Current Self-Healing Binders for Energetic Composite Material Applications
Abstract
:1. Introduction
2. Dynamic Covalent Bonds in Self-Healing ECMs
2.1. Diels–Alder Reaction
2.2. Disulfide Exchange Reaction
2.3. Dynamic Chemical Reactions of Other Covalent Bonds
3. Dynamic Non-Covalent Bonds in Self-Healing ECMs
3.1. Hydrogen Bonds
3.2. Metal–Ligand Coordination
3.3. Ionic Interaction
4. Challenges and Prospects
4.1. Introduction of Other Dynamic Chemical Methods
4.2. Strategic Combination of Non-Covalent Bonds and/or Dynamic Covalent Bonds
4.3. Chemical Compatibility Evaluation of Self-Healing Binders with High Energetic Crystals
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Liu, Y.F.; Shi, L.; Yang, W.; Yao, W.S. Study on the Synthesis and Interfacial Interaction Performance of Novel Dodecylamine-Based Bonding Agents Used for Composite Solid Propellants. Propellants Explos. Pyrotech. 2015, 40, 50–59. [Google Scholar] [CrossRef]
- Zhen, F.; Zhou, X.Y.; Zou, M.S.; Meng, L.C.; Yang, R.J.; Wang, L.Q.; Huang, F.L.; Li, J.M. Investigation of the agglomeration reduction mechanism of the aluminized HTPB propellant containing ferric perfluorooctanoate [Fe(PFO)3]. RSC Adv. 2019, 9, 19031–19038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, K.; Wu, Y.Q.; Duan, H.Z.; Huang, F.L. Sensitization and desensitization of PBXs stemming from microcrack and microvoid in responses to pressure-time loading. Appl. Phys. Lett. 2021, 119, 014102. [Google Scholar] [CrossRef]
- Zhu, M.S.Q.; Liu, J.; Gan, L.H.; Long, M.N. Research progress in bio-based self-healing materials. Eur. Polym. J. 2020, 129, 109651. [Google Scholar] [CrossRef]
- Xu, J.H.; Ding, C.D.; Chen, P.; Tan, L.H.; Chen, C.B.; Fu, J.J. Intrinsic self-healing polymers for advanced lithium-based batteries: Advances and strategies. Appl. Phys. Rev. 2020, 7, 031304. [Google Scholar] [CrossRef]
- Zhang, L.Z.; Liu, Z.H.; Wu, X.L.; Guan, Q.B.; Chen, S.; Sun, L.J.; Guo, Y.F.; Wang, S.L.; Song, J.C.; Jeffries, E.M.; et al. A Highly Efficient Self-Healing Elastomer with Unprecedented Mechanical Properties. Adv. Mater. 2019, 31, 1901402. [Google Scholar] [CrossRef]
- Urban, M.W.; Davydovich, D.; Yang, Y.; Demir, T.; Zhang, Y.Z.; Casabianca, L. Key-and-lock commodity self-healing copolymers. Science 2018, 362, 220–225. [Google Scholar] [CrossRef] [Green Version]
- Rottger, M.; Domenech, T.; Van der Weegen, R.; Nicolay, A.B.R.; Leibler, L. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science 2017, 356, 62–65. [Google Scholar] [CrossRef]
- Xu, C.Y.; Chen, Z.; Wang, C.X.; Chen, K.L. Fabrication of Dual Self-Healing Multifunctional Coating Based on Multicompartment Microcapsules. ACS Appl. Mater. Interfaces 2021, 13, 59298–59309. [Google Scholar] [CrossRef]
- Li, F.R.; Jiao, S.Z.; Sun, Z.C.; Liu, Y.Y.; Zhang, Q.Q.; Wen, J.Y.; Zhou, Y. Self-repairing microcapsules with aqueous solutions as core materials for conductive applications. Green Chem. 2021, 23, 927–934. [Google Scholar] [CrossRef]
- Li, Z.K.; Li, K.K.; Li, X.; Feng, Y.Y.; Li, H.Y.; Wang, H.Y. Preparation of linseed oil-loaded porous glass bubble/wax microcapsules for corrosion- and wear-resistant difunctional coatings. Chem. Eng. J. 2022, 437, 135403. [Google Scholar] [CrossRef]
- Postiglione, G.; Alberini, M.; Leigh, S.; Levi, M.; Turri, S. Effect of 3D-Printed Microvascular Network Design on the Self-Healing Behavior of Cross-Linked Polymers. ACS Appl. Mater. Interfaces 2017, 9, 14371–14378. [Google Scholar] [CrossRef]
- Li, P.; Liu, Y.; Zou, T.; Huang, J.Y. Optimal design of microvascular networks based on non-dominated sorting genetic algorithm II and fluid simulation. Adv. Mech. Eng. 2017, 9, 1–9. [Google Scholar] [CrossRef]
- Kato, Y.; Minakuchi, S.; Ogihara, S.; Takeda, N. Self-healing composites structure using multiple through-thickness microvascular channels. Adv. Compos. Mater. 2021, 30, 1–18. [Google Scholar] [CrossRef]
- Lee, M.W.; An, S.; Yoon, S.S.; Yarin, A.L. Advances in self-healing materials based on vascular networks with mechanical self-repair characteristics. Adv. Colloid Interface Sci. 2018, 252, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Wen, N.; Song, T.T.; Ji, Z.H.; Jiang, D.W.; Wu, Z.J.; Wang, Y.; Guo, Z.H. Recent advancements in self-healing materials: Mechanicals, performances and features. React. Funct. Polym. 2021, 168, 105041. [Google Scholar] [CrossRef]
