Investigating the Mechanisms of Bisdemethoxycurcumin in Ulcerative Colitis: Network Pharmacology and Experimental Verification
Abstract
:1. Introduction
2. Results
2.1. Targets of BDMC and UC-Related Targets
2.2. Construction of BDMC-UC-Related PPI Network
2.3. Functional Enrichment Analysis
2.4. BDMC-Target-Pathway Network
2.5. Verification of BMDC-Target Interaction Interaction
2.6. Cytotoxic Effect of BDMC in RAW264.7 Cell
2.7. BDMC’s Effect on Inflammatory Cytokines in LPS-Induced RAW 264.7 Cells
2.8. BDMC Suppressed the Protein Levels of MAPK and PI3K/Akt Pathways in LPS-Induced RAW 264.7 Cells
3. Discussion
4. Materials and Methods
4.1. Targets Prediction for Bisdemethoxycurcumin
4.2. Collection of Ulcerative Colitis-Related Targets
4.3. Targets for BDMC in the Therapy of UC
4.4. Conducting Protein-Protein Interaction (PPI) Network
4.5. Function and Pathway Enrichment Analysis
4.6. Network Construction
4.7. Molecular Docking
4.8. Cytotoxicity Test
4.9. Quantitative Reverse Transcription-PCR
4.10. Western Blot Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kobayashi, T.; Siegmund, B.; Berre, C.L.; Wei, S.C.; Ferrante, M.; Shen, B.; Bernstein, C.N.; Danese, S.; Peyrin-Biroulet, L.; Hibi, T. Ulcerative colitis. Nat. Rev. Dis. Primers 2020, 6, 74. [Google Scholar] [CrossRef] [PubMed]
- Bopanna, S.; Ananthakrishnan, A.N.; Kedia, S.; Yajnik, V.; Ahuja, V. Risk of colorectal cancer in Asian patients with ulcerative colitis: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2017, 2, 269–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neurath, M. Current and emerging therapeutic targets for IBD. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 688. [Google Scholar] [CrossRef] [Green Version]
- Burger, D.; Travis, S. Conventional medical management of inflammatory bowel disease. Gastroenterology 2011, 140, 1827–1837 e2. [Google Scholar] [CrossRef] [Green Version]
- Kalaycıoğlu, Z.; Hashemi, P.; Günaydın, K.; Erim, F.B. The sensitive capillary electrophoretic-LIF method for simultaneous determination of curcuminoids in turmeric by enhancing fluorescence intensities of molecules upon inclusion into (2-hydroxypropyl)-beta-cyclodextrin. Electrophoresis 2015, 36, 2516–2521. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Han, H.; Shen, M.; Zhang, L.; Wang, T. Comparative Studies on the Antioxidant Profiles of Curcumin and Bisdemethoxycurcumin in Erythrocytes and Broiler Chickens. Animals 2019, 9, 953. [Google Scholar] [CrossRef] [Green Version]
- Basile, V.; Ferrari, E.; Lazzari, S.; Belluti, S.; Pignedoli, F.; Imbriano, C. Curcumin derivatives: Molecular basis of their anti-cancer activity. Biochem. Pharmacol. 2009, 78, 1305–1315. [Google Scholar] [CrossRef] [Green Version]
- Gouthamchandra, K.; Sudeep, H.V.; Chandrappa, S.; Raj, A.; Naveen, P.; Shyamaprasad, K. Efficacy of a Standardized Turmeric Extract Comprised of 70% Bisdemothoxy-Curcumin (REVERC3) Against LPS-Induced Inflammation in RAW264.7 Cells and Carrageenan-Induced Paw Edema. J. Inflamm. Res. 2021, 14, 14859–14868. [Google Scholar] [CrossRef]
- Wei, J.X.; Luo, Y.; Xu, Y.; Xiao, J.H. Osteoinductive activity of bisdemethoxycurcumin and its synergistic protective effect with human amniotic mesenchymal stem cells against ovariectomy-induced osteoporosis mouse model. Biomed. Pharmacother. 2022, 146, 146112605. [Google Scholar] [CrossRef]
- Kalaycioglu, Z.; Gazioglu, I.; Erim, F.B. Comparison of antioxidant, anticholinesterase, and antidiabetic activities of three curcuminoids isolated from Curcuma longa L. Nat. Prod. Res. 2017, 31, 2914–2917. [Google Scholar] [CrossRef]
- Liu, C.S.; Xia, T.; Luo, Z.Y.; Wu, Y.Y.; Hu, Y.N.; Chen, F.L.; Tang, Q.F.; Tan, X.M. Network pharmacology and pharmacokinetics integrated strategy to investigate the pharmacological mechanism of Xianglian pill on ulcerative colitis. Phytomedicine 2021, 82, 82153458. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Lin, T.; Liao, X.; Li, Z.; Lin, R.; Qi, X.; Chen, G.; Sun, L.; Lin, L. Network pharmacologybased research into the effect and mechanism of Yinchenhao Decoction against Cholangiocarcinoma. Chin. Med. 2021, 16, 13. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.M., Jr. The AKT genes and their roles in various disorders. Am. J. Med. Genet. A 2013, 161, 2931–2937. [Google Scholar] [CrossRef]
