht dem filterverfahren. Das. Led. 1954, 5, S28–S31. [Google Scholar]
- Mattioli, L.B.; Frosini, M.; Amoroso, R.; Maccallini, C.; Chiano, E.; Aldini, R.; Urso, F.; Corazza, I.; Micucci, M.; Budriesi, R. Olea europea L. leaves and hibiscus sabdariffa L. petals extracts: Herbal mix from cardiovascular network target to gut motility dysfunction application. Nutrients 2022, 14, 463. [Google Scholar] [CrossRef] [PubMed]
- Raahave, D.; Jensen, A.K. Increased colon transit time and faecal load in irritable bowel syndrome. World J. Gastrointest. Pharmacol. Ther. 2021, 12, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Caprarulo, V.; Giromini, C.; Rossi, L. Review: Chestnut and quebracho tannins in pig nutrition: The effects on performance and intestinal health. Animal 2021, 15, 100064. [Google Scholar] [CrossRef] [PubMed]
Compound | Silvafeed ENC Castanea sativa Mill. | Silvafeed Q Schinopsis balansae Engl. | |
---|---|---|---|
Tannins | Hydrolysable | 76.70 | |
Condensed | 73.50 | ||
Non-tannins | 17.30 | 14.00 | |
Insoluble fraction | 0.90 | 6.00 | |
Crude fiber | <0.10 | 0.10 | |
Ash | 1.10 | 2.00 | |
Moisture | 5.10 | 6.50 |
Tannins Composition | ENC | Q |
---|---|---|
Gallic acid | 1–6% | 1–2% |
Ellagic acid | 1% | − |
Pentagalloyl glucose | 3% | − |
Castalin and vescalin | 6.6% | − |
Castalagin and vescalagin | ~ 30% | − |
Roburins | 20–24% | − |
Other major oligomers and glycosides | 20–40% | − |
Trigalloyl quinic acid | − | − |
Tetragalloyl quinic acid | − | − |
Pentagalloyl quinic acid | − | − |
Esagalloyl quinic acid | − | − |
Eptagalloyl quinic acid | − | − |
Fisetinidin and robinetinidin dimers | − | 9–11% |
Fisetinidin and robinetinidin trimer | − | 38–43% |
Fisetinidin and robinetinidin tetramer | − | 24–28% |
Fisetinidin and robinetinidin pentamer | − | 12–15% |
Fisetinidin and robinetinidin esamers | − | 9–12% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mattioli, L.B.; Corazza, I.; Micucci, M.; Pallavicini, M.; Budriesi, R. Tannins-Based Extracts: Effects on Gut Chicken Spontaneous Contractility. Molecules 2023, 28, 395. https://doi.org/10.3390/molecules28010395
Mattioli LB, Corazza I, Micucci M, Pallavicini M, Budriesi R. Tannins-Based Extracts: Effects on Gut Chicken Spontaneous Contractility. Molecules. 2023; 28(1):395. https://doi.org/10.3390/molecules28010395
Chicago/Turabian StyleMattioli, Laura Beatrice, Ivan Corazza, Matteo Micucci, Marco Pallavicini, and Roberta Budriesi. 2023. "Tannins-Based Extracts: Effects on Gut Chicken Spontaneous Contractility" Molecules 28, no. 1: 395. https://doi.org/10.3390/molecules28010395
APA StyleMattioli, L. B., Corazza, I., Micucci, M., Pallavicini, M., & Budriesi, R. (2023). Tannins-Based Extracts: Effects on Gut Chicken Spontaneous Contractility. Molecules, 28(1), 395. https://doi.org/10.3390/molecules28010395