- Lv, Z.; Yao, J.B.; Cui, G.J.; Chen, H.S. Geometrical probability of a capsule hitting irregular crack networks: Application to capsule-based self-healing materials. Appl. Math. Model. 2022, 101, 406–419. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, B.; Huang, Y.D. Interfacial self-healing performance of carbon fiber/epoxy based on postsynthetic modification of metal-organic frameworks. Compos. Sci. Technol. 2022, 227, 109564. [Google Scholar] [CrossRef]
- Orozco, F.; Kaveh, M.; Santosa, D.S.; Lima, G.M.R.; Gomes, D.R.; Pei, Y.T.; Araya-Hermosilla, R.; Moreno-Villoslada, I.; Picchioni, F.; Bose, R.K. Electroactive Self-Healing Shape Memory Polymer Composites Based on Diels-Alder Chemistry. ACS Appl. Polym. Mater. 2021, 3, 6147–6156. [Google Scholar] [CrossRef]
- Zhou, Q.; Sang, Z.; Rajagopalan, K.K.; Sliozberg, Y.; Gardea, F.; Sukhishvili, S.A. Thermodynamics and Stereochemistry of Diels-Alder Polymer Networks: Role of Crosslinker Flexibility and Crosslinking Density. Macromolecules 2021, 54, 10510–10519. [Google Scholar] [CrossRef]
- Chang, K.; Jia, H.; Gu, S.Y. A transparent, highly stretchable, self-healing polyurethane based on disulfide bonds. Eur. Polym. J. 2019, 112, 822–831. [Google Scholar] [CrossRef]
- Liu, M.C.; Zhong, J.; Li, Z.J.; Rong, J.C.; Yang, K.; Zhou, J.Y.; Shen, L.; Gao, F.; Huang, X.L.; He, H.F. A high stiffness and self-healable polyurethane based on disulfide bonds and hydrogen bonding. Eur. Polym. J. 2020, 124, 109475. [Google Scholar] [CrossRef]
- Zheng, T.; Zhou, Q.; Yang, T.; Zhao, Y.; Fan, B.; Bo, J.; Fan, L.S.; Peng, R.F. Disulfide bond containing self-healing fullerene derivatized polyurethane as additive for achieving efficient and stable perovskite solar cells. Carbon 2022, 196, 213–219. [Google Scholar] [CrossRef]
- Fu, D.H.; Pu, W.L.; Escorihuela, J.; Wang, X.R.; Wang, Z.H.; Chen, S.Y.; Sun, S.J.; Wang, S.; Zuilhof, H.; Xia, H.S. Acylsemicarbazide Moieties with Dynamic Reversibility and Multiple Hydrogen Bonding for Transparent, High Modulus, and Malleable Polymers. Macromolecules 2020, 53, 7914–7924. [Google Scholar] [CrossRef]
- Hua, J.C.; Liu, C.; Fei, B.; Liu, Z.F. Self-Healable and Super-Tough Double-Network Hydrogel Fibers from Dynamic Acylhydrazone Bonding and Supramolecular Interactions. Gels 2022, 8, 101. [Google Scholar] [CrossRef]
- Ren, J.Y.; Dong, X.B.; Duan, Y.J.; Lin, L.; Xu, X.W.; Shi, J.C.; Jia, R.P.; Wu, D.D.; He, X.Y. Synthesis and self-healing investigation of waterborne polyurethane based on reversible covalent bond. J. Appl. Polym. Sci. 2022, 139, 52144. [Google Scholar] [CrossRef]
- An, H.; Yang, Y.; Zhou, Z.W.; Bo, Y.Y.; Wang, Y.; He, Y.N.; Wang, D.; Qin, J.L. Pectin-based injectable and biodegradable self-healing hydrogels for enhanced synergistic anticancer therapy. Acta. Biomater. 2021, 131, 149–161. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, S.H.; Chuang, W.T.; Dai, N.T.; Hsu, S.H. Biomimetic Strain-Stiffening in Chitosan Self-Healing Hydrogels. ACS Appl. Mater. Interfaces 2022, 14, 16032–16046. [Google Scholar] [CrossRef]
- Chang, Y.; Sun, J.L.; Dong, L.; Jiao, F.H.; Chang, S.L.; Wang, Y.; Liao, J.; Shang, Y.Y.; Wu, W.W.; Qi, Y.; et al. Self-powered multi-color display based on stretchable self-healing alternating current electroluminescent devices. Nano Energy 2022, 95, 107061. [Google Scholar] [CrossRef]
- Gu, W.D.; Li, F.; Liu, T.; Gong, S.S.; Gao, Q.; Li, J.Z.; Fang, Z. Recyclable, Self-Healing Solid Polymer Electrolytes by Soy Protein-Based Dynamic Network. Adv. Sci. 2022, 9, 2103623. [Google Scholar] [CrossRef]
- Ji, F.; Li, J.H.; Zhang, G.P.; Lan, W.J.; Sun, R.; Wong, C.P. Alkaline monomer for mechanical enhanced and self-healing hydrogels based on dynamic borate ester bonds. Polymer 2019, 184, 121882. [Google Scholar] [CrossRef]
- Ma, J.Z.; Yang, Y.Z.; Valenzuela, C.; Zhang, X.; Wang, L.; Feng, W. Mechanochromic, Shape-Programmable and Self-Healable Cholesteric Liquid Crystal Elastomers Enabled by Dynamic Covalent Boronic Ester Bonds. Angew. Chem. Int. Ed. 2022, 61, e202116219. [Google Scholar]
- Li, S.B.; Zuo, C.; Zhang, Y.; Wang, J.R.; Gan, H.H.; Li, S.Q.; Yu, L.P.; Zhou, B.H.; Xue, Z.G. Covalently cross-linked polymer stabilized electrolytes with self-healing performance via boronic ester bonds. Polym. Chem. 2020, 11, 5893–5902. [Google Scholar] [CrossRef]
