New Random Aromatic/Aliphatic Copolymers of 2,5-Furandicarboxylic and Camphoric Acids with Tunable Mechanical Properties and Exceptional Gas Barrier Capability for Sustainable Mono-Layered Food Packaging
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Molecular Characterization
2.2. Surface, Thermal and Structural Characterization
2.3. Stress-Strain Measurements
2.4. Gas Barrier Properties Measurements
3. Materials and Methods
3.1. Materials
3.2. Synthesis
3.3. Film Preparation
3.4. Molecular Characterization
3.5. Surface, Thermal and Structural Characterization
3.6. Stress-Strain Measurements
3.7. Gas Barrier Properties Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Plastics-the Facts 2022, Plastics Europe. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/ (accessed on 6 April 2023).
- Plastics and Plastic Recycling, EFSA, European Food Safety Authority. Available online: https://www.efsa.europa.eu/en/topics/topic/plastics-and-plastic-recycling (accessed on 6 April 2023).
- Rosenberg Johansen, M.; Christensen, T.B.; Ramos, T.M.; Syberg, K. A review of the plastic value chain from a circular economy perspective. J. Environ. Manag. 2022, 302 Pt A, 113975. [Google Scholar] [CrossRef]
- Sehnem, S.; Farias, S.L.; de Queiroz, A.A.; Farias Pereira, S.C.; dos Santos Correia, G.; Kuzma, E. Circular economy and innovation: A look from the perspective of organizational capabilities. Bus. Strategy Environ. 2022, 31, 236–250. [Google Scholar] [CrossRef]
- Vogt, B.D.; Stokes, K.K.; Kumar, S.K. Why is Recycling of Postconsumer Plastics so Challenging? ACS Appl. Polym. Mater. 2021, 3, 4325–4346. [Google Scholar] [CrossRef]
- Merrington, A. Chapter 9, Recycling of Plastics. In Applied Plastics Engineering Handbook: Processing, Materials, and Applications, 2nd ed.; Kutz, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 167–189. [Google Scholar]
- Ensuring Safe Recycled Content for Food Contact Articles: Ambition Versus Reality, Zerowasteeurope.eu, 2022. Available online: https://zerowasteeurope.eu/wp-content/uploads/2022/12/Ensuring-safe-recycled-content-in-food-packaging_-ambition-versus-reality-1.pdf (accessed on 6 April 2023).
- Key Sustainability Facts, Flexible Packaging Europe. Available online: https://www.flexpack-europe.org/key-sustainability-facts (accessed on 6 April 2023).
- Flexible Packaging Market—Growth, Trends, COVID-19 Impact, and Forecasts (2023–2028), Mordor Intelligence. Available online: https://www.mordorintelligence.com/industry-reports/flexible-packaging-market?gclid=Cj0KCQiAq5meBhCyARIsAJrtdr4_z828eeNdSQxo58-jBaO9agbnc1byWTZVYN-mZVSfUL067iCGOjcaAnT_EALw_wcB (accessed on 6 April 2023).
- Bozell, J.J.; Petersen, G.R. Technology development for the production of biobased products from biorefinery carbohydrates—The US Department of Energy’s “Top 10” revisited. Green Chem. 2010, 12, 539–554. [Google Scholar] [CrossRef]
- Werpy, T.; Petersen, G. Top Value Added Chemicals from Biomass. Volume I—Results of Screening for Potential Candidates from Sugars and Synthesis Gas, U.S.D. o. Energy, 2004. Available online: https://www.nrel.gov/docs/fy04osti/35523.pdf (accessed on 6 April 2023).
- Deshan, A.D.K.; Atanda, L.; Moghaddam, L.; Rackemann, D.W.; Beltramini, J.; Doherty, W.O.S. Heterogeneous Catalytic Conversion of Sugars Into 2,5-Furandicarboxylic Acid. Front. Chem. 2020, 8, 659. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.F.; Patrício, R.; Terzopoulou, Z.; Bikiaris, D.N.; Stern, T.; Wenger, J.; Loos, K.; Lotti, N.; Siracusa, V.; Szymczyk, A.; et al. Recommendations for replacing PET on packaging, fiber, and film materials with biobased counterparts. Green Chem. 2021, 23, 8795–8820. [Google Scholar] [CrossRef]
- Haas, V.; Wenger, J.; Ranacher, L.; Guigo, N.; Sousa, A.F.; Stern, T. Developing future visions for bio-plastics substituting PET—A backcasting approach. Sustain. Prod. Consum. 2022, 31, 370–383. [Google Scholar]
- Avantium. Available online: https://www.avantium.com/business-units/renewable-polymers/ (accessed on 6 April 2023).
- Ava Biochem. Available online: https://ava-biochem.com/service/bio-based-polymers/ (accessed on 6 April 2023).
- Bomgardner, M.M. DuPont, ADM Pilot the Biobased Monomer FDME. Chemical & Engineering News. Available online: https://cen.acs.org/business/biobased-chemicals/DuPont-ADM-pilot-biobased-monomer/96/i19 (accessed on 6 April 2023).
- Soccio, M.; Costa, M.; Lotti, N.; Gazzano, M.; Siracusa, V.; Salatelli, E.; Manaresi, P.; Munari, A. Novel fully biobased poly(butylene 2,5-furanoate/diglycolate) copolymers containing ether linkages: Structure-property relationships. Eur. Polym. J. 2016, 81, 397–412. [Google Scholar] [CrossRef]
- Kwiatkowska, M.; Kowalczyk, I.; Kwiatkowski, K.; Szymczyk, A.; Jędrzejewski, R. Synthesis and structure—Property relationship of biobased poly(butylene 2,5-furanoate)–block–(dimerized fatty acid) copolymers. Polymer 2017, 130, 26–38. [Google Scholar] [CrossRef]
- Poulopoulou, N.; Guigo, N.; Sbirrazzuoli, N.; Papageorgiou, D.G.; Bikiaris, D.N.; Nikolaidis, G.N.; Papageorgiou, G.Z. Towards increased sustainability for aromatic polyesters: Poly(butylene 2,5-furandicarboxylate) and its blends with poly(butylene terephthalate). Polymer 2021, 212, 123157. [Google Scholar] [CrossRef]
- Thanh, T.V.; Hao, L.T.; Cho, H.Y.; Kim, H.; Park, S.A.; Lee, M.; Kim, H.J.; Jeon, H.; Hwang, S.Y.; Park, J.; et al. Sustainable Poly(butylene adipate-co-furanoate) Composites with Sulfated Chitin Nanowhiskers: Synergy Leading to Superior Robustness and Improved Biodegradation. ACS Sustain. Chem. Eng. 2022, 10, 8411–8422. [Google Scholar] [CrossRef]
- Papageorgiou, G.Z.; Papageorgiou, D.G. Solid-state structure and thermal characteristics of a sustainable biobased copolymer: Poly(butylene succinate-co-furanoate). Thermochim. Acta 2017, 656, 112–122. [Google Scholar] [CrossRef]
- Kwiatkowska, M.; Kowalczyk, I.; Kwiatkowski, K.; Zubkiewicz, A. Microstructure and Mechanical/Elastic Performance of Biobased Poly (Butylene Furanoate)–Block–Poly (Ethylene Oxide) Copolymers: Effect of the Flexible Segment Length. Polymers 2020, 12, 271. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Geng, Z.; Zhang, W.; Liang, J.; Wang, C.; Deng, Z.; Du, S. The Chemical Composition of Essential Oils from Cinnamomum camphora and Their Insecticidal Activity against the Stored Product Pests. Int. J. Mol. Sci. 2016, 17, 1836. [Google Scholar] [CrossRef]
- Talapatra, S.K.; Talapatra, B. Chapter 6, Monoterpenoids. In Chemistry of Plant Natural Products; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Harman-Ware, A.E. Conversion of Terpenes to Chemicals and Related Products. In Chemical Catalysts for Biomass Upgrading; Crocker, E., Santillan-Jimenez, M., Eds.; Wiley-VCH Verlag GmbH & Co., KGaA: Weinheim, Germany, 2020. [Google Scholar]
- Gubelmann, I.; Elley, H.W. American Production of Synthetic Camphor from Turpentine. Ind. Eng. Chem. 1934, 26, 589–594. [Google Scholar] [CrossRef]
- Beri, M.L.; Sarin, J.L. Production of synthetic camphor from Indian turpentine. J. Soc. Chem. Ind. 1936, 55, 605–607. [Google Scholar] [CrossRef]
- Monomers from Camphor Enable Biobased Plastics, Renewable Carbon News. Available online: https://renewable-carbon.eu/news/monomers-from-camphor-enable-biobased-plastics/ (accessed on 6 April 2023).
- Ouhichi, R.; Bougarech, A.; Kluge, M.; Pérocheau Arnaud, S.; Abid, S.; Abid, M.; Robert, T. Camphoric acid as renewable cyclic building block for bio-based UV-curing polyhexylene itaconate. Eur. Polym. J. 2021, 151, 110423. [Google Scholar] [CrossRef]
- Nsengiyumva, O.; Miller, S.A. Synthesis, characterization, and water-degradation of biorenewable polyesters derived from natural camphoric acid. Green Chem. 2019, 21, 973–978. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, J.; Gao, L.; Zhang, B.; Jiang, J.; Hu, J. Recyclable, reprocessable, self-adhered and repairable carbon fiber reinