Optimization of the Acid Cleavage of Proanthocyanidins and Other Polyphenols Extracted from Plant Matrices
Abstract
:1. Introduction
2. Results and Discussion
2.1. Assessment of the Effect of Alcohol on Cleavage
2.2. Optimization of Acid Cleavage by RSM
2.2.1. Multiple Linear Regression Analysis of the Experimental Data
2.2.2. Analysis of the Coefficients of Determination and Response Surface
2.2.3. Determination of Optimal Conditions and Model Validation
3. Materials and Methods
3.1. Crude Extracts from Plant Matrices
3.2. Determination of Total Polyphenol Content
3.3. Determination of Proanthocyanidin Content
3.4. Evaluation of Antioxidant Capacity
3.5. Determination of Astringency
3.6. Chromatographic Analysis
3.7. Acid Cleavage of Proanthocyanidins
3.7.1. Assessment of the Effect of Alcohol on Cleavage
3.7.2. Optimization of Acid Cleavage: Experimental Design
3.8. Statistical Analysis
3.9. Determination of Optimal Conditions and Model Validation for Acid Cleavage of Polyphenols
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Boudet, A.-M. Polyphenols: From plant adaptation to useful chemical resources. In Recent Advances in Polyphenol Research, 1st ed.; Cheynier, V., Sarni-Manchado, P., Quideau, S., Eds.; Wiley-Blackwell: Oxford, UK, 2012; Volume 3, pp. 41–70. [Google Scholar] [CrossRef]
- Zuiter, A.S. Proanthocyanidin: Chemistry and biology: From phenolic compounds to proanthocyanidins. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 1st ed.; Reedijk, J., Ed.; Elsevier: Cambridge, MA, USA, 2014; Volume 1, pp. 1–29. [Google Scholar] [CrossRef]
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Proanthocyanidins and hydrolysable tannins: Occurrence, dietary intake and pharmacological effects. Br. J. Pharmacol. 2017, 174, 1244–1262. Available online: http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc (accessed on 23 October 2022). [CrossRef] [PubMed] [Green Version]
- Shirmohammadli, Y.; Efhamisisi, D.; Pizzi, A. Tannins as a sustainable raw material for green chemistry: A review. Ind. Crops Prod. 2018, 126, 316–332. [Google Scholar] [CrossRef]
- He, M.; Tian, H.; Luo, X.; Qi, X.; Chen, X. Molecular progress in research on fruit astringency. Molecules 2015, 20, 1434–1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamczyk, B.; Simon, J.; Kitunen, V.; Adamczyk, S.; Smolander, A. Tannins and their complex interaction with different organic nitrogen compounds and enzymes: Old paradigms versus recent advances. ChemistryOpen 2017, 6, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, Y.; Li, D.; Ho, C.-T.; Li, J.; Wan, X. The absorption, distribution, metabolism and excretion of procyanidins. Food Funct. 2016, 7, 1273–1281. [Google Scholar] [CrossRef]
- Silva, E.M.; Souza, J.N.S.; Rogez, H.; Rees, J.F.; Larondelle, Y. Antioxidant activities and polyphenolic contents of fifteen selected plant species from the Amazonian region. Food Chem. 2007, 101, 1012–1018. [Google Scholar] [CrossRef]
- Port’s, P.S.; Chisté, R.C.; Godoy, H.T.; Prado, M.A. The phenolic compounds and the antioxidant potential of infusion of herbs from the Brazilian Amazonian region. Food Res. Int. 2013, 53, 875–881. [Google Scholar] [CrossRef]
- Faccin, H.; Loose, R.F.; Viana, C.; Lameira, O.A.; Carvalho, L.M. Determination of phenolic compounds in extracts of Amazonian medicinal plants by liquid chromatography-electrospray tandem mass spectrometry. Anal. Methods 2017, 9, 1141–1151. [Google Scholar] [CrossRef]
- Dias, A.L.S.; Rozet, E.; Chataigné, G.; Oliveira, A.C.; Rabelo, C.A.S.; Hubert, P.; Rogez, H.; Quetin-Leclercq, J. A rapid validated UHPLC–PDA method for anthocyanins quantification from Euterpe oleracea fruits. J. Chromatogr. 2012, 907, 108–116. [Google Scholar] [CrossRef]
- Guilhon-Simplicio, F.; Machado, T.M.; Nascimento, L.F.; Souza, R.S.; Koolen, H.H.F.; Silva, F.M.A.; Acho, L.D.R.; Santos, A.R.S.; Cos, P.; Pereira, M.M.; et al. Chemical composition and antioxidant, antinociceptive, and anti-inflammatory activities of four Amazonian Byrsonima species. Phytother. Res. 2017, 31, 1686–1693. [Google Scholar] [CrossRef]
- Yahia, E.M. Fruit and Vegetable Phytochemical: Chemistry and Human Health, 3rd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2017; pp. 221–268. Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9781119158042 (accessed on 23 October 2022).
- Nafisi-Movaghar, K.; Svanoe, T.T.; Seroy, W.A. Method for Extraction of Proanthocyanidins from Plant Material. U.S. Patent 5,912,363, 15 June 1999. [Google Scholar]
- Ariga, T.; Hosoyama, H.; Yuasa, K. Process for the Preparation of Proanthocyanidins. U.S. Patent 5,773,262, 30 June 1998. [Google Scholar]
- Howard, L.R.; White, B.L.; Prior, R.L. Process of Extracting Procyanidins by Alkaline Hydrolysis. U.S. Patent 8,337,909B2, 25 December 2012. [Google Scholar]
- Kennedy, J.A.; Jones, G.P. Analysis of proanthocyanidin cleavage products following acid-catalysis in the presence of excess phloroglucinol. J. Agric. Food Chem. 2001, 49, 1740–1746. [Google Scholar] [CrossRef] [PubMed]
- Rogez, H.; Castro, M.N.S.; Larondelle, Y. Processo de Extração e Purificação de Compostos Fenólicos de Inga edulis e Byrsonima crassifolia Através de Adsorção e Eluição Sobre Resina. Brazil Patent PI0823499-0, 15 December 2009. [Google Scholar]
- Serrano, J.; Puupponen-Pimiä, R.; Dauer, A.; Aura, A.M.; Saura-Calixto, F. Tannins: Current knowledge of food sources, intake, bioavailability and biological effects. Mol. Nutr. Food Res. 2009, 53, 310–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razmara, R.S.; Daneshfar, A.; Sahraei, R. Solubility of Quercetin in Water + Methanol and Water + Ethanol from (292.8 to 333.8) K. Chem. Eng. Data 2010, 55, 3934–3936. [Google Scholar] [CrossRef]
- Solomons, T.W.G.; Fryhle, C.B.; Snyder, S.A. Organic Chemistry, 12th ed.; Wiley: New York, NY, USA, 2016. [Google Scholar]
- Schofield, P.; Mbugua, D.M.; Pell, A.N. Analysis of condensed tannins: A review. Anim. Feed Sci. Technol. 2001, 91, 21–40. [Google Scholar] [CrossRef]
- Pompeu, D.R.; Silva, E.M.; Rogez, H. Optimization of the solvent extraction of phenolic antioxidants from fruits of Euterpe oleracea using Response Surface Methodology. Bioresour. Technol. 2009, 100, 6076–6082. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit. Rev. Food Sci. 2017, 57, 1874–1905. [Google Scholar] [CrossRef]
- Hemingway, R.W.; McGraw, G.W. Kinetics of Acid-Catalyzed Cleavage of Procyanidins. J. Wood Chem. Technol. 1983, 3, 421–435. [Google Scholar] [CrossRef]
- Fu, J.; Zhang, Y.; Lu, X. A Greener Process for Gallic Acid Production from Tannic Acid Hydrolysis with Hydrochloric Acid. Asian J. Chem. 2015, 27, 3328–3332. [Google Scholar] [CrossRef]
- Peleg, H.; Gacon, K.; Schlich, P.; Noble, A.C. Bitterness and astringency of flavan-3-ol monomers, dimers and trimers. J. Sci. Food Agric. 1999, 79, 1123–1128. [Google Scholar] [CrossRef]
- Ma, W.; Guo, A.; Zhang, Y.; Wang, H.; Liu, Y.; Li, H. A review on astringency and bitterness perception of tannins in wine. Trends Food Sci. Technol. 2014, 40, 6–19. [Google Scholar] [CrossRef]
- Spencer, J.P.E.; Chaudry, F.; Pannala, A.S.; Srai, S.K.; Debnam, E.; Rice-Evans, C. Decomposition of cocoa procyanidins in the gastric milieu. Biochem. Biophys. Res. Commun. 2000, 272, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, K.; Yoshioka, Y.; Terao, J. Role of Intestinal Microbiota in the Bioavailability and Physiological Functions of Dietary Polyphenols. Molecules 2019, 24, 370. [Google Scholar] [CrossRef] [Green Version]
- Silva, E.M.; Rogez, H.; Larondelle, Y. Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Sep. Purif. Technol. 2007, 55, 381–387. [Google Scholar] [CrossRef]
- Silva, E.M.; Pompeu, D.R.; Larondelle, Y.; Rogez, H. Optimization of the adsorption of polyphenols from Inga edulis leaves on macroporous resins using an experimental design methodology. Sep. Purif. Technol. 2007, 53, 274–280. [Google Scholar] [CrossRef]
- Silva, E.M.; Rogez, H.; Silva, I.Q.; Larondelle, Y. Improving the desorption of Inga edulis flavonoids from macroporous resin: Towards a new model to concentrate bioactive compounds. Food Bioprod. Process. 2013, 91, 558–564. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Method Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Julkunen-Tiitto, R. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. J. Agric. Food Chem. 1985, 33, 213–217. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Horne, J.; Hayes, J.; Lawless, H.T. Turbidity as a measure of salivary protein reactions with astringent substances. Chem. Senses 2002, 27, 653–659. [Google Scholar] [CrossRef] [Green Version]
- Souza, J.N.S.; Silva, E.M.; Silva, M.N.; Arruda, M.S.P.; Larondelle, Y.; Rogez, H. Identification and antioxidant activity of several flavonoids of Inga edulis leaves. J. Braz. Chem. Soc. 2007, 18, 1276. [Google Scholar] [CrossRef] [Green Version]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Raissi, S.; Farsani, R.E. Statistical process optimization through multi-response surface methodology. World Acad. Sci. Eng. Technol. (WASET) 2009, 27, 3–25. Available online: https://www.researchgate.net/publication/289199318_Statistical_process_optimization_Through_multi-response_surface_methodology?enrichId=rgreq-7df3de26f52302daf4cb683f78d5f0a0-XXX&enrichSource=Y292ZXJQYWdlOzI4OTE5OTMxODtBUzo1MjUwODY0MjEwNzM5MjBAMTUwMjIwMTc2Njg2OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf (accessed on 23 October 2022).
Alcohol (Type, %) | Reduction in Proanthocyanidins (%) | Total Polyphenols (mg GAE/g DE a) |
---|---|---|
- | 26.0 A,B | 241 A |
Methanol 30% | 25.2 A | 366 B |
Methanol 60% | 32.0 B,C | 367 B |
Ethanol 30% | 27.2 A,B | 405 B,C |
Ethanol 60% | 36.2 C | 436 C |
Assay | Experimental Conditions a | Reduction in Proanthocyanidins (%) | Reduction of Astringency (%) | TEAC/TP (μmol TE/g GAE b) | Cyanidin (mg g−1 Dry Extract) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HCl (N) | T (°C) | Time (min) | BC c | EO d | IE e | BC | EO | IE | BC | EO | IE | BC | EO | IE | |
1 | 1.00 (−1) | 65.00 (−1) | 90.00 (−1) | 32.04 | 36.18 | 2.04 | 81.70 | 33.68 | 10.50 | 2415 | 3207 | 3303 | 1.75 | 5.80 | 1.17 |
2 | 1.00 (−1) | 65.00 (−1) | 240.00 (+1) | 33.24 | 39.89 | 9.47 | 84.31 | 33.96 | 22.95 | 2767 | 3778 | 3088 | 5.15 | 13.44 | 1.74 |
3 | 1.00 (−1) | 90.00 (+1) | 90.00 (−1) | 63.78 | 80.25 | 58.95 | 81.51 | 22.04 | 25.45 | 1617 | 3759 | 3234 | 13.58 | 68.37 | 6.52 |
4 | 1.00 (−1) | 90.00 (+1) | 240.00 (+1) | 76.28 | 87.73 | 79.34 | 84.02 | 39.78 | 25.16 | 1679 | 2923 | 2571 | 11.70 | 71.86 | 5.65 |
5 | 3.00 (1) | 65.00 (−1) | 90.00 (−1) | 65.21 | 73.50 | 43.95 | 82.79 | 68.72 | 59.54 | 1300 | 3379 | 3436 | 9.65 | 31.80 | 3.84 |
6 | 3.00 (1) | 65.00 (−1) | 240.00 (+1) | 69.72 | 82.66 | 60.13 | 84.17 | 54.13 | 62.29 | 1143 | 4163 | 2681 | 10.32 | 87.84 | 2.47 |
7 | 3.00 (1) | 90.00 (+1) | 90.00 (−1) | 87.75 | 89.44 | 84.34 | 85.37 | 82.14 | 76.01 | 1461 | 4212 | 3643 | 12.93 | 115.98 | 5.42 |
8 | 3.00 (1) | 90.00 (+1) | 240.00 (+1) | 89.55 | 91.85 | 91.38 | 91.78 | 60.67 | 84.64 | 1444 | 4143 | 4462 | 13.46 | 104.33 | 5.24 |
9 | 0.32 (−1.68) | 77.50 (0) | 165.00 (0) | 29.85 | 40.70 | 5.33 | 84.75 | 0.14 | 2.85 | 2821 | 3602 | 3078 | 3.73 | 16.90 | 1.11 |
10 | 3.68 (+1.68) | 77.50 (0) | 165.00 (0) | 94.98 | 97.23 | 85.26 | 87.88 | 91.25 | 77.32 | 2866 | 4901 | 2720 | 10.92 | 108.50 | 2.84 |
11 | 2.00 (0) | 56.48 (−1.68) | 165.00 (0) | 48.26 | 50.73 | 16.51 | 85.59 | 3.24 | 43.59 | 2351 | 4711 | 2607 | 5.09 | 15.34 | 1.15 |
12 | 2.00 (0) | 98.52 (+1.68) | 165.00 (0) | 80.08 | 87.11 | 83.75 | 86.13 | 76.07 | 49.02 | 2344 | 6076 | 2349 | 15.53 | 104.68 | 8.91 |
13 | 2.00 (0) | 77.50 (0) | 38.87 (−1.68) | 62.11 | 70.64 | 38.22 | 83.89 | 39.31 | 44.05 | 2543 | 5480 | 2644 | 10.11 | 49.29 | 3.96 |
14 | 2.00 (0) | 77.50 (0) | 291.13 (+1.68) | 79.81 | 89.97 | 40.66 | 86.43 | 76.89 | 49.35 | 2946 | 5536 | 2508 | 11.81 | 95.03 | 4.38 |
15 | 2.00 (0) | 77.50 (0) | 165.00 (0) | 80.54 | 81.79 | 77.50 | 83.54 | 50.51 | 46.93 | 3412 | 3611 | 2600 | 13.54 | 94.08 | 4.81 |
16 | 2.00 (0) | 77.50 (0) | 165.00 (0) | 77.22 | 78.94 | 79.01 | 83.35 | 62.18 | 50.13 | 2584 | 5087 | 2460 | 13.88 | 95.86 | 5.50 |
17 | 2.00 (0) | 77.50 (0) | 165.00 (0) | 76.92 | 75.66 | 72.04 | 83.33 | 65.57 | 49.87 | 3412 | 4689 | 2604 | 16.95 | 101.72 | 4.74 |
