GC-MS and LC-DAD-MS Phytochemical Profiling for Characterization of Three Native Salvia Taxa from Eastern Mediterranean with Antiglycation Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC-MS Analysis of Petroleum Ether Extracts for Volatile Profiling
2.2. LC Profiling and Determination of Polar Phenolic and Diterpene Metabolites in Hydroalcoholic Extracts
2.3. Multivariate Analysis
2.4. Antiglycation Studies
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Material
3.3. Extraction
3.4. Gas Chromatography-Mass Spectrometry (GC-MS)
3.5. Ultra-High Performance Liquid Chromatography–Diode Array Detector–Mass Spectrometry (UHPLC-DAD-ESI-MS)
3.6. Anti-Glycation Activity Determination Assay
3.7. Multivariate Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Will, M.; Claßen-Bockhoff, R. Time to Split Salvia s.l. (Lamiaceae)—New Insights from Old World Salvia Phylogeny. Mol. Phylogenetics Evol. 2017, 109, 33–58. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Wang, H.; Hu, X.; Sun, Z.; Han, C. The Pharmacological Properties of Salvia Essential Oils. J. Appl. Pharm. Sci. 2013, 3, 122–127. [Google Scholar]
- Nikolova, M.; Aneva, I. European Species of Genus Salvia: Distribution, Chemodiversity and Biological Activity. In Salvia Biotechnology; Georgiev, V., Pavlov, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–30. ISBN 978-3-319-73899-4. [Google Scholar]
- Wu, Y.-B.; Ni, Z.-Y.; Shi, Q.-W.; Dong, M.; Kiyota, H.; Gu, Y.-C.; Cong, B. Constituents from Salvia Species and Their Biological Activities. Chem. Rev. 2012, 112, 5967–6026. [Google Scholar] [CrossRef]
- Craft, J.; Satyal, P.; Setzer, W. The Chemotaxonomy of Common Sage (Salvia officinalis) Based on the Volatile Constituents. Medicines 2017, 4, 47. [Google Scholar] [CrossRef] [Green Version]
- Leontaritou, P.; Lamari, F.N.; Papasotiropoulos, V.; Iatrou, G. Morphological, Genetic and Essential Oil Variation of Greek Sage (Salvia fruticosa Mill.) Populations from Greece. Ind. Crops Prod. 2020, 150, 112346. [Google Scholar] [CrossRef]
- Leontaritou, P.; Lamari, F.N.; Papasotiropoulos, V.; Iatrou, G. Exploration of Genetic, Morphological and Essential Oil Variation Reveals Tools for the Authentication and Breeding of Salvia pomifera Subsp. Calycina (Sm.) Hayek. Phytochemistry 2021, 191, 112900. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Ozcelik, B.; Altın, G.; Daşkaya-Dikmen, C.; Martorell, M.; Ramírez-Alarcón, K.; Alarcón-Zapata, P.; Morais-Braga, M.F.B.; Carneiro, J.N.P.; Alves Borges Leal, A.L.; et al. Salvia Spp. Plants-from Farm to Food Applications and Phytopharmacotherapy. Trends Food Sci. Technol. 2018, 80, 242–263. [Google Scholar] [CrossRef]
- Rivera, D.; Obon, C.; Cano, F. The Botany, History and Traditional Uses of Three-Lobed Sage (Salvia fruticosa Miller) (Labiatae). Econ. Bot. 1994, 48, 190–195. [Google Scholar] [CrossRef]
- Vascular Plants of Greece: An Annotated Checklist; Dimopoulos, P.; Raus, T.; Bergmeier, E.; Constantinidis, T.; Iatrou, G.; Kokkini, S.; Strid, A.; Tzanoudakis, D. (Eds.) Englera; Botanic Garden and Botanical Museum Berlin-Dahlem: Berlin, Germany, 2013; ISBN 978-3-921800-88-1. [Google Scholar]
- Sarrou, E.; Martens, S.; Chatzopoulou, P. Metabolite Profiling and Antioxidative Activity of Sage (Salvia fruticosa Mill.) under the Influence of Genotype and Harvesting Period. Ind. Crops Prod. 2016, 94, 240–250. [Google Scholar] [CrossRef]
- Cvetkovikj, I.; Stefkov, G.; Acevska, J.; Stanoeva, J.P.; Karapandzova, M.; Stefova, M.; Dimitrovska, A.; Kulevanova, S. Polyphenolic Characterization and Chromatographic Methods for Fast Assessment of Culinary Salvia Species from South East Europe. J. Chromatogr. A 2013, 1282, 38–45. [Google Scholar] [CrossRef]
- Atwi, M.; Weiss, E.-K.; Loupassaki, S.; Makris, D.P.; Ioannou, E.; Roussis, V.; Kefalas, P. Major Antioxidant Polyphenolic Phytochemicals of Three Salvia Species Endemic to the Island of Crete. J. Herbs Spices Med. Plants 2016, 22, 27–34. [Google Scholar] [CrossRef]
- Koutsoulas, A.; Čarnecká, M.; Slanina, J.; Tóth, J.; Slaninová, I. Characterization of Phenolic Compounds and Antiproliferative Effects of Salvia Pomifera and Salvia fruticosa Extracts. Molecules 2019, 24, 2921. [Google Scholar] [CrossRef] [Green Version]
- Vergine, M.; Nicolì, F.; Negro, C.; Luvisi, A.; Nutricati, E.; Annunziata Accogli, R.; Sabella, E.; Miceli, A. Phytochemical Profiles and Antioxidant Activity of Salvia Species from Southern Italy. Rec. Nat. Prod. 2019, 13, 205–215. [Google Scholar] [CrossRef]
- Assessment Report on Salvia fruticosa Mill., Folium. Available online: https://www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-salvia-fruticosa-mill-folium_en.pdf (accessed on 7 June 2022).