- Lyu, L.; Li, D.; Chen, Y.X.; Tian, Y.F.; Pei, J.Z. Dynamic chemistry based self-healing of asphalt modified by diselenide-crosslinked polyurethane elastomer. Constr. Build. Mater. 2021, 293, 123480. [Google Scholar] [CrossRef]
- Liu, X.H.; Song, X.; Chen, B.F.; Liu, J.M.; Feng, Z.Q.; Zhang, W.C.; Zeng, J.J.; Liang, L.Y. Self-healing and shape-memory epoxy thermosets based on dynamic diselenide bonds. React. Funct. Polym. 2022, 170, 105121. [Google Scholar] [CrossRef]
- Irigoyen, M.; Fernandez, A.; Ruiz, A.; Ruiperez, F.; Matxain, J.M. Diselenide Bonds as an Alternative to Outperform the Efficiency of Disulfides in Self-Healing Materials. J. Org. Chem. 2019, 84, 4200–4210. [Google Scholar] [CrossRef]
- Song, P.A.; Wang, H. High-Performance Polymeric Materials through Hydrogen-Bond Cross-Linking. Adv. Mater. 2020, 32, 1901244. [Google Scholar] [CrossRef]
- Kim, S.M.; Jeon, H.; Shin, S.H.; Park, S.A.; Jegal, J.; Hwang, S.Y.; Oh, D.X.; Park, J. Superior Toughness and Fast Self-Healing at Room Temperature Engineered by Transparent Elastomers. Adv. Mater. 2018, 30, 1705145. [Google Scholar] [CrossRef]
- Li, T.; Zheng, T.Z.; Guo, Z.X.; Xu, J.; Guo, B.H. A Well-defined Hierarchical Hydrogen Bonding Strategy to Polyureas with Simultaneously Improved Strength and Toughness. Chin. J. Polym. Sci. 2019, 37, 1257–1266. [Google Scholar] [CrossRef]
- Gong, Z.; Huang, J.R.; Cao, L.M.; Xu, C.H.; Chen, Y.K. Self-healing epoxidized natural rubber with ionic/coordination crosslinks. Mater. Chem. Phys. 2022, 285, 126063. [Google Scholar] [CrossRef]
- Charlet, A.; Lutz-Bueno, V.; Mezzenga, R.; Amstad, E. Shape retaining self-healing metal-coordinated hydrogels. Nanoscale 2021, 13, 4073–4084. [Google Scholar] [CrossRef] [PubMed]
- Pignanelli, J.; Qian, Z.Y.; Gu, X.D.; Ahamed, M.J.; Rondeau-Gagne, S. Modulating the thermomechanical properties and self-healing efficiency of siloxane-based soft polymers through metal-ligand coordination. New J. Chem. 2020, 44, 8977–8985. [Google Scholar] [CrossRef]
- Xuan, H.Y.; Ren, J.Y.; Zhang, J.H.; Ge, L.Q. Novel highly-flexible, acid-resistant and self-healing host-guest transparent multilayer films. Appl. Surf. Sci. 2017, 411, 303–314. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, D.Y.; Lu, F.; Yuan, W.H.; Xu, X.R.; Zhang, Q.; Liu, H.; Shao, Q.; Guo, Z.H.; Huang, Y.D. Multistimuli-Responsive Intrinsic Self-Healing Epoxy Resin Constructed by Host-Guest Interactions. Macromolecules 2018, 51, 5294–5303. [Google Scholar] [CrossRef]
- Sugane, K.; Maruoka, Y.; Shibata, M. Self-healing epoxy networks based on cyclodextrin-adamantane host-guest interactions. J. Polym. Res. 2021, 28, 423. [Google Scholar] [CrossRef]
- Wang, C.; Fadeev, M.; Vazquez-Gonzalez, M.; Willner, I. Stimuli-Responsive Donor-Acceptor and DNA-Crosslinked Hydrogels: Application as Shape-Memory and Self-Healing Materials. Adv. Funct. Mater. 2018, 28, 1803111. [Google Scholar] [CrossRef]
- Das, A.; Ghosh, S. Supramolecular Assemblies by Charge-Transfer Interactions between Donor and Acceptor Chromophores. Angew. Chem. Int. Ed. 2014, 53, 2038–2054. [Google Scholar] [CrossRef] [PubMed]
- Ying, W.B.; Wang, G.Y.; Kong, Z.Y.; Yao, C.K.; Wang, Y.B.; Hu, H.; Li, F.L.; Chen, C.; Tian, Y.; Zhang, J.W.; et al. A Biologically Muscle-Inspired Polyurethane with Super-Tough, Thermal Reparable and Self-Healing Capabilities for Stretchable Electronics. Adv. Funct. Mater. 2021, 31, 2009869. [Google Scholar] [CrossRef]
- Tamate, R.; Watanabe, M. Recent progress in self-healable ion gels. Sci. Technol. Adv. Mater. 2020, 21, 388–401. [Google Scholar] [CrossRef]
- Tamate, R.; Hashimoto, K.; Ueki, T.; Watanabe, M. Block copolymer self-assembly in ionic liquids. Phys. Chem. Chem. Phys. 2018, 20, 25123–25139. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Liu, L.B.; Pan, C.G.; Li, D. Review of recent achievements in self-healing conductive materials and their applications. J. Mater. Sci. 2018, 53, 27–46. [Google Scholar] [CrossRef]
- Thangavel, G.; Tan, M.W.M.; Lee, P.S. Advances in self-healing supramolecular soft materials and nanocomposites. Nano Converg. 2019, 6, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Lu, X.L.; Wang, Z.H.; Xia, H.S. Diels-Alder dynamic crosslinked polyurethane/polydopamine composites with NIR triggered self-healing function. Polym. Chem. 2018, 9, 2166–2172. [Google Scholar] [CrossRef]
- Zheng, K.W.; Tian, Y.Z.; Fan, M.J.; Zhang, J.Y.; Cheng, J. Recyclable, shape-memory, and self-healing soy oil-based polyurethane crosslinked by a thermoreversible Diels-Alder reaction. J. Appl. Polym. Sci. 2018, 135, 46049. [Google Scholar] [CrossRef]
- Mondal, P.; Behera, P.K.; Voit, B.; Bohme, F.; Singha, N.K. Tailor-Made Functional Polymethacrylates with Dual Characteristics of Self-Healing and Shape-Memory Based on Dynamic Covalent Chemistry. Macromol. Mater. Eng. 2020, 305, 2000142. [Google Scholar] [CrossRef]
- Cai, C.T.; Zhang, Y.; Li, M.; Chen, Y.; Zhang, R.C.; Wang, X.L.; Wu, Q.; Chen, T.H.; Sun, P.C. Multiple-responsive shape memory polyacrylonitrile/graphene nanocomposites with rapid self-healing and recycling properties. RSC Adv. 2018, 8, 1225–1231. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.Y.; Li, J.; Xia, M.; Li, G.P.; Luo, Y.J. Performance and Kinetics Study of Self-Repairing Hydroxyl-Terminated Polybutadiene Binders Based on the Diels-Alder Reaction. Polymers 2017, 9, 200. [Google Scholar] [CrossRef] [Green Version]
- Xia, M.; Zhang, Y.J.; Na, Q.; Guo, T.; Zhang, M.H.; Qi, Z.Y.; Liu, N.N.; Yang, F.Z.; Luo, Y.J.; Yang, W. Preparation and characterization of self-healing furan-terminated polybutadiene (FTPB) based on Diels-Alder reaction. RSC Adv. 2021, 11, 32369–32375. [Google Scholar] [CrossRef]
- Li, Y.B.; Yang, Z.J.; Zhang, J.H.; Ding, L.; Pan, L.P.; Huang, C.; Zheng, X.; Zeng, C.C.; Lin, C.M. Novel polyurethane with high self-healing efficiency for functional energetic composites. Polym. Test. 2019, 76, 82–89. [Google Scholar] [CrossRef]
- Banerjee, S.L.; Bhattacharya, K.; Samanta, S.; Singha, N.K. Self-Healable Antifouling Zwitterionic Hydrogel Based on Synergistic Phototriggered Dynamic Disulfide Metathesis Reaction and Ionic Interaction. ACS Appl. Mater. Interfaces 2018, 10, 27391–27406. [Google Scholar] [CrossRef]
- Kamada, J.; Koynov, K.; Corten, C.; Juhari, A.; Yoon, J.A.; Urban, M.W.; Balazs, A.C.; Matyjaszewski, K. Redox Responsive Behavior of Thiol/Disulfide-Functionalized Star Polymers Synthesized via Atom Transfer Radical Polymerization. Macromolecules 2010, 43, 4133–4139. [Google Scholar] [CrossRef]
- Wang, Z.J.; Tian, H.M.; He, Q.G.; Cai, S.Q. Reprogrammable, Reprocessible, and Self-Healable Liquid Crystal Elastomer with Exchangeable Disulfide Bonds. ACS Appl. Mater. Interfaces 2017, 9, 33119–33128. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Urban, M.W. Self-healing polymers. Nat. Rev. Mater. 2020, 5, 562–583. [Google Scholar] [CrossRef]
- Guo, H.S.; Han, Y.; Zhao, W.Q.; Yang, J.; Zhang, L. Universally autonomous self-healing elastomer with high stretchability. Nat. Commun. 2020, 11, 2037. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, S.; Dave, P.N. Solid propellants: AP/HTPB composite propellants. Arab. J. Chem. 2019, 12, 2061–2068. [Google Scholar] [CrossRef] [Green Version]
- Kalman, J.; Essel, J. Influence of Particle Size on the Combustion of CL-20/HTPB Propellants. Propellants Explos. Pyrotech. 2017, 42, 1261–1267. [Google Scholar] [CrossRef]
- Gui, D.Y.; Zong, Y.Y.; Ding, S.; Li, C.H.; Zhang, Q.L.; Wang, M.L.; Liu, J.H.; Chi, X.H.; Ma, X.G.; Pang, A.M. In-situ Characterization and Cure Kinetics in NEPE Propellant/HTPB Liner Interface by Microscopic FT-IR. Propellants Explos. Pyrotech. 2017, 42, 410–416. [Google Scholar] [CrossRef]
- Zhou, Q.C.; Ju, Y.T.; Wei, Z.; Han, B.; Zhou, C.S. Cohesive Zone Modeling of Propellant and Insulation Interface Debonding. J. Adhes. 2014, 90, 230–251. [Google Scholar] [CrossRef]
- Han, B.; Ju, Y.T.; Zhou, C.S. Simulation of crack propagation in HTPB propellant using cohesive zone model. Eng. Fail. Anal. 2012, 26, 304–317. [Google Scholar] [CrossRef]
- Tu, J.; Xu, H.; Liang, L.; Li, P.Y.; Guo, X.D. Preparation of high self-healing efficient crosslink HTPB adhesive for improving debonding of propellant interface. New J. Chem. 2020, 44, 19184–19191. [Google Scholar] [CrossRef]
- Li, Y.B.; Yang, Z.J.; Ding, L.; Pan, L.P.; Zhang, J.H.; Zheng, X.; Lin, C.M. Feasible self-healing CL-20 based PBX: Employing a novel polyurethane-urea containing disulfide bonds as polymer binder. React. Funct. Polym. 2019, 144, 104342. [Google Scholar] [CrossRef]
- Wu, Y.G.; Luo, Y.J.; Ge, Z. Properties and Application of a Novel Type of Glycidyl Azide Polymer (GAP)-Modified Nitrocellulose Powders. Propellants Explos. Pyrotech. 2015, 40, 67–73. [Google Scholar] [CrossRef]
- Xu, R.Q.; Li, Z.M.; Chen, Y.H.; Wang, Y.L.; Zhao, B.D. Synthesis, characterization, and properties of 1,2,8,9-tetraazido-4,6-dioxol-nonane: A promising multi-azido ether energetic plasticizer for glycidyl azide polymer. Dalton Trans. 2020, 49, 9016–9023. [Google Scholar] [CrossRef] [PubMed]
- Lysien, K.; Stolarczyk, A.; Jarosz, T. Solid Propellant Formulations: A Review of Recent Progress and Utilized Components. Materials 2021, 14, 6657. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Mao, X.D.; Li, Q.; Cao, X.; Zhang, J.W.; Wang, Y.B.; Liu, J.; He, W.D. One-step, safe and efficient preparation strategy of nitrate glycerol ether cellulose-based energetic composites with application potential in propellants. Compos. Commun. 2021, 28, 100956. [Google Scholar] [CrossRef]
- Mohan, Y.M.; Mani, Y.; Raju, K.M. Synthesis of azido polymers as potential energetic propellant binders. Des. Monomers Polym. 2006, 9, 201–236. [Google Scholar] [CrossRef]
- Sikder, A.K.; Reddy, S. Review on Energetic Thermoplastic Elastomers (ETPEs) for Military Science. Propellants Explos. Pyrotech. 2013, 38, 14–28. [Google Scholar] [CrossRef]
- Boopathi, S.K.; Hadjichristidis, N.; Gnanou, Y.; Feng, X.S. Direct access to poly(glycidyl azide) and its copolymers through anionic (co-)polymerization of glycidyl azide. Nat. Commun. 2019, 10, 293. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhang, T.F.; Zhang, Z.J.; Ge, Z.; Luo, Y.J. Effect of hard-segment content on rheological properties of glycidyl azide polyol-based energetic thermoplastic polyurethane elastomers. Polym. Bull. 2016, 73, 3095–3104. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Wang, G.; Wang, Z.; Zhang, Y.L.; Ge, Z.; Luo, Y.J. Synthesis and characterization of novel energetic thermoplastic elastomers based on glycidyl azide polymer (GAP) with bonding functions. Polym. Bull. 2015, 72, 1835–1847. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, G.P.; Wang, J.; Hao, Y.J.; Hao, G.Z.; Xiao, L.; Chen, J.Y.; Zhou, B.J.; Fu, J.J.; Jiang, W. Parthenocissus-inspired, strongly adhesive, efficiently self-healing polymers for energetic adhesive applications. J. Mater. Chem. A 2021, 9, 16076–16085. [Google Scholar] [CrossRef]
- Hu, Y.F.; Tang, G.; Luo, Y.J.; Chi, S.M.; Li, X.Y. Glycidyl azide polymer-based polyurethane vitrimers with disulfide chain extenders. Polym. Chem. 2021, 12, 4072–4082. [Google Scholar] [CrossRef]
- Ding, S.J.; Zhang, J.; Zhu, G.C.; Ren, X.; Zhou, L.; Luo, Y.J. Rationally Constructed Surface Energy and Dynamic Hard Domains Balance Mechanical Strength and Self-Healing Efficiency of Energetic Linear Polymer Materials. Langmuir 2021, 37, 8997–9008. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.J.; Zhu, G.C.; Zhao, S.; Wu, W.; Jin, P.; Jiao, Y.K.; Zhai, W.R.; Zhou, L.; Luo, Y.J. Simultaneously optimized healing efficiency and mechanical strength in polymer composites reinforced by ultrahigh loading fillers based on interfacial energy and dynamic disulfide bonds. Polymer 2022, 251, 124711. [Google Scholar] [CrossRef]
- Wang, S.; Fu, D.H.; Wang, X.R.; Pu, W.L.; Martone, A.; Lu, X.L.; Lavorgna, M.; Wang, Z.H.; Amendola, E.; Xia, H.S. High performance dynamic covalent crosslinked polyacylsemicarbazide composites with self-healing and recycling capabilities. J. Mater. Chem. A 2021, 9, 4055–4065. [Google Scholar] [CrossRef]
- Xia, J.H.; Li, T.Y.; Lu, C.J.; Xu, H.P. Selenium-Containing Polymers: Perspectives toward Diverse Applications in Both Adaptive and Biomedical Materials. Macromolecules 2018, 51, 7435–7455. [Google Scholar] [CrossRef]
- Ji, S.B.; Xia, J.H.; Xu, H.P. Dynamic Chemistry of Selenium: Se-N and Se-Se Dynamic Covalent Bonds in Polymeric Systems. ACS Macro Lett. 2016, 5, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Ji, S.B.; Cao, W.; Yu, Y.; Xu, H.P. Visible-Light-Induced Self-Healing Diselenide-Containing Polyurethane Elastomer. Adv. Mater. 2015, 27, 7740–7745. [Google Scholar] [CrossRef]
- Song, H.; Wang, Z.J.; He, X.D.; Duan, J. Self-healing of damage inside metals triggered by electropulsing stimuli. Sci. Rep. 2017, 7, 7097. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.H.; Lu, X.L.; Sun, S.J.; Yu, C.J.; Xia, H.S. Preparation, characterization and properties of intrinsic self-healing elastomers. J. Mater. Chem. B 2019, 7, 4876–4926. [Google Scholar] [CrossRef]