- Brazil, D.P.; Hemmings, B.A. Ten years of protein kinase B signalling a hard Akt to follow. Trends Biochem. Sci. 2001, 26, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chen, H.; He, Q.; Luo, Y.; He, A.; Tao, A.; Yan, J. Fibrinogen/AKT/Microfilament Axis Promotes Colitis by Enhancing Vascular Permeability. Cell. Mol. Gastroenterol. Hepatol. 2021, 11, 683–696. [Google Scholar] [CrossRef]
- Liu, X.; Fan, Y.; Du, L.; Mei, Z.; Fu, Y. In Silico and In Vivo Studies on the Mechanisms of Chinese Medicine Formula (Gegen Qinlian Decoction) in the Treatment of Ulcerative Colitis. Front. Pharmacol. 2021, 12, 12665102. [Google Scholar] [CrossRef]
- Kao, C.C.; Cheng, Y.C.; Yang, M.H.; Cha, T.L.; Sun, G.H.; Ho, C.T.; Lin, Y.C.; Wang, H.K.; Wu, S.T.; Way, T.D. Demethoxycurcumin induces apoptosis in HER2 overexpressing bladder cancer cells through degradation of HER2 and inhibiting the PI3K/Akt pathway. Environ. Toxicol. 2021, 36, 2186–2195. [Google Scholar] [CrossRef]
- Chen, C.J.; Shang, H.S.; Huang, Y.L.; Tien, N.; Chen, Y.L.; Hsu, S.Y.; Wu, R.S.; Tang, C.L.; Lien, J.C.; Lee, M.H.; et al. Bisdemethoxycurcumin suppresses human brain glioblastoma multiforme GBM 8401 cell migration and invasion via affecting NF-kappaB and MMP-2 and MMP-9 signaling pathway in vitro. Environ. Toxicol. 2022, 37, 2388–2397. [Google Scholar] [CrossRef]
- Lin, C.Y.; Hung, C.C.; Wang, C.C.; Lin, H.Y.; Huang, S.H.; Sheu, M.J. Demethoxycurcumin sensitizes the response of non-small cell lung cancer to cisplatin through downregulation of TP and ERCC1-related pathways. Phytomedicine 2019, 53, 5328–5336. [Google Scholar] [CrossRef]
- Zhao, X.; Kang, B.; Lu, C.; Liu, S.; Wang, H.; Yang, X.; Chen, Y.; Jiang, B.; Zhang, J.; Lu, Y.; et al. Evaluation of p38 MAPK pathway as a molecular signature in ulcerative colitis. J. Proteome Res. 2011, 10, 2216–2225. [Google Scholar] [CrossRef]
- Fan, H.; Gao, Z.; Ji, K.; Li, X.; Wu, J.; Liu, Y.; Wang, X.; Liang, H.; Liu, Y.; Li, X.; et al. The in vitro and in vivo anti-inflammatory effect of osthole, the major natural coumarin from Cnidium monnieri (L.) Cuss, via the blocking of the activation of the NF-kappaB and MAPK/p38 pathways. Phytomedicine 2019, 58, 58152864. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Wang, B.; Liu, J.; Ma, F.; Luo, D.; Zheng, Z.; Lu, Q.; Zhou, W.; Zheng, Y.; Zhang, C.; et al. Ginsenoside RG1 enhances the paracrine effects of bone marrow derived mesenchymal stem cells on radiation induced intestinal injury. Aging 2021, 13, 1132–1152. [Google Scholar] [CrossRef] [PubMed]
Ligands | Receptors | PDB | Binding Affinity |
---|---|---|---|
BDMC | SRC | 7NG7 | −8.7 kcal/mol |
BDMC | EGFR | 1M14 | −7.5 kcal/mol |
BDMC | AKT1 | 7NH4 | −9.2 kcal/mol |
BDMC | PI3KR1 | 5M6U | −8.4 kcal/mol |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Tu, S.; Zhuo, Z.; Jiang, R.; Zeng, R.; Yang, Q.; Lian, Q.; Sha, W.; Chen, H. Investigating the Mechanisms of Bisdemethoxycurcumin in Ulcerative Colitis: Network Pharmacology and Experimental Verification. Molecules 2023, 28, 68. https://doi.org/10.3390/molecules28010068
Wu H, Tu S, Zhuo Z, Jiang R, Zeng R, Yang Q, Lian Q, Sha W, Chen H. Investigating the Mechanisms of Bisdemethoxycurcumin in Ulcerative Colitis: Network Pharmacology and Experimental Verification. Molecules. 2023; 28(1):68. https://doi.org/10.3390/molecules28010068
Chicago/Turabian StyleWu, Huihuan, Sha Tu, Zewei Zhuo, Rui Jiang, Ruijie Zeng, Qi Yang, Qizhou Lian, Weihong Sha, and Hao Chen. 2023. "Investigating the Mechanisms of Bisdemethoxycurcumin in Ulcerative Colitis: Network Pharmacology and Experimental Verification" Molecules 28, no. 1: 68. https://doi.org/10.3390/molecules28010068
APA StyleWu, H., Tu, S., Zhuo, Z., Jiang, R., Zeng, R., Yang, Q., Lian, Q., Sha, W., & Chen, H. (2023). Investigating the Mechanisms of Bisdemethoxycurcumin in Ulcerative Colitis: Network Pharmacology and Experimental Verification. Molecules, 28(1), 68. https://doi.org/10.3390/molecules28010068