18 | 2.00 (0) | 77.50 (0) | 165.00 (0) | 73.82 | 78.38 | 83.36 | 84.70 | 52.03 | 45.97 | 3801 | 5172 | 2571 | 12.68 | 89.89 | 6.50 |
Proanthocyanidins Reduction (%) | |||||||
---|---|---|---|---|---|---|---|
B. crassifolia | E. oleracea | I. edulis | |||||
Source | DF a | SS b | F c | SS | F | SS | F |
Model | 9 | 6420 | 873.3 * | 6008.5 | 949 * | 16,238.6 | 744 * |
Lack-of-fit | 5 | 258.8 | 6.9 NS | 177.6 | 4.1 NS | 799.6 | 7.3 NS |
Pure error | 3 | 22.6 | 19.0 | 65.48 | |||
R2 d | 0.9580 | 0.9682 | 0.9464 | ||||
Astringency Reduction (%) | |||||||
B. crassifolia | E. oleracea | I. edulis | |||||
Source | DF | SS | F | SS | F | SS | F |
Model | 9 | 78.9 | 185.2 * | 8729 | 158 * | 8204.3 | 1881 * |
Lack-of-fit | 5 | 17.5 | 6.3 NS | 2332.6 | 8.4 NS | 178.3 | 8.2 NS |
Pure error | 3 | 1.3 | 165.8 | 4.4 | |||
R2 | 0.8046 | 0.7770 | 0.9772 | ||||
TEAC/TP Ratio (μmol TE/g GAE e) | |||||||
B. crassifolia | E. oleracea | I. edulis | |||||
Source | DF | SS | F | SS | F | SS | F |
Model | 9 | 861,002 | 33 * | 5,360,140 | 10 NS | 3,033,826 | 37 * |
Lack-of-fit | 5 | 3,149,084 | 2.4 NS | 6,550,309 | 2.5 NS | 2,475,097 | 6.0 NS |
Pure error | 3 | 788,657 | 1,545,272 | 248,910 | |||
R2 | 0.6288 | 0.4045 | 0.4917 | ||||
Cyanidin content (mg/g Dry extract) | |||||||
B. crassifolia | E. oleracea | I. edulis | |||||
Source | DF | SS | F | SS | F | SS | F |
Model | 9 | 308.7 | 89 * | 25,038.8 | 1041.9 * | 74.6 | 111.3 * |
Lack-of-fit | 5 | 4.9 | 0.3 NS | 730.0 | 6.1 NS | 3.2 | 1 NS |
Pure error | 3 | 10.4 | 72.2 | 2 | |||
R2 | 0.9490 | 0.9674 | 0.9341 |
B. crassifolia | E. oleracea | I. edulis | ||||
---|---|---|---|---|---|---|
Model parameter | RC a | SE b | RC | SE | RC | SE |
Intersect | 77.14 *** | 1.37 | 78.7 *** | 1.26 | 77.6 *** | 2.33 |
HCl | 15.85 *** | 0.74 | 13.80 *** | 0.68 | 19.36 *** | 1.26 |
HCl2 | −5.3 ** | 0.77 | −3.40 * | 0.71 | −9.23 ** | 1.31 |
T | 12.50 *** | 0.74 | 13.05 *** | 0.68 | 22.81 *** | 1.26 |
T2 | −4.68 ** | 0.77 | −3.4 * | 0.71 | −7.5 * | 1.31 |
Time | 3.65 * | 0.74 | 4.04 ** | 0.68 | 4.04 * | 1.26 |
Time2 | −2.28 NS | 0.77 | 0.64 NS | 0.71 | −11.30 ** | 1.31 |
HCl × T | −4.05 * | 0.97 | −8.35 ** | 0.89 | −6.89 * | 1.65 |
HCl × Time | −0.92 NS | 0.97 | 0 NS | 0.89 | −0.57 NS | 1.65 |
T × Time | 1.07 NS | 0.97 | −0.37 NS | 0.89 | 0.48 NS | 1.65 |
B. crassifolia | E. oleracea | I. edulis | ||||
Model Parameter | RC | SE | RC | SE | RC | SE |
Intersect | 84 *** | 0.33 | 58.17 *** | 3.71 | 48.1 *** | 1.04 |
HCl | 1.31 ** | 0.18 | 21.19 ** | 2.01 | 23.70 *** | 0.56 |
HCl2 | 0.60 * | 0.18 | −3.86 NS | 2.09 | −2.51 * | 0.59 |
T | 0.78 * | 0.18 | 10.0 * | 2.01 | 4.77 ** | 0.56 |
