Development of Pectinase Based Nanocatalyst by Immobilization of Pectinase on Magnetic Iron Oxide Nanoparticles Using Glutaraldehyde as Crosslinking Agent
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of Magnetic Iron Oxide Nanoparticles
2.2. Optimization of Immobilization Parameters of Pectinase on Magnetic Iron Nanoparticles
2.2.1. Effect of Crosslinking Concentration
2.2.2. Effect of Enzyme Concentration
2.2.3. Effect of Crosslinking Time
2.2.4. Effect of Immobilization Temperature
2.3. Characterization of Immobilized Pectinase Magnetic Iron Oxide Nanocarrier with Comparison of Free Pectinase
2.3.1. Effect of Time on the Catalytic Activity of Magnetic Iron Oxide Nanocarrier Immobilized and Free Pectinase
2.3.2. Effect of Temperature on the Catalytic Activity of Magnetic Iron Oxide Nanocarrier Immobilized and Free Pectinase
2.3.3. Effect of pH on the Catalytic Activity of Magnetic Iron Oxide Nanocarrier Immobilized and Free Pectinase
2.3.4. Thermal Stability of Magnetic Iron Oxide Nanocarrier Immobilized and Free Pectinase
2.3.5. Kinetic Parameters of Magnetic Iron Oxide Nanocarrier Immobilized and Free Pectinase
2.3.6. Reusability of Magnetic Iron Oxide Nanocarrier Immobilized Pectinase
3. Material and Methods
3.1. Material
3.2. Microorganism and Pectinase Production
3.3. Synthesis of Iron Oxide Nanoparticles
3.4. Scanning Electron Microscopy (SEM)
3.5. Energy Dispersive Electron Microscopy (EDEX)
3.6. Immobilization of Pectinase on Magnetic Iron Oxide Nanoparticles
3.7. Enzyme Assay
3.8. Determination of Total Protein
3.9. Optimization of Immobilization Parameters of Pectinase on Magnetic Iron Nanoparticles
3.9.1. Effect of Crosslinking Concentration
3.9.2. Effect of Enzyme Concentration
3.9.3. Effect of Crosslinking Time
3.9.4. Effect of Immobilization Temperature
3.10. Characterization of Immobilized Pectinase Magnetic Iron Oxide Nanocarrier with Comparison of Free Pectinase
3.10.1. Effect of Time on the Catalytic Activity of Magnetic Iron Oxide Nanocarrier Immobilized and Free Pectinase
3.10.2. Effect of Temperature on the Catalytic Activity of Magnetic Iron Oxide Nanocarrier Immobilized and Free Pectinase
3.10.3. Effect of pH on the Catalytic Activity of Magnetic Iron Oxide Nanocarrier Immobilized and Free Pectinase
3.10.4. Thermal Stability of Magnetic Iron Oxide Nanocarrier Immobilized and Free Pectinase
3.10.5. Kinetic Parameters of Magnetic Iron Oxide Nanocarrier Immobilized and Free Pectinase
3.10.6. Reusability of Magnetic Iron Oxide Nanocarrier Immobilized Pectinase
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaur, G.; Kumar, S.; Satyanarayana, T. Production, characterization and application of a thermostable polygalacturonase of a thermophilic mould Sporotrichum thermophile apinis. Bioresour. Technol. 2004, 94, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Hoondal, G.S.; Tiwari, R.P.; Tiwari, R.; Dahiya, N.; Beg, Q.K. Microbial alkaline pectinase and their industrial application. Appl. Microbiol. Biotechnol. 2002, 59, 409–418. [Google Scholar] [PubMed]
- Jayani, R.S.; Saxena, S.; Gupta, R. Microbial pectinolytic enzymes: A review. Process Biochem. 2005, 40, 2931–2944. [Google Scholar] [CrossRef]
- Rehman, H.U.; Aman, A.; Silipo, A.; Qader, S.A.U.; Molinaro, A.; Ansari, A. Degradation of complex carbohydrate: Immobilization of pectinase from Bacillus licheniformis KIBGE-IB21 using calcium alginate as a support. Food Chem. 2013, 139, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Rehman, H.U.; Aman, A.; Zohra, R.R.; Qader, S.A.U. Immobilization of pectin degrading enzyme from Bacillus licheniformis KIBGE IB-21 using agar-agar as a support. Carbohydr. Polym. 2014, 102, 622–626. [Google Scholar] [CrossRef] [PubMed]