- Kang, J.S.; Kim, J.; Choi, K.; Hong, P.H.; Park, H.J.; Kim, K.; Kim, Y.K.; Moon, G.; Jeon, H.; Lee, S.Y.; et al. A water-triggered highly self-healable elastomer with enhanced mechanical properties achieved using localized zwitterionic assemblies. Chem. Eng. J. 2021, 420, 127636. [Google Scholar] [CrossRef]
- Chen, J.S.; Peng, Q.Y.; Thundat, T.; Zeng, H.B. Stretchable, Injectable, and Self-Healing Conductive Hydrogel Enabled by Multiple Hydrogen Bonding toward Wearable Electronics. Chem. Mater. 2019, 31, 4553–4563. [Google Scholar] [CrossRef]
- Chen, X.X.; Zhong, Q.Y.; Cui, C.H.; Ma, L.; Liu, S.; Zhang, Q.; Wu, Y.S.; An, L.; Cheng, Y.L.; Ye, S.B.; et al. Extremely Tough, Puncture-Resistant, Transparent, and Photoluminescent Polyurethane Elastomers for Crack Self-Diagnose and Healing Tracking. ACS Appl. Mater. Interfaces 2020, 12, 30847–30855. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.J.; Yang, Y.F.; Ying, H.Z.; Jing, X.L.; Wang, B.; Zhang, Y.F.; Cheng, J.J. Recyclable, Self-Healable, and Highly Malleable Poly(urethane-urea)s with Improved Thermal and Mechanical Performances. ACS Appl. Mater. Interfaces 2020, 12, 35403–35414. [Google Scholar] [CrossRef]
- Sun, H.; Lee, H.H.; Blakey, I.; Dargaville, B.; Chirila, T.V.; Whittaker, A.K.; Smith, S.C. Multiple Hydrogen-Bonded Complexes Based on 2-Ureido-4[1H]-pyrimidinone: A Theoretical Study. J. Phys. Chem. B 2011, 115, 11053–11062. [Google Scholar] [CrossRef]
- Xia, L.L.; Tu, H.J.; Zeng, W.; Yang, X.L.; Zhou, M.; Li, L.K.; Guo, X. A room-temperature self-healing elastomer with ultra-high strength and toughness fabricated via optimized hierarchical hydrogen-bonding interactions. J. Mater. Chem. A 2022, 10, 4344–4354. [Google Scholar] [CrossRef]
- Yanagisawa, Y.; Nan, Y.L.; Okuro, K.; Aida, T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 2018, 359, 72. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.H.; Chen, P.; Wu, J.W.; Hu, P.; Fu, Y.S.; Jiang, W.; Fu, J.J. Notch-Insensitive, Ultrastretchable, Efficient Self-Healing Supramolecular Polymers Constructed from Multiphase Active Hydrogen Bonds for Electronic Applications. Chem. Mater. 2019, 31, 7951–7961. [Google Scholar] [CrossRef]
- Wang, D.; Xu, J.H.; Chen, J.Y.; Hu, P.; Wang, Y.; Jiang, W.; Fu, J.J. Transparent, Mechanically Strong, Extremely Tough, Self-Recoverable, Healable Supramolecular Elastomers Facilely Fabricated via Dynamic Hard Domains Design for Multifunctional Applications. Adv. Funct. Mater. 2020, 30, 1907109. [Google Scholar] [CrossRef]
- Tu, J.; Xu, H.; Xiang, G.F.; Chen, L.; Li, P.Y.; Guo, X.D. Highly stretchable, high efficiency room temperature self-healing polyurethane adhesive based on hydrogen bonds—Applicable to solid rocket propellants. Polym. Chem. 2021, 12, 4532–4545. [Google Scholar]
- Ma, X.X.; Li, Y.X.; Hussain, I.; Shen, R.Q.; Yang, G.C.; Zhang, K.L. Core–Shell Structured Nanoenergetic Materials: Preparation and Fundamental Properties. Adv. Mater. 2020, 32, 2001291. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.W.M.; Thangavel, G.; Lee, P.S. Rugged Soft Robots using Tough, Stretchable, and Self-Healable Adhesive Elastomers. Adv. Funct. Mater. 2021, 31, 2103097. [Google Scholar] [CrossRef]
- Sijbesma, R.P.; Beijer, F.H.; Brunsveld, L.; Folmer, B.J.B.; Hirschberg, J.H.K.K.; Lange, R.F.M.; Lowe, J.K.L.; Meijer, E.W. Reversible Polymers Formed from Self-Complementary Monomers Using Quadruple Hydrogen Bonding. Science 1997, 278, 1601–1604. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.D.; Huang, J.R.; Fan, J.F.; Cao, L.M.; Xu, C.H.; Chen, Y.K. Strengthened, Self-Healing, and Conductive ENR-Based Composites Based on Multiple Hydrogen Bonding Interactions. ACS Sustain. Chem. Eng. 2020, 8, 13724–13733. [Google Scholar] [CrossRef]
- Li, Y.H.; Li, W.J.; Sun, A.L.; Jing, M.F.; Liu, X.J.; Wei, L.H.; Wu, K.; Fu, Q. A self-reinforcing and self-healing elastomer with high strength, unprecedented toughness and room-temperature reparability. Mater. Horiz. 2021, 8, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Q.; Zhu, Y.L.; Niu, W.W.; Yang, X.; Jiang, Z.Y.; Lu, Z.Y.; Liu, X.K.; Sun, J.Q. Healable and Recyclable Elastomers with Record-High Mechanical Robustness, Unprecedented Crack Tolerance, and Superhigh Elastic Restorability. Adv. Mater. 2021, 33, 2101498. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, X.; Yang, J.Q.; Chen, J.Y.; Sun, Z.; Cheng, Y.H.; Yang, L.; Wang, H.; Zhang, G.P.; Fu, J.J.; et al. A microscale regulation strategy for strong, tough, and efficiently self-healing energetic adhesives. Chem. Eng. J. 2023, 451, 138810. [Google Scholar] [CrossRef]
- McPherson, J.N.; Das, B.; Colbran, S.B. Tridentate pyridine-pyrrolide chelate ligands: An under-appreciated ligand set with an immensely promising coordination chemistry. Coord. Chem. Rev. 2018, 375, 285–332. [Google Scholar] [CrossRef]
- Ma, X.X.; Gu, S.; Li, Y.X.; Lu, J.; Yang, G.C.; Zhang, K.L. Additive-Free Energetic Film Based on Graphene Oxide and Nanoscale Energetic Coordination Polymer for Transient Microchip. Adv. Funct. Mater. 2021, 31, 2103199. [Google Scholar] [CrossRef]
- Li, C.H.; Zuo, J.L. Self-Healing Polymers Based on Coordination Bonds. Adv. Mater. 2020, 32, 1903762. [Google Scholar] [CrossRef]
- Lai, J.C.; Jia, X.Y.; Wang, D.P.; Deng, Y.B.; Zheng, P.; Li, C.H.; Zuo, J.L.; Bao, Z.N. Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers. Nat. Commun. 2019, 10, 1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, Y.F.; Huang, W.Y.; Huang, Q.P.; Zhang, A.Q. A novel polysiloxane elastomer based on reversible aluminum-carboxylate coordination. New J. Chem. 2019, 43, 261–268. [Google Scholar] [CrossRef]
- Yang, L.P.; Zhang, G.G.; Zheng, N.; Zhao, Q.; Xie, T. A Metallosupramolecular Shape-Memory Polymer with Gradient Thermal Plasticity. Angew. Chem. Int. Ed. 2017, 56, 12599–12602. [Google Scholar] [CrossRef] [PubMed]
- Andersen, A.; Chen, Y.Q.; Birkedal, H. Bioinspired Metal-Polyphenol Materials: Self-Healing and Beyond. Biomimetics 2019, 4, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Shen, Q.Q.; Zhang, L.J.; Gu, S.Y.; Peng, Y.; Wu, Q.; Xiong, H.; Zhang, H.; Zhao, L.J.; Huang, G.S.; et al. A fast-healing and high-performance metallosupramolecular elastomer based on pyridine-Cu coordination. Sci. China Mater. 2022, 65, 1943–1951. [Google Scholar] [CrossRef]
- Chen, Y.L.; Kushner, A.M.; Williams, G.A.; Guan, Z.B. Multiphase design of autonomic self-healing thermoplastic elastomers. Nat. Chem. 2012, 4, 467–472. [Google Scholar] [CrossRef]
- Sun, T.L.; Kurokawa, T.; Kuroda, S.; Bin Ihsan, A.; Akasaki, T.; Sato, K.; Haque, M.A.; Nakajima, T.; Gong, J.P. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 2013, 12, 932–937. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.N.; Chen, J.Y.; Zhang, G.P.; Xv, J.Q.; Xv, J.H.; Hu, Y.B.; Guo, H.; Guo, F.; Fu, J.J.; Jiang, W. Mechanically robust, highly adhesive and autonomously low-temperature self-healing elastomer fabricated based on dynamic metal-ligand interactions tailored for functional energetic composites. Chem. Eng. J. 2021, 425, 130665. [Google Scholar] [CrossRef]
- Zhang, W.R.; Jiang, H.Y.; Chang, Z.G.; Wu, W.; Wu, G.H.; Wu, R.M.; Li, J.Q. Recent achievements in self-healing materials based on ionic liquids: A review. J. Mater. Sci. 2020, 55, 13543–13558. [Google Scholar] [CrossRef]
- Amabilino, D.B.; Smith, D.K.; Steed, J.W. Supramolecular materials. Chem. Soc. Rev. 2017, 46, 2404–2420. [Google Scholar] [CrossRef]
- Whiteley, J.M.; Taynton, P.; Zhang, W.; Lee, S.H. Ultra-thin Solid-State Li-Ion Electrolyte Membrane Facilitated by a Self-Healing Polymer Matrix. Adv. Mater. 2015, 27, 6922–6927. [Google Scholar] [CrossRef] [PubMed]
- Aboudzadeh, M.A.; Shaplov, A.S.; Hernandez, G.; Vlasov, P.S.; Lozinskaya, E.I.; Pozo-Gonzalo, C.; Forsyth, M.; Vygodskii, Y.S.; Mecerreyes, D. Supramolecular ionic networks with superior thermal and transport properties based on novel delocalized di-anionic compounds. J. Mater. Chem. A 2015, 3, 2338–2343. [Google Scholar] [CrossRef]
- Zhao, Q.Y.; Liu, L. One-Step Conversion of Crab Shells to Levulinic Acid Catalyzed by Ionic Liquids: Self-Healing of Chitin Fraction. ACS Sustain. Chem. Eng. 2021, 9, 1762–1771. [Google Scholar] [CrossRef]
- Chen, S.P.; Zhang, N.X.; Zhang, B.H.; Zhang, B.; Song, J. Multifunctional Self-Healing lonogels from Supramolecular Assembly: Smart Conductive and Remarkable Lubricating Materials. ACS Appl. Mater. Interfaces 2018, 10, 44706–44715. [Google Scholar] [CrossRef] [PubMed]
- Nie, F.M.; Cui, J.; Zhou, Y.F.; Pan, L.; Ma, Z.; Li, Y.S. Molecular-Level Tuning toward Aggregation Dynamics of Self-Healing Materials. Macromolecules 2019, 52, 5289–5297. [Google Scholar] [CrossRef]
- Cao, Y.; Morrissey, T.G.; Acome, E.; Allec, S.I.; Wong, B.M.; Keplinger, C.; Wang, C. A Transparent, Self-Healing, Highly Stretchable Ionic Conductor. Adv. Mater. 2017, 29, 1605099. [Google Scholar] [CrossRef]
- Wang, H.F.; Wang, Z.Y.; Yang, J.; Xu, C.; Zhang, Q.; Peng, Z.C. Ionic Gels and Their Applications in Stretchable Electronics. Macromol. Rapid Commun. 2018, 39, 1800246. [Google Scholar] [CrossRef]
- Huang, X.; Huang, Z.; Lai, J.C.; Li, L.; Yang, G.C.; Li, C.H. Self-healing improves the stability and safety of polymer bonded explosives. Compos. Sci. Technol. 2018, 167, 346–354. [Google Scholar] [CrossRef]
- Sun, L.J.; Huang, H.F.; Ding, Q.Y.; Guo, Y.F.; Sun, W.; Wu, Z.C.; Qin, M.L.; Guan, Q.B.; You, Z.W. Highly Transparent, Stretchable, and Self-Healable Ionogel for Multifunctional Sensors, Triboelectric Nanogenerator, and Wearable Fibrous Electronics. Adv. Fiber Mater. 2022, 4, 98–107. [Google Scholar] [CrossRef]
- Ying, W.B.; Yu, Z.; Kim, D.H.; Lee, K.J.; Hu, H.; Liu, Y.W.; Kong, Z.Y.; Wang, K.; Shang, J.; Zhang, R.Y.; et al. Waterproof, Highly Tough, and Fast Self-Healing Polyurethane for Durable Electronic Skin. ACS Appl. Mater. Interfaces 2020, 12, 11072–11083. [Google Scholar] [CrossRef]
- Pramanik, B.; Ahmed, S.; Singha, N.; Das, B.K.; Dowari, P.; Das, D. Unorthodox Combination of Cation-pi and Charge-Transfer Interactions within a Donor-Acceptor Pair. Langmuir 2019, 35, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Kushner, A.M.; Vossler, J.D.; Williams, G.A.; Guan, Z.B. A Biomimetic Modular Polymer with Tough and Adaptive Properties. J. Am. Chem. Soc. 2009, 131, 8766–8768. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Y.; Davidson-Rozenfeld, G.; Vazquez-Gonzalez, M.; Fadeev, M.; Zhang, J.J.; Tian, H.; Willner, I. Multi-triggered Supramolecular DNA/Bipyridinium Dithienylethene Hydrogels Driven by Light, Redox, and Chemical Stimuli for Shape-Memory and Self-Healing Applications. J. Am. Chem. Soc. 2018, 140, 17691–17701. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.F.; Yang, L.; Zhang, L.Z.; Chen, S.; Sun, L.J.; Gu, S.J.; You, Z.W. A Dynamically Hybrid Crosslinked Elastomer for Room-Temperature Recyclable Flexible Electronic Devices. Adv. Funct. Mater. 2021, 31, 2106281. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Phan, D.N.; Nguyen, D.C.; Do, V.T.; Bach, L.G. The Chemical Compatibility and Adhesion of Energetic Materials with Several Polymers and Binders: An Experimental Study. Polymers 2018, 10, 1396. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.Y.; Zhou, X.L.; Lin, Q.H.; Lu, M. Compatibility study of NaN5 with traditional energetic materials and HTPB propellant components. J. Energ. Mater. 2020, 38, 445–454. [Google Scholar] [CrossRef]
- Bouma, R.H.B.; Griffiths, T.T.; Tuukkanen, I.M. The development of a future chemical compatibility standard for energetic materials. Thermochim. Acta 2019, 676, 13–19. [Google Scholar] [CrossRef]
- Song, W.K.; Zhai, H.; Ji, W.; Li, Y.Q.; Guo, C.P.; Wang, D.J.; Wang, R.H. Poly(aluminum chloride) shell-desensitized cyclotrimethylenetrinitramine explosive core. Mater. Chem. Phys. 2022, 276, 125335. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Lu, Z.; Zhou, X.; Sun, Z.; Hu, Y.; Zhang, T.; Wu, C.; Zhang, G.; Jiang, W. Current Self-Healing Binders for Energetic Composite Material Applications. Molecules 2023, 28, 428. https://doi.org/10.3390/molecules28010428
Yang J, Lu Z, Zhou X, Sun Z, Hu Y, Zhang T, Wu C, Zhang G, Jiang W. Current Self-Healing Binders for Energetic Composite Material Applications. Molecules. 2023; 28(1):428. https://doi.org/10.3390/molecules28010428
Chicago/Turabian StyleYang, Jing, Zhehong Lu, Xin Zhou, Zhe Sun, Yubing Hu, Tianfu Zhang, Chao Wu, Guangpu Zhang, and Wei Jiang. 2023. "Current Self-Healing Binders for Energetic Composite Material Applications" Molecules 28, no. 1: 428. https://doi.org/10.3390/molecules28010428
APA StyleYang, J., Lu, Z., Zhou, X., Sun, Z., Hu, Y., Zhang, T., Wu, C., Zhang, G., & Jiang, W. (2023). Current Self-Healing Binders for Energetic Composite Material Applications. Molecules, 28(1), 428. https://doi.org/10.3390/molecules28010428