- Dawra, M.; Nehme, N.; Rayess, Y.E.; Beyrouthy, M.E.; Taillandier, P.; Bouajila, J. Folk Medicinal Applications, Phytochemical Composition and Biological Activities of Some Lebanese Endemic Plants. South Afr. J. Bot. 2022, 150, 511–527. [Google Scholar] [CrossRef]
- Bonesi, M.; Loizzo, M.R.; Acquaviva, R.; Malfa, G.A.; Aiello, F.; Tundis, R. Anti-Inflammatory and Antioxidant Agents from Salvia Genus (Lamiaceae): An Assessment of the Current State of Knowledge. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2017, 16, 70–86. [Google Scholar] [CrossRef]
- Stagos, D.; Portesis, N.; Spanou, C.; Mossialos, D.; Aligiannis, N.; Chaita, E.; Panagoulis, C.; Reri, E.; Skaltsounis, L.; Tsatsakis, A.M.; et al. Correlation of Total Polyphenolic Content with Antioxidant and Antibacterial Activity of 24 Extracts from Greek Domestic Lamiaceae Species. Food Chem. Toxicol. 2012, 50, 4115–4124. [Google Scholar] [CrossRef]
- Duletić-Laušević, S.N.; Alimpić Aradski, A.Z.; Kolarević, S.M.; Vuković-Gačić, B.S.; Oalđe, M.M.; Marin, P.D. Biological Activities of Cretan Salvia Pomifera Extracts. Bot. Serbica 2018, 42, 209–212. [Google Scholar] [CrossRef]
- Couladis, M.; Tzakou, O.; Verykokidou, E.; Harvala, C. Screening of Some Greek Aromatic Plants for Antioxidant Activity. Phytother. Res. 2003, 17, 194–195. [Google Scholar] [CrossRef]
- Vistoli, G.; De Maddis, D.; Cipak, A.; Zarkovic, N.; Carini, M.; Aldini, G. Advanced Glycoxidation and Lipoxidation End Products (AGEs and ALEs): An Overview of Their Mechanisms of Formation. Free Radic. Res. 2013, 47, 3–27. [Google Scholar] [CrossRef] [Green Version]
- Ben Khedher, M.R.; Hafsa, J.; Haddad, M.; Hammami, M. Inhibition of Protein Glycation by Combined Antioxidant and Antiglycation Constituents from a Phenolic Fraction of Sage (Salvia officinalis L.). Plant Foods Hum. Nutr. 2020, 75, 505–511. [Google Scholar] [CrossRef]
- Jung, H.A.; Park, J.J.; Min, B.S.; Jung, H.J.; Islam, M.N.; Choi, J.S. Inhibition of Advanced Glycation Endproducts Formation by Korean Thistle, Cirsium maackii. Asian Pac. J. Trop. Med. 2015, 8, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Veličković, D.T.; Milenović, D.M.; Ristić, M.S.; Veljković, V.B. Kinetics of Ultrasonic Extraction of Extractive Substances from Garden (Salvia officinalis L.) and Glutinous (Salvia glutinosa L.) Sage. Ultrason. Sonochem. 2006, 13, 150–156. [Google Scholar] [CrossRef]
- Pitarokili, D.; Tzakou, O.; Couladis, M.; Verykokidou, E. Composition and Antifungal Activity of the Essential Oil of Salvia Pomifera Subsp. Calycina Growing Wild in Greece. J. Essent. Oil Res. 1999, 11, 655–659. [Google Scholar] [CrossRef]
- Karousou, R.; Vokou, D.; Kokkini, S. Distribution and Essential Oils of Salvia Pomifera Subsp. Pomifera (Labiatae) on the Island of Crete (S Greece). Biochem. Syst. Ecol. 1998, 26, 889–897. [Google Scholar] [CrossRef]
- Zgheib, R.; Yassine, C.; Azzi-Achkhouty, S.; Beyrouthy, M.E. Investigation of Essential Oil Chemical Polymorphism of Salvia Fruticosa Naturally Growing in Lebanon. J. Essent. Oil Bear. Plants 2019, 22, 408–430. [Google Scholar] [CrossRef]
- Skoula, M.; Hilali, I.E.; Makris, A.M. Evaluation of the Genetic Diversity of Salvia Fruticosa Mill. Clones Using RAPD Markers and Comparison with the Essential Oil Profiles. Biochem. Syst. Ecol. 1999, 27, 559–568. [Google Scholar] [CrossRef]