T2 | 0.40 | 0.18 | −6.0 NS | 2.09 | −0.31 NS | 0.59 |
Time | 1.26 ** | 0.18 | 3.31 NS | 2.01 | 2.38 * | 0.56 |
Time2 | 0.2 NS | 0.18 | 0.65 NS | 2.09 | −0.17 NS | 0.59 |
HCl × T | 1.33 ** | 0.23 | 3.22 NS | 2.63 | 2.71 * | 0.74 |
HCl × Time | 0.33 NS | 0.23 | −6.76 NS | 2.63 | −0.01 NS | 0.74 |
T × Time | 0.62 NS | 0.23 | 1.32 NS | 2.63 | −0.86 NS | 0.74 |
B. crassifolia | E. oleracea | I. edulis | ||||
Model parameter | RC | SE | RC | SE | RC | SE |
Intersect | 14.24 *** | 0.93 | 95.41 *** | 2.45 | 5.37 *** | 0.41 |
HCl | 1.92 * | 0.50 | 24.44 *** | 1.33 | 0.35 NS | 0.22 |
HCl2 | −2.33 * | 0.52 | −11.68 ** | 1.38 | −1.12 * | 0.23 |
T | 3.10 ** | 0.50 | 27.27 *** | 1.33 | 1.95 ** | 0.22 |
T2 | −1.27 NS | 0.52 | −12.64 ** | 1.38 | −0.04 NS | 0.23 |
Time | 0.41 NS | 0.50 | 9.66 ** | 1.33 | −0.08 NS | 0.22 |
Time2 | −1 NS | 0.52 | −8.34 ** | 1.38 | −0.35 NS | 0.23 |
HCl × T | −1.50 NS | 0.66 | −2.60 NS | 1.73 | −0.61 NS | 0.29 |
HCl × Time | 0 NS | 0.66 | 4.22 NS | 1.73 | −0.16 NS | 0.29 |
T × Time | 0 NS | 0.66 | −9 * | 1.73 | −0.03 NS | 0.29 |
Response Variable | B. crassifolia | E. oleracea | I. edulis | |||
---|---|---|---|---|---|---|
Vpred a | Vexp b | Vpred | Vexp | Vpred | Vexp | |
Proanthocyanidin Reduction (%) | 91.5 ± 11.2 | 90.2 ± 2.1 | 90.7 ± 9.3 | 94.4 ± 1.0 | 95.7 ± 19.5 | 91.78 ± 3.2 |
Astringency Reduction (%) | 87.8 ± 3 | 79.3 ± 6.7 | 81.9 ± 33.2 | 77.2 ± 5.3 | 75.4 ± 9.2 | 77.8 ± 7.8 |
Cyanidin content (mg/g DE c) | 14.3 ± 2.6 | 11.1 ± 1.4 | 120 ± 18.8 | 110 ± 6.3 | 5.7 ± 1.5 | 8.4 ± 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, J.N.S.; Tolosa, T.; Teixeira, B.; Moura, F.; Silva, E.; Rogez, H. Optimization of the Acid Cleavage of Proanthocyanidins and Other Polyphenols Extracted from Plant Matrices. Molecules 2023, 28, 66. https://doi.org/10.3390/molecules28010066
Souza JNS, Tolosa T, Teixeira B, Moura F, Silva E, Rogez H. Optimization of the Acid Cleavage of Proanthocyanidins and Other Polyphenols Extracted from Plant Matrices. Molecules. 2023; 28(1):66. https://doi.org/10.3390/molecules28010066
Chicago/Turabian StyleSouza, Jesus N. S., Tatiana Tolosa, Bruno Teixeira, Fábio Moura, Evaldo Silva, and Hervé Rogez. 2023. "Optimization of the Acid Cleavage of Proanthocyanidins and Other Polyphenols Extracted from Plant Matrices" Molecules 28, no. 1: 66. https://doi.org/10.3390/molecules28010066
APA StyleSouza, J. N. S., Tolosa, T., Teixeira, B., Moura, F., Silva, E., & Rogez, H. (2023). Optimization of the Acid Cleavage of Proanthocyanidins and Other Polyphenols Extracted from Plant Matrices. Molecules, 28(1), 66. https://doi.org/10.3390/molecules28010066