- Rehman, H.U.; Nawaz, M.A.; Aman, A.; Baloch, A.H.; Qader, S.A.U. Immobilization of pectinase from Bacillus licheniformis KIBGE-IB21 on chitosan beads for continuous degradation of pectin polymers. Biocatal. Agri. Biotechnol. 2014, 3, 282–287. [Google Scholar] [CrossRef]
- Sheldon, R.A. Enzyme immobilization: The quest for optimum performance. Adv. Syn. Catal. 2007, 349, 1289–1307. [Google Scholar] [CrossRef]
- Rehman, H.; Baloch, A.H.; Nawaz, M.A. Pectinase: Immobilization and applications. A review. Trends Pept. Protein Sci. 2021, 6, 1–16. [Google Scholar]
- Lei, Z.; Bi, S. The silica-coated chitosan particle from a layer-by-layer approach for pectinase immobilization. Enzyme Microbial. Technol. 2007, 40, 1442–1447. [Google Scholar] [CrossRef]
- Li, T.; Li, S.; Wang, N.; Tain, L. Immobilization and stabilization of pectinase by multipoint attachment onto an activated agar-gel support. Food Chem. 2008, 109, 703–708. [Google Scholar] [CrossRef]
- Tischer, W.; Wedekind, F. Immobilized Enzymes: Methods and Applications. In Biocatalysis-from Discovery to Application; Topics in Current Chemistry; Springer: Berlin/Heidelberg, Germany, 1999; Volume 200, pp. 95–126. [Google Scholar]
- Rehman, H.U.; Nawaz, M.A.; Pervez, S.; Jamal, M.; Attaullah, M.; Aman, A.; Qader, S.A.U. Encapsulation of pectinase within polyacrylamide gel: Characterization of its catalytic properties for continuous industrial uses. Heliyon 2020, 6, e04578. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, Z.B.; Zhang, F.; Kharazmi, M.S.; Jafari, S.M. Nano-biocatalysts for food applications; immobilized enzymes within different nanostructures. Crit. Rev. Food Sci. Nutr. 2022, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Nie, M.; Li, Y.; Zhu, H.; Shi, G. Design of Composite Nanosupports and applications thereof in Enzyme Immobilization: A Review. Colloids Surf. B Biointerfaces 2022, 217, 112602. [Google Scholar] [CrossRef] [PubMed]
- Gkantzou, E.; Chatzikonstantinou, A.V.; Fotiadou, R.; Giannakopoulou, A.; Patila, M.; Stamatis, H. Trends in the development of innovative nanobiocatalysts and their application in biocatalytic transformations. Biotechnol. Adv. 2021, 51, 107738. [Google Scholar] [CrossRef]
- Basso, A.; Serban, S. Industrial applications of immobilized enzymes. A review. Mol. Catal. 2019, 479, 110607. [Google Scholar] [CrossRef]
- Vaghari, H.; Jafarizadeh-Malmiri, H.; Mohammadlou, M.; Berenjian, A.; Anarjan, N.; Jafari, N.; Nasiri, S. Application of magnetic nanoparticles in smart enzyme immobilization. Biotechnol. Lett. 2016, 38, 223–233. [Google Scholar] [CrossRef]
- Bilal, M.; Zhao, Y.; Rasheed, T.; Iqbal, H.M. Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review. Int. J. Biol. Macromol. 2018, 120, 2530–2544. [Google Scholar] [CrossRef]
- Schwaminger, S.P.; Fraga-García, P.; Eigenfeld, M.; Becker, T.M.; Berensmeier, S. Magnetic separation in bioprocessing beyond the analytical scale: From biotechnology to the food industry. Front. Bioeng. Biotechnol. 2019, 7, 233. [Google Scholar] [CrossRef]
- Esawy, M.A.; Gamal, A.A.; Kamel, Z.; Ismail, A.S.; Abdel-Fattah, A.F. Evaluation of free and immobilized Aspergillus niger NRC1ami pectinase applicable in industrial processes. Carbohydr. Polym. 2013, 92, 1463–1469. [Google Scholar] [CrossRef]
- Kara, F.; Demirel, G.; Tümtürk, H. Immobilization of urease by using chitosan-alginate and poly(acrylamide-co-acrylic acid)/kappa-carrageenan supports. Bioprocess Biosyst. Eng. 2006, 29, 207–211. [Google Scholar] [CrossRef]