- Zimmermann, B.F.; Walch, S.G.; Tinzoh, L.N.; Stühlinger, W.; Lachenmeier, D.W. Rapid UHPLC Determination of Polyphenols in Aqueous Infusions of Salvia officinalis L. (Sage Tea). J. Chromatogr. B 2011, 879, 2459–2464. [Google Scholar] [CrossRef]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Henriques, M.; Silva, S.; Ferreira, I.C.F.R. Evaluation of Bioactive Properties and Phenolic Compounds in Different Extracts Prepared from Salvia officinalis L. Food Chem. 2015, 170, 378–385. [Google Scholar] [CrossRef] [Green Version]
- Gulsoy Toplan, G.; Kurkcuoglu, M.; Goger, F.; İşcan, G.; Ağalar, H.G.; Mat, A.; Baser, K.H.C.; Koyuncu, M.; Sarıyar, G. Composition and Biological Activities of Salvia Veneris Hedge Growing in Cyprus. Ind. Crops Prod. 2017, 97, 41–48. [Google Scholar] [CrossRef]
- Wang, M.; Li, J.; Rangarajan, M.; Shao, Y.; LaVoie, E.J.; Huang, T.-C.; Ho, C.-T. Antioxidative Phenolic Compounds from Sage ( Salvia Officinalis ). J. Agric. Food Chem. 1998, 46, 4869–4873. [Google Scholar] [CrossRef]
- Borrás Linares, I.; Arráez-Román, D.; Herrero, M.; Ibáñez, E.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Comparison of Different Extraction Procedures for the Comprehensive Characterization of Bioactive Phenolic Compounds in Rosmarinus Officinalis by Reversed-Phase High-Performance Liquid Chromatography with Diode Array Detection Coupled to Electrospray Time-of-Flight Mass Spectrometry. J. Chromatogr. A 2011, 1218, 7682–7690. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Li, Y.-G.; Zhang, F.; Yang, L.; Chou, G.-X.; Wang, Z.-T.; Hu, Z.-B. Chromatographic Fingerprinting Analysis of Danshen Root (Salvia miltiorrhiza Radix et Rhizoma) and Its Preparations Using High Performance Liquid Chromatography with Diode Array Detection and Electrospray Mass Spectrometry (HPLC-DAD-ESI/MS). J. Sep. Sci. 2007, 30, 2256–2267. [Google Scholar] [CrossRef] [PubMed]
- Tada, M.; Hara, T.; Hara, C.; Chiba, K. A Quinone Methide from Salvia officinalis. Phytochemistry 1997, 45, 1475–1477. [Google Scholar] [CrossRef]
- Trikka, F.A.; Nikolaidis, A.; Ignea, C.; Tsaballa, A.; Tziveleka, L.-A.; Ioannou, E.; Roussis, V.; Stea, E.A.; Božić, D.; Argiriou, A.; et al. Combined Metabolome and Transcriptome Profiling Provides New Insights into Diterpene Biosynthesis in S. pomifera Glandular Trichomes. BMC Genom. 2015, 16, 935. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Smuts, J.P.; Dodbiba, E.; Rangarajan, R.; Lang, J.C.; Armstrong, D.W. Degradation Study of Carnosic Acid, Carnosol, Rosmarinic Acid, and Rosemary Extract ( Rosmarinus officinalis L.) Assessed Using HPLC. J. Agric. Food Chem. 2012, 60, 9305–9314. [Google Scholar] [CrossRef]
- Maietta, M.; Colombo, R.; Corana, F.; Papetti, A. Cretan Tea ( Origanum dictamnus L.) as a Functional Beverage: An Investigation on Antiglycative and Carbonyl Trapping Activities. Food Funct. 2018, 9, 1545–1556. [Google Scholar] [CrossRef]
- Monnier, V.M. Nonenzymatic Glycosylation, the Maillard Reaction and the Aging Process. J. Gerontol. 1990, 45, B105–B111. [Google Scholar] [CrossRef]
- Matsuura, N.; Aradate, T.; Sasaki, C.; Kojima, H.; Ohara, M.; Hasegawa, J.; Ubukata, M. Screening System for the Maillard Reaction Inhibitor from Natural Product Extracts. J. Health Sci. 2002, 48, 520–526. [Google Scholar] [CrossRef] [Green Version]
- Derbré, S.; Gatto, J.; Pelleray, A.; Coulon, L.; Séraphin, D.; Richomme, P. Automating a 96-Well Microtiter Plate Assay for Identification of AGEs Inhibitors or Inducers: Application to the Screening of a Small Natural Compounds Library. Anal. Bioanal. Chem. 2010, 398, 1747–1758. [Google Scholar] [CrossRef]
- Sasaki, K.; Chiba, S.; Yoshizaki, F. Effect of Natural Flavonoids, Stilbenes and Caffeic Acid Oligomers on Protein Glycation. Biomed. Rep. 2014, 2, 628–632. [Google Scholar] [CrossRef] [Green Version]
- Ou, J.; Huang, J.; Wang, M.; Ou, S. Effect of Rosmarinic Acid and Carnosic Acid on AGEs Formation in Vitro. Food Chem. 2017, 221, 1057–1061. [Google Scholar] [CrossRef] [PubMed]
Peak No. | Compound | RI (th.) | RI (cal.) | SPC-P | SPP-E | SPP-FS | SF-S | SF-A |
---|---|---|---|---|---|---|---|---|
V1 | (Z)-Salvene | 847 | 843 | 0.50 ± 0.03 | 0.42 ± 0.08 | 0.29 ± 0.01 | n.d. | 0.2 * |
V2 | α-Thujene | 924 | 919 | 0.34 * | 0.26 * | 0.39 ± 0.04 | 0.43 ± 0.07 | 0.26 ± 0.01 |
V3 | α-Pinene | 932 | 923 | 0.89 ± 0.01 | 0.79 ± 0.46 | 0.70 ± 0.09 | 4.84 ± 0.05 | 4.29 ± 0.26 |
V4 | Camphene | 946 | 940 | 0.15 ± 0.01 | n.d. | 0.39 ± 0.38 | 4.53 ± 0.10 | 2.89 ± 0.25 |
V5 | Sabinene | 969 | 965 | 0.47 ± 0.03 | 1.75 ± 1.22 | 1.82 ± 0.19 | n.d. | 0.37 ± 0.08 |
V6 | β-Pinene | 974 | 966 | 0.79 ± 0.14 | 0.67 ± 0.3 | 0.55 ± 0.06 | 4.39 ± 0.49 | 5.12 ± 0.68 |
V7 | Myrcene | 988 | 987 | 5.00 ± 1.07 | 0.77 ± 0.03 | 0.87 ± 0.02 | 1.67 ± 0.61 | 1.25 ± 0.06 |
V8 | p-Cymene | 1020 | 1017 | 0.48 ± 0.05 | 0.60 ± 0.59 | 0.47 ± 0.26 | 0.49 * | 0.34 * |
V9 | Limonene | 1024 | 1019 | 0.53 * | 0.62 ± 0.33 | 0.44 ± 0.17 | 1.44 ± 0.05 | 1.27 ± 0.16 |
V10 | 1,8-Cineole | 1026 | 1021 | 1.39 * | 3.43 ± 2.22 | 2.45 ± 0.18 | 34.76 ± 1.58 | 39.01 ± 1.15 |
V11 | γ-Terpinene | 1054 | 1047 | 0.14 * | 0.42 ± 0.33 | 0.30 ± 0.14 | 0.45 ± 0.09 | 0.24 ± 0.01 |
V12 | cis-Sabinene hydrate | 1065 | 1058 | n.d. | - | 0.16 ± 0.04 | 0.28 ± 0.08 | 0.27 ± 0.08 |
V13 | α-Thujone | 1101 | 1099 | 19.65 ± 1.53 | 40.99 ± 9.2 | 25.84 ± 1.5 | 1.37 ± 0.12 | 1.34 ± 0.65 |
V14 | β-Thujone | 1112 | 1113 | 6.01 ± 0.34 | 21.36 ± 6.63 | 39.10 ± 5.40 | 2.88 ± 0.06 | 6.07 ± 6.30 |
V15 | Camphor | 1141 | 1137 | 0.22 * | 1.04 ± 0.81 | 0.62 ± 0.53 | 11.20 ± 0.03 | 5.07 ± 5.99 |
V16 | Borneol | 1165 | 1164 | n.d. | 0.83 * | 0.71 * | 2.08 ± 0.02 | 0.67 ± 0.7 |
V17 | Terpinen-4-ol | 1174 | 1174 | n.d. | n.d. | n.d. | 0.22 ± 0.08 | 1.14 ± 1.37 |
V18 | α-Terpineol | 1186 | 1186 | n.d. | n.d. | n.d. | n.d. | 1.64 * |
V19 | Linalyl acetate | 1254 | 1255 | n.d. | n.d. | n.d. | 0.68 ± 0.39 | n.d. |
V20 | Bornyl acetate | 1284 | 1278 | n.d. | n.d. | 0.28 * | 1.12 ± 0.52 | 0.72 * |
V21 | trans-Sabinyl acetate | 1289 | 1289 | n.d. | 0.26 ± 0.18 | 0.13 * | n.d. | n.d. |
V22 | α-Cubebene | 1348 | 1339 | n.d. | n.d. | 0.20 * | n.d. | n.d. |
V23 | α-Terpinyl acetate | 1346 | 1341 | 4.43 ± 0.76 | 0.26 * | 0.21 * | 0.51 ± 0.16 | 0.3 ± 0.17 |
V24 | α-Copaene | 1374 | 1363 | 2.34 ± 0.48 | n.d. | 3.33 * | 0.18 * | n.d. |
V25 | β-Burbonene | 1387 | 1368 | 0.24 * | n.d. | 0.23 * | 0.28 * | 0.17 * |
V26 | β-Cubebene | 1387 | 1378 | 0.27 ± 0.09 | n.d. | n.d. | n.d. | n.d. |
V27 | (E)-Caryophyllene | 1417 | 1404 | 4.89 ± 1.01 | 7.63 ± 0.82 | 7.84 ± 0.96 | 4.74 ± 0.78 | 3.08 ± 0.59 |
