Hybrid Nanocomposites of Tenoxicam: Layered Double Hydroxides (LDHs) vs. Hydroxyapatite (HAP) Inorganic Carriers
Abstract
:1. Introduction
2. Results
2.1. Physical-Chemical Characterization of LDH-Tenoxicam
2.2. Physical-Chemical Characterization of HAP-Tenoxicam
2.3. Pharmaceutical Results
2.3.1. Drug Loading
2.3.2. Dissolution Tests
2.3.3. Solubility and Contact Angle
3. Discussion
4. Materials and Methods
4.1. Syntheses
4.1.1. LDH-Tenoxicam
4.1.2. HAP-Tenoxicam
4.2. Physical-Chemical Characterizations
4.3. Pharmaceutical Measurements
4.3.1. Drug Loading
4.3.2. Dissolution Test
4.3.3. Solubility
4.3.4. Contact Angle
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bhalani, D.V.; Nutan, B.; Kumar, A.; Chandel, A.K.S. Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics. Biomedicines 2022, 10, 2055. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Singh, C. A Study on Solubility Enhancement Methods for Poorly Water Soluble Drugs. Am. J. Pharmacol. Sci. 2013, 1, 67–73. [Google Scholar] [CrossRef]
- Malkawi, R.; Malkawi, W.I.; Al-Mahmoud, Y.; Tawalbeh, J. Current Trends on Solid Dispersions: Past, Present, and Future. Adv. Pharmacol. Pharm. Sci. 2022, 5916013. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Chow, S.F.; Zheng, Y. Application of flash nanoprecipitation to fabricate poorly water-soluble drug nanoparticles. Acta Pharm. Sin. B 2019, 9, 4–18. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues dos Apostolos, R.C.; Fernandes Cipreste, M.; de Sousa, R.G.; Martins Barros de Sousa, E. Multifunctional hybrid nanosystems based on mesoporous silica and hydroxyapatite nanoparticles applied as potential nanocarriers for theranostic applications. J. Nanopart. Res. 2020, 22, 368. [Google Scholar] [CrossRef]
- Bini, M.; Monteforte, F. Layered double hydroxides (LDHs): Versatile and powerful hosts for different applications. J. Anal. Pharm. Res. 2018, 7, 00206. [Google Scholar] [CrossRef]
- Bystrov, V.; Paramonova, E.; Avakyan, L.; Coutinho, J.; Bulina, N. Simulation and Computer Study of Structures and Physical Properties of Hydroxyapatite with Various Defects. Nanomaterials 2021, 11, 2752. [Google Scholar] [CrossRef]
- Foroutan, R.; Peighambardoust, S.J.; Mohammadi, R.; Ramavandi, B.; Boffito, D.C. One-pot transesterification of non-edible Moringa oleifera oil over a MgO/K2CO3/HAp catalyst derived from poultry skeletal waste. Environ. Technol. Innov. 2021, 21, 101250. [Google Scholar] [CrossRef]
- Nakonieczny, D.S.; Martynková, G.S.; Hundáková, M.; Kratošová, G.; Holešová, S.; Kupková, J.; Pazourková, L.; Majewska, J. Alkali-Treated Alumina and Zirconia Powders Decorated with Hydroxyapatite for Prospective Biomedical Applications. Materials 2022, 15, 1390. [Google Scholar] [CrossRef]
- Mofakhami, S.; Salahinejad, E. Biphasic calcium phosphate microspheres in biomedical applications. J. Control. Release 2021, 338, 527. [Google Scholar] [CrossRef]
- Bera, D.; Pal, K.; Bardhan, S.; Roy, S.; Parvin, R.; Karmakar, P.; Nandy, P.; Das, S. Functionalised biomimetic hydroxyapatite NPs as potential agent against pathogenic multidrug-resistant bacteria. Adv. Nat. Sci. Nanosci. Nanotechnol. 2019, 10, 045017. [Google Scholar] [CrossRef]
- Ochoa, S.L.; Ortega-Lara, W.; Guerrero-Beltran, C.E. Hydroxyapatite Nanoparticles in Drug Delivery: Physicochemistry and Applications. Pharmaceutics 2021, 13, 1642. [Google Scholar] [CrossRef]
- La Rocca, M.; Rinaldi, A.; Bruni, G.; Friuli, V.; Maggi, L.; Bini, M. New Emerging Inorganic–Organic Systems for Drug-Delivery: Hydroxyapatite@Furosemide Hybrids. J. Inorg. Organomet. Polym. Mater. 2022, 32, 2249–2259. [Google Scholar] [CrossRef]
- Lü, Z.; Cheng, Y.; Xue, L.; Wang, H.; Lin, H.; Sun, X.; Miao, Z.; Zhuo, S.; Zhou, J. MCr–LDHs/BiOBr heterojunction nanocomposites for efficient photocatalytic removal of organic pollutants under visible-light irradiation. J. Alloys Compd. 2022, 898, 162871. [Google Scholar] [CrossRef]
- Yang, H.; Sun, Y.; Wang, C.; Li, Y.; Wei, M. Hollow polyhedral MnCoNi-LDH derived from metal-organic frameworks for high-performance supercapacitors. J. Electroanal. Chem. 2023, 928, 117051. [Google Scholar] [CrossRef]
- Seidi, S.; Sanàti, S.E. Nickel-iron layered double hydroxide nanostructures for micro solid phase extraction of nonsteroidal anti-inflammatory drugs, followed by quantitation by HPLC-UV. Microchim. Acta 2019, 186, 297. [Google Scholar] [CrossRef]
- Guagliano, M.; Monteforte, F.; Bruni, G.; Friuli, V.; Maggi, L.; Quinzeni, I.; Bini, M. The peculiar dissolution behaviour of Piretanide hosted in layered double hydroxides. Appl. Clay Sci. 2020, 198, 105826. [Google Scholar] [CrossRef]
- Bini, M.; Monteforte, F.; Quinzeni, I.; Friuli, V.; Maggi, L.; Bruni, G. Hybrid compounds for improving drugs solubility: Synthesis, physicochemical and pharmaceutical characterization of Nimesulide-LDH. J. Solid State Chem. 2019, 272, 131–137. [Google Scholar] [CrossRef]
- Capsoni, D.; Quinzeni, I.; Bruni, G.; Friuli, V.; Maggi, L.; Bini, M. Improving the carprofen solubility: Synthesis of the Zn2Al-LDH hybrid compound. J. Pharm. Sci. 2018, 107, 267–272. [Google Scholar] [CrossRef] [PubMed]
- San Roman, M.S.; Holgado, M.J.; Salinas, B.; Rives, V. Characterisation of Diclofenac, Ketoprofen or Chloramphenicol succinate encapsulated in layered double hydroxides with the hydrotalcite-type structure. Appl. Clay Sci. 2012, 55, 158–163. [Google Scholar] [CrossRef]
- Nielsen, O.G. Clinical Pharmacokinetics of Tenoxicam. Clin. Pharmacokinet. 1994, 26, 16–43. [Google Scholar] [CrossRef]
- Cantera, R.G.; Leza, M.G.; Bachiller, C.M. Solid Phases of Tenoxicam. J. Pharm. Sci. 2002, 91, 2240–2251. [Google Scholar] [CrossRef]
- Nabulsi, L.; Owais, L.; Arafat, T.A.; Al Kaysy, H.; Salem, M.; Sheikh, M.; Badwan, A.A. Tenoxicam polymorphic modifications. In Proceedings of the Sixth International Conference on Pharmaceutical Technology, Chatenay-Malabry, France, 2–4 June 1992; Volume 1, pp. 203–212. [Google Scholar]
- Caira, M.R.; Nassimbeni, L.R.; Timme, M. Zwitterionic nature of tenoxicam: Crystal structures and thermal analyses of a polymorph of tenoxicam and a 1:1 tenoxicam:acetonitrile solvate. J. Pharm. Sci. 1995, 84, 884–888. [Google Scholar] [CrossRef]
- Abdulbaqi, M.R.; Ouda, G.I.; Abdulelah, F.M. Solubility Enhancement of Class II Drug Tenoxicam Utilizing Nanocrystallization Technique, Development, and Characterization. Int. J. Drug Delivery Technol. 2021, 11, 1018–1026. [Google Scholar]
- Gonzalez, J.P.; Todd, P.A. Tenoxicam A Preliminary Review of its Pharmacodynamic and Pharmacokinetic Properties, and Therapeutic Efficacy. Drugs 1987, 34, 289–310. [Google Scholar] [CrossRef]
- Shakeel, F.; Haq, N.; Shazly, G.A.; Alanazi, F.K.; Alsarra, I.A. Solubility and Thermodynamic Analysis of Tenoxicam in Different Pure Solvents at Different Temperatures. J. Chem. Eng. Data 2015, 60, 2510–2514. [Google Scholar] [CrossRef]
- Hussein, H.A.A.; Maraie, N.K. Tenoxicam-loaded polymeric micelles material: Formulation, optimization, and evaluation. Mater. Today Proc. 2022, 61, 672–680. [Google Scholar] [CrossRef]
- Yeh, M.-K.; Chang, L.-C.; Chiou, A.; Hong, J. Improving Tenoxicam Solubility and Bioavailability by Cosolvent System. AAPS PharmSciTech 2009, 10, 166–171. [Google Scholar] [CrossRef]
- Aboud, H.M.; Ali, A.A.; Abd Elbary, A. Formulation and optimization of tenoxicam orodispersible tablets by solid deposition technique. J. Drug Deliv. Sci. Technol. 2012, 22, 555–561. [Google Scholar] [CrossRef]
- Monteforte, F.; Bruni, G.; Quinzeni, I.; Friuli, V.; Maggi, L.; Capsoni, D.; Bini, M. Meloxicam-LDH Hybrid Compound: A Successful Strategy to Improve Solubility. J. Inorg. Organomet. Polym. Mater. 2020, 30, 637–648. [Google Scholar] [CrossRef]
- Rojas, R.; Garro Linck, Y.; Cuffini, S.L.; Monti, G.A.; Giacomelli, C.E. Structural and physicochemical aspects of drug release from layered double hydroxides and layered hydroxide salts. Appl. Clay Sci. 2015, 109–110, 119–126. [Google Scholar] [CrossRef]
- Singh, G.; Singh, R.P.; Singh Jolly, S. Customized hydroxyapatites for bone-tissue engineering and drug delivery applications: A review. J. Sol-Gel Sci. Technol. 2020, 94, 505–530. [Google Scholar] [CrossRef]
- Singh, G.; Singh Jolly, S.; Singh, R.P. Cerium substituted hydroxyapatite mesoporous nanorods: Synthesis and characterization for drug delivery applications. Mater. Today Proc. 2020, 28, 1460–1466. [Google Scholar] [CrossRef]
- United States Pharmacopeial Convention, Inc. Reagents: Solutions/Buffer Solutions 2017. In The United States Pharmacopeia (USP40-NF35); United States Pharmacopeial Convention, Inc.: Rockville, MD, USA, 2017; pp. 2409–2411. [Google Scholar]
Ca | P | S | Ca/P Ratio | |
---|---|---|---|---|
HAP-T | 15.7 | 10.4 | 0.15 | 1.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maggi, L.; Friuli, V.; Bruni, G.; Rinaldi, A.; Bini, M. Hybrid Nanocomposites of Tenoxicam: Layered Double Hydroxides (LDHs) vs. Hydroxyapatite (HAP) Inorganic Carriers. Molecules 2023, 28, 4035. https://doi.org/10.3390/molecules28104035
Maggi L, Friuli V, Bruni G, Rinaldi A, Bini M. Hybrid Nanocomposites of Tenoxicam: Layered Double Hydroxides (LDHs) vs. Hydroxyapatite (HAP) Inorganic Carriers. Molecules. 2023; 28(10):4035. https://doi.org/10.3390/molecules28104035
Chicago/Turabian StyleMaggi, Lauretta, Valeria Friuli, Giovanna Bruni, Alessia Rinaldi, and Marcella Bini. 2023. "Hybrid Nanocomposites of Tenoxicam: Layered Double Hydroxides (LDHs) vs. Hydroxyapatite (HAP) Inorganic Carriers" Molecules 28, no. 10: 4035. https://doi.org/10.3390/molecules28104035
APA StyleMaggi, L., Friuli, V., Bruni, G., Rinaldi, A., & Bini, M. (2023). Hybrid Nanocomposites of Tenoxicam: Layered Double Hydroxides (LDHs) vs. Hydroxyapatite (HAP) Inorganic Carriers. Molecules, 28(10), 4035. https://doi.org/10.3390/molecules28104035