- Bahrami, A.; Hejazi, P. Electrostatic immobilization of pectinase on negatively charged AOT-Fe3O4 nanoparticles. J. Mol. Catal. 2013, 93, 1–7. [Google Scholar] [CrossRef]
- Shah, P.; Sridevi, N.; Prabhune, A.; Ramaswamy, V. Structural features of penicillin acylase adsorption on APTES functionalized SBA-15. Microporous Mesoporous Mat. 2008, 116, 157–165. [Google Scholar] [CrossRef]
- Lineweaver, H.; Burk, D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 1934, 56, 658–666. [Google Scholar] [CrossRef]
- Seenuvasan, M.; Malar, C.G.; Preethi, S.; Balaji, N.; Iyyappan, J.; Kumar, M.A.; Kumar, K.S. Fabrication, characterization and application of pectin degrading Fe3O4-SiO2 nanobiocatalyst. Mater. Sci. Eng. C 2013, 33, 2273–2279. [Google Scholar] [CrossRef] [PubMed]
- Goradia, D.; Cooney, J.; Hodnett, B.K.; Magner, E. Characteristics of a mesoporous silicate immobilized trypsin bioreactor in organic media. Biotechnol. Progress 2006, 22, 1125–1131. [Google Scholar] [CrossRef]
- Chen, G.; Ma, Y.; Su, P.; Fang, B. Direct binding glucoamylase onto carboxyl-functioned magnetic nanoparticles. Biochem. Eng. J. 2012, 67, 120–125. [Google Scholar] [CrossRef]
- Ozmen, M.; Can, K.; Arslan, G.; Tor, A.; Cengeloglu, Y.; Ersoz, M. Adsorption of Cu(II) from aqueous solution by using modified Fe3O4 magnetic nano-particles. Desalination 2010, 254, 162–169. [Google Scholar] [CrossRef]
- Silva, M.C.; Torres, J.A.; Nogueira, F.G.E.; Tavares, T.S.; Corrêa, A.D.; Oliveira, L.C.A. Immobilization of soybean peroxidase on silica-coated magnetic particles: A magnetically recoverable biocatalyst for pollutant removal. RSC Adv. 2016, 87, 83856–83863. [Google Scholar] [CrossRef]
- Darwesh, O.M.; Matter, I.A.; Eida, M.F. Development of peroxidase enzyme immobilized magnetic nanoparticles for bioremediation of textile wastewater dye. J. Environ. Chem. Eng. 2019, 7, 102805. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analyt. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
Enzyme | Km (mg mL−1 min−1) | Vmax (µM min−1) |
---|---|---|
Free Pectinase | 1.017 | 23,800 |
Magnetic Iron Oxide Immobilized Pectinase | 1.024 | 22,600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behram, T.; Pervez, S.; Nawaz, M.A.; Ahmad, S.; Jan, A.U.; Rehman, H.U.; Ahmad, S.; Khan, N.M.; Khan, F.A. Development of Pectinase Based Nanocatalyst by Immobilization of Pectinase on Magnetic Iron Oxide Nanoparticles Using Glutaraldehyde as Crosslinking Agent. Molecules 2023, 28, 404. https://doi.org/10.3390/molecules28010404
Behram T, Pervez S, Nawaz MA, Ahmad S, Jan AU, Rehman HU, Ahmad S, Khan NM, Khan FA. Development of Pectinase Based Nanocatalyst by Immobilization of Pectinase on Magnetic Iron Oxide Nanoparticles Using Glutaraldehyde as Crosslinking Agent. Molecules. 2023; 28(1):404. https://doi.org/10.3390/molecules28010404
Chicago/Turabian StyleBehram, Tayyaba, Sidra Pervez, Muhammad Asif Nawaz, Shujaat Ahmad, Amin Ullah Jan, Haneef Ur Rehman, Shahbaz Ahmad, Nasir Mehmood Khan, and Farman Ali Khan. 2023. "Development of Pectinase Based Nanocatalyst by Immobilization of Pectinase on Magnetic Iron Oxide Nanoparticles Using Glutaraldehyde as Crosslinking Agent" Molecules 28, no. 1: 404. https://doi.org/10.3390/molecules28010404
APA StyleBehram, T., Pervez, S., Nawaz, M. A., Ahmad, S., Jan, A. U., Rehman, H. U., Ahmad, S., Khan, N. M., & Khan, F. A. (2023). Development of Pectinase Based Nanocatalyst by Immobilization of Pectinase on Magnetic Iron Oxide Nanoparticles Using Glutaraldehyde as Crosslinking Agent. Molecules, 28(1), 404. https://doi.org/10.3390/molecules28010404