V28 | β-Gurjunene | 1433 | 1414 | n.d. | 0.96 * | 0.65 ± 0.28 | n.d. | n.d. |
V29 | Aromadendrene | 1439 | 1423 | n.d. | n.d. | n.d. | 0.19 * | n.d. |
V30 | α-Humulene | 1452 | 1439 | 2.39 ± 0.63 | 0.56 ± 0.12 | 0.44 ± 0.05 | 0.98 ± 0.31 | 0.42 ± 0.08 |
V31 | γ-Muurolene | 1478 | 1463 | n.d. | n.d. | n.d. | 0.24 * | n.d. |
V32 | Germacrene D | 1484 | 1468 | n.d. | 0.39 ± 0.37 | 0.34 ± 0.12 | n.d. | n.d. |
V33 | epi-Cubebol | 1493 | 1481 | 0.71 ± 0.41 | n.d. | n.d. | n.d. | n.d. |
V34 | Cubebol | 1514 | 1502 | 10.24 ± 2.66 | n.d. | n.d. | n.d. | n.d. |
V35 | trans-Calamene | 1521 | 1509 | 0.87 * | n.d. | n.d. | n.d. | n.d. |
V36 | δ-Cadinene | 1522 | 1511 | 0.61 * | n.d. | 0.37 * | n.d. | n.d. |
V37 | Maaliol | 1566 | 1548 | n.d. | n.d. | 0.53 * | n.d. | n.d. |
V38 | Caryophyllene oxide | 1582 | 1564 | 1.07 ± 0.69 | 1.00 ± 0.49 | 1.07 ± 0.31 | 0.64 ± 0.63 | 0.57 ± 0.14 |
V39 | Viridiflorol | 1592 | 1574 | n.d. | n.d. | 0.26 * | 0.46 ± 0.21 | 0.58 ± 0.03 |
V40 | Humulene epoxide ΙΙ | 1608 | 1591 | 0.59 * | n.d. | n.d. | n.d. | n.d. |
V41 | τ-Cadinol | 1638 | 1604 | n.d. | 0.47 ± 0.23 | 0.42 * | n.d. | n.d. |
Total identified% | 87.08 ± 1.36 | 88.48 ± 10.16 | 93.07 ± 1.34 | 91.26 ± 0.09 | 87.46 ± 2.88 | |||
Number of identified compounds | 26 | 22 | 31 | 26 | 25 | |||
Oxygenated% | 43.91 ± 6.98 | 68.97 ± 11.67 | 70.26 ± 1.76 | 56.21 ± 2.48 | 57.43 ± 0.61 | |||
Hydrocarbons% | 43.17 ± 5.61 | 19.52 ± 1.51 | 22.98 ± 2.59 | 35.06 ± 2.39 | 30.03 ± 2.27 |
Peak No. | Rt (min) | Tentative Identification | M.W. | Positive Ionization m/z (% Relative Intensity) | Negative Ionization m/z (% Relative Intensity) | λmax (nm) | Occurrence in Samples | References |
---|---|---|---|---|---|---|---|---|
C1 | 3.8 | Coumaroyl-apiosyl-glucose | 458 | 481 [M+Na]+ (100) 476 [M+NH4]+ (28) | 457 [M-H]− (100) | n.dtm. | SF-A | [30] |
C2 | 4.3 | Apigenin O-pentoside | 402 | 425 [M+Na]+ (100) 420 [M+NH4]+ (39) 441 [M+K]+ (8) | 401 [M-H]− (100) 447 [M+FA-H]− (47) 515 [M+TFA-H]− (26) | n.dtm. | SPC-P, SF-S, SF-A | [31] |
C3 | 4.5 | Medioresinol | 388 | 411 [M+Na]+ (100) 427 [M+K]+ (45) 406 [M+NH4]+ (21) | 387 [M-H]− (100) | 216, 325 | All | [32] |
C4 | 4.7 | Unknown | 386 | 409 [M+Na]+ (100) 387 [M+H]+ (29) | 431 [M+FA-H]− (100) 499 [M+TFA-H]− (21) 421 [M+Cl]− (15) | n.dtm. | SPC-P, SPP-E, SPP-FS | |
C5 | 4.7 | Saponarin (Apigenin 6-C-glucoside-7-O-glucoside) or Apigenin 8-C-glucoside-7-O-glucoside | 594 | 595 [M+H]+ (100) 617 [M+Na]+ (28) | 593 [M-H]− (100) | 214, 272, 340 | SF-S, SF-A | [12,30] |
C6 | 5.8 | 1-O-Caffeoyl-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside | 474 | 497 [M+Na]+ (100) 513 [M+K]+ (36) | 519 [M+FA-H]− (100) | n.dtm. | SF-S, SF-A | [33] |
C7 | 6.5 | 6-Hydroxyluteolin 7-O-glucoside | 464 | 465 [M+H]+ (100) 541 [M+2K+H]+ (79) | 463 [M-H]− (100) | 217, 282, 344 | SPC-P, SPP-E, SPP-FS# | [12] |
C8 | 6.5 | 6-Hydroxyluteolin 7-O-glucuronide | 478 | 479 [M+H]+ (100) 501 [M+Na]+ (21) 523 [M+2Na-H]+ (9) 517 [M+K]+ (8) | 477 [M-H]− (100) 499 [M+Na-2H]− (20) | 217, 283, 345 | SPP-FS#, SF-S, SF-A | [12,30,31] |
C9 | 7.7 | Unknown | 598 | 621 [M+Na]+ (100) 616 [M+NH4]+ (87) 599 [M+H]+ (85) | 597 [M-H]− (100) 619 [M+Na-2H]− (23) | 200, 218, 275 | SPC-P, SPP-E, SPP-FS | |
C10 | 7.8 | Luteolin O-rutinoside isomer | 594 | 595 [M+H]+ (100) 617 [M+Na]+ (19) | 593 [M-H]− (100) | 219, 350 | SF-S, SF-A | [12,30,31,34] |
C11 | 8.1 | Luteolin O-rutinoside isomer | 594 | 595 [M+H]+ (100) 617 [M+Na]+ (17) | 593 [M-H]− (100) 615 [M+Na-2H]− (21) | 219, 350 | SF-S, SF-A | [12,30,31,34] |
C12 | 8.4 | Cynaroside (Luteolin 7-O-glucoside) a | 448 | 449 [M+H]+ (100) 471 [M+Na]+ (11) 287 [M-glucoside+H]+ (8) | 447 [M-H]− (100) 561 [M+TFA-H]− (12) 493 [M+FA-H]− (6) 895 [2M-H]− (6) | 230, 268, 348 | All | [12,14,30,31,32] |
C13 | 8.6 | Luteolin glucuronide | 462 | 463 [M+H]+ (100) 485 [M+Na]+ (12) 507 [M+2Na-H]+ (3) 287 [M-glucuronide+H]+ (4) | 461 [M-H]− (100) 483 [M+Na-2H]− (23) 923 [2M-H]− (8) | 217, 268, 347 | All | [12,14,30,31,32,34] |
C14 | 9.3 | Nepitrin (6-Methoxyluteolin-7-glucoside) or Isorhamnetin-hexoside | 478 | 479 [M+H]+ (100) 501 [M+Na]+ (34) 317 [M-glucoside+H]+ (15) | 477 [M-H]− (100) 591 [M+TFA-H]− (11) 513 [M+Cl]− (7) | 218, 270, 346 | All | [32,34] |
C15 | 9.7 | Salvianolic acid C | 492 | 493 [M+H]+ (100) 515 [M+Na]+ (26) | 491 [M-H]− (100) | 219, 272, 346 | All | [34] |
C16 | 10.5 | Sagerinic acid | 720 | 743 [M+Na]+ (100) 738 [M+NH4]+ (79) | 719 [M-H]− (100) | 200, 280 | SPC-P, SPP-FS, SF-S, SF-A | [14,31] |
C17 | 11.0 | Apigenin O-rutinoside | 578 | 579 [M+H]+ (100) | 577 [M-H]− (100) | n.dtm. | SF-S, SF-A | [12,30] |
C18 | 11.4 | Salvianolic acid B | 718 | 736 [M+NH4]+ (100) 743 [M+Na]+ (77) 757 [M+K]+ (16) 323 [M-DSS-DSS+H]+ (57) 521 [M-DSS+H]+ (38) | 717 [M-H]− (100) 739 [M+Na-2H]− (27) | 219, 285, 342 | SPP-FS, SF-S, SF-A | [30,31,35] |
C19 | 11.6 | Unknown | 778 | 779 [M+H]+ (100) 796 [M+NH4]+ (83) 801 [M+Na]+ (77) 409 [M+H+K]2+ (16) | 777 [M-H]− (100) 799 [M+Na-2H]− (20) | 231, 265, 274 | SPC-P, SPP-E, SPP-FS | |
C20 | 11.8 | Hispidulin 7-O-rutinoside | 608 | 609 [M+H]+ (100) 631 [M+Na]+ (24) | 607 [M-H]− (100) | n.dtm. | SF-S, SF-A | [12] |
C21 | 12.1 | Apigenin-glucuronide | 446 | 447 [M+H]+ (100) 469 [M+Na]+ (21) 271 [M-glucuronic+H]+ | 445 [M-H]− (100) | 219, 268, 335 | SPC-P, SF-S, SF-A | [12,30] |
C22 | 12.5 | Rosmarinic acid a | 360 | 383 [M+Na]+ (100) 163 [M-CA-H2O+H]+ (58) 361 [M+H]+ (13) 721[2M+H]+ (9) | 359 [M-H]− (100) 719 [2M-H]− (29) 381 [M+Na-2H]− (8) | 222, 300sh, 330 | All | [12,14,30,32,33,34,35] |
C23 | 12.8 | Luteolin glucuronide or hispidulin glucoside | 462 | 463 [M+H]+ (100) 485 [M+Na]+ (30) | 461 [M-H]− (100) | 219, 274, 335 | All | [12,30,31,34] |
C24 | 13.3 | Hispidulin glucuronide | 476 | 477 [M+H]+ (100) 499 [M+Na]+ (19) 301 [M-glucuronic+H]+ (17) | 475 [M-H]− (100) | n.dtm. | SPC-P, SPP-E, SPP-FS | [12,30,31] |
C25 | 13.4 | Salvianolic acid K | 556 | 579 [M+Na]+ (100) 574 [M+NH4]+ (41) 556 [M+H]+ (32) | 555 [M-H]− (100) 577 [M+Na-2H]− (15) | 219, 289, 330 | All | [12,30] |
C26 | 13.7 | Hispidulin glucuronide | 476 | 477 [M+H]+ (100) 499 [M+Na]+ (29) | 475 [M-H]− (100) 577 [M+TFA-H]− (9) 521 [M+FA-H]− (9) | 336 | SF-S, SF-A | [12,30,31] |
C27 | 14.0 | Salvianolic acid C | 492 | 493 [M+H]+ (100) 515 [M+Na]+ (17) | 491 [M-H]− (100) | 222, 266, 296, 347 | SPC-P, SPP-E, SPP-FS | [35] |
C28 | 14.2 | Hispidulin glucuronide | 476 | 477 [M+H]+ (100) 499 [M+Na]+(13) | 475 [M-H]− (100) | 330 | SPC-P, SPP-E, SPP-FS | [12,30,31] |
C29 | 14.2 | Luteolin glucuronide or Hispidulin-glucoside | 462 | 463 [M+H]+ (100) 485 [M+Na]+ (22) | 461 [M-H]− (100) | 336 | SF-S, SF-A | [12,30,31,34] |
C30 | 20.1 | Nepetin (6-Methoxyluteolin) | 316 | 317 [M+H]+ (100) | 315 [M-H]− (100) 429 [M+TFA-H]− (15) | 330 | SPP-E, SF-S, SF-A | [12,14] |
C31 | 21.9 | Hispidulin | 300 | 301 [M+H]+ (100) | 299 [M-H]− (100) | 221, 278, 340 | All | [14,31,34] |
C32 | 22.3 | Cirsiliol | 330 | 331 [M+H]+ (100) | 329 [M-H]− (100) | 330 | SPP-E, SF-S, SF-A | [12,32] |
C33 | 23.4 | Rosmanol | 346 | 301 [Μ-46+H]+ (100) 369 [M+Na]+ (84) 347 [M+H]+ (28) 715 [2M+Na]+ (18) 283 [Μ-64+H]+ (14) | 345 [M-H]− (100) 691 [2M-H]− (44) 459 [M+TFA-H]− (25) 283 [Μ-COO-H2O-H]− (11) 301 [Μ-COO-H]− (8) | 280 | SF-S, SF-A | [12,14,30,34,36] |
C34 | 23.7 | Cirsimaritin or Salvianolic acid F | 314 | 315 [M+H]+ (100) 337 [M+Na]+ (34) | 313 [M-H]− (100) | 221, 280, 336 | All | [12,14,34,35] |
C35 | 24.0 | Rosmanol isomer | 346 | 369 [M+Na]+ (20) | 345 [M-H]− (100) | 280, 330 | SF-S, SF-A | [12,14,30,32,34]; |
C36 | 24.2 | Rosmaridiphenol or Pomiferin F | 316 | 317 [M+H]+ (100) 283 [Μ-34+H]+ (15) | 315 [M-H]− (100) 429 [Μ+TFA-H]− (35) | 280 | All | [32] |
C37 | 24.7 | Unknown | 332 | 355 [M+Na]+ (100) 333 [M+H]+ (50) 371 [M+K]+ (16) | 331 [M-H]− (100) | n.dtm. | All | |
C38 | 24.9 | Genkwanin | 284 | 285 [M+H]+ (100) | 283 [M-H]− (100) | 330 | SPP-E, SPP-FS, SF-S, SF-A | [14,34] |
C39 | 25.3 | Abietane diterpene | 362 | 385 [M+Na]+ (68) 380 [M+NH4]+ (25) 345 [Μ-18+H]+ (100) | 361 [M-H]− (100) 399 [M+K-2H]− (100) 287 [Μ-74]− (94) | 280 | SPC-P, SPP-E, SPP-FS | |
C40 | 26.0 | Abietane diterpene | 318 | 317 [M+H]+ (15) 336 [M+NH4]+ (28) 659 [2M+Na]+ (22) 637 [2M+H]+ (21) 283 [Μ-36+H]+ (94) 301 [Μ-H2O+H]+ (100) | 317 [M-H]− (100) 363 [M+FA-H]− (36) 635 [2M-H]− (27) | 284 | SPC-P, SPP-E, SPP-FS | [14] |
C41 | 26.4 | 7-Methoxy rosmanol | 360 | 283 [M-78+H]+ (100) 383 [Μ+Na]+ (22) 721 [2M+H]+ (52) | 405 [M-H]− (100) 359 [M-H]− (49) | 281 | SPP-E, SPP-FS | [36] |
C42 | 26.5 | Salvigenin | 328 | 329 [M+H]+ (100) 351 [M+Na]+ (21) 679 [2M+Na]+ (13) | 222, 276, 330 | All | [34] | |
C43 | 26.7 | 2α-Hydroxy-O-methyl-pisiferic acid | 346 | 710 [2M+NH4]+ (28) 715 [2M+Na]+ (21) 693 [2M+H]+ (13) 329 [Μ-18+H]+ (100) 283 [Μ-64+H]+ (41) | 345 [M-H]− (33) 691 [2M-H]− (100) 301 [Μ-COO-H]− (46) | 207, 223sh, 284 | SPC-P, SPP-E, SPP-FS | [37] |
C44 | 27.0 | 7-Methoxy rosmanol or Methoxycarnosol | 360 | 361 [M+H]+ (100) 383 [Μ+Na]+ (91) 743 [2M+Na]+ (20) | 359 [M-H]− (100) | n.dtm. | SF-S, SF-A | [32,36] |
C45 | 27.2 | Carnosol | 330 | 331 [M+H]+ (100) 661 [2M+H]+ (51) 683 [2M+Na]+ (67) 353 [M+Na]+ (34) 285 [Μ-46+H]+ (20) | 659 [2M-H]− (100) 329 [M-H]− (63) 285 [Μ-COO-H]− (20) | 219, 284 | SPC-P, SPP-FS, SF-S, SF-A | [12,14,30,34,37] |
C46 | 27.7 | Carnosol isomer | 330 | 331 [M+H]+ (100) 353 [M+Na]+ (92) 683 [2M+Na]+ (27) 285 [Μ-46+H]+ (10) | 329 [M-H]− (63) 285 [Μ-COO-H]− (36) | n.dtm. | SF-S, SF-A | [12,14,30,34] |
C47 | 28.3 | Salviol | 302 | 325 [Μ+Na]+ (38) 285 [Μ-H2O+H]+ (82) | 603 [2M-H]− (100) 649 [2M+FA-H]− (56) 347 [Μ+FA-H]− (57) | 284 | SPC-P, SPP-E, SPP-FS | [34,37] |
C48 | 28.9 | Carnosic acid a | 332 | 287 [Μ-46+H]+ (100) 687 [2M+Na]+ (78) 333 [M+H]+ (33) 355 [M+Na]+ (18) | 331 [M-H]− (100) 663 [2M-H]− (34) 287 [Μ-COO-H]− (5) | 284 | SF-S, SF-A | [12,14,30,34,36] |
C49 | 29.7 | 12-Methylcarnosic acid | 346 | 301 [M+H]+ (100) 347 [M+H]+ (8) 715 [2M+Na]+ (81) 369 [M+Na]+ (30) | 345 [M-H]− (100) | 285 | All | [14] |
C50 | 29.9 | Abietane diterpene | 318 | 301 [Μ-H2O+H]+ (100) 659 [2M+Na]+ (37) 341 [M+Na]+ (24) | 317 [M-H]− (100) 635 [2M-H]− (21) | 285 | SF-S, SF-A | [14] |
Peak No. | UV (nm) | Compound | SPC-P | SPP-E | SPP-FS | SF-S | SF-A |
---|---|---|---|---|---|---|---|
mg/g DW | |||||||
C9 | 280 | Unknown b | 2.36 ± 0.08 | 0.82 ± 0.03 | n.q. | n.d. | n.d. |
C12 | 330 | Luteolin 7-O-glucoside a | 0.66 ± 0.05 | 1.11 ± 0.08 | n.q. | n.q. | n.q. |
C13 | 330 | Luteolin glucuronide a | 0.75 ± 0.04 | 0.41 ± 0.01 | n.q. | 2.16 ± 0.30 | 1.14 ± 0.02 |
C14 | 330 | 6-Methoxyluteolin-7-glucoside or Isorhamnetin-hexoside a | n.q. | 0.80 ± 0.02 | n.q. | n.q. | n.q. |
C18 | 280 | Salvianolic acid B b | n.d. | n.d. | 1.09 ± 0.05 | n.q. | n.q. |
C19 | 280 | Unknown a | 1.32 ± 0.07 | 1.74 ± 0.15 | n.q | n.d. | n.d |
C22 | 280 | Rosmarinic acid b | 12.55 ± 0.41 | 3.80 ± 0.15 | 3.93 ± 0.31 | 7.22 ± 0.49 | 11.02 ± 0.33 |
C25 | 280 | Salvianolic acid K b | n.q. | n.q. | n.q. | 2.44 ± 0.18 | 2.29 ± 0.02 |
C31 | 330 | Hispidulin a | n.q. | n.q. | n.q. | 0.39 ± 0.01 | n.q. |
C34 | 330 | Cirsimaritin or Salvianolic acid F a | 0.18 ± 0.09 | 0.67 ± 0.06 | 0.19 ± 0.02 | 0.64 ± 0.06 | 0.54 ± 0.03 |
C36 | 280 | Rosmaridiphenol or Pomiferin F c | n.q. | n.q. | 3.11 ± 0.39 | n.q. | n.q. |
C40 | 280 | Abietane diterpene c | 3.24 ± 0.12 | 4.78 ± 0.43 | 4.83 ± 0.37 | n.d. | n.d. |
C41 | 280 | 7-Methoxy rosmanol c | n.d. | 3.03 ± 0.22 | 2.23 ± 0.14 | n.d. | n.d. |
C42 | 330 | Salvigenin b | n.q. | 3.17 ± 0.11 | 2.42 ± 0.23 | 1.43 ± 0.13 | 1.43 ± 0.21 |
C43 | 280 | 2α-hydroxy-O-methyl-pisiferic acid c | 5.06 ± 0.22 | 15.19 ± 0.45 | 16.38 ± 0.79 | n.d. | n.d. |
C45 | 280 | Carnosol c | n.q. | n.d. | n.q. | 7.51 ± 0.21 | 9.11 ± 0.56 |
C47 | 280 | Salviol c | n.q. | 10.11 ± 0.31 | 7.99 ± 0.42 | n.d. | n.d. |
C48 | 280 | Carnosic acid c | n.d. | n.d. | n.d. | 7.22 ± 0.50 | 6.35 ± 0.24 |
C49 | 280 | 12-Methyl carnosic acid c | n.q. | 5.53 ± 0.44 | 5.21 ± 0.17 | 4.97 ± 0.49 | 5.80 ± 0.27 |
C50 | 280 | Abietane diterpene c | n.d. | n.d. | n.d. | 4.51 ± 0.26 | 4.13 ± 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gkioni, M.D.; Zeliou, K.; Dimaki, V.D.; Trigas, P.; Lamari, F.N. GC-MS and LC-DAD-MS Phytochemical Profiling for Characterization of Three Native Salvia Taxa from Eastern Mediterranean with Antiglycation Properties. Molecules 2023, 28, 93. https://doi.org/10.3390/molecules28010093
Gkioni MD, Zeliou K, Dimaki VD, Trigas P, Lamari FN. GC-MS and LC-DAD-MS Phytochemical Profiling for Characterization of Three Native Salvia Taxa from Eastern Mediterranean with Antiglycation Properties. Molecules. 2023; 28(1):93. https://doi.org/10.3390/molecules28010093
Chicago/Turabian StyleGkioni, Maria D., Konstantina Zeliou, Virginia D. Dimaki, Panayiotis Trigas, and Fotini N. Lamari. 2023. "GC-MS and LC-DAD-MS Phytochemical Profiling for Characterization of Three Native Salvia Taxa from Eastern Mediterranean with Antiglycation Properties" Molecules 28, no. 1: 93. https://doi.org/10.3390/molecules28010093
APA StyleGkioni, M. D., Zeliou, K., Dimaki, V. D., Trigas, P., & Lamari, F. N. (2023). GC-MS and LC-DAD-MS Phytochemical Profiling for Characterization of Three Native Salvia Taxa from Eastern Mediterranean with Antiglycation Properties. Molecules, 28(1), 93. https://doi.org/10.3390/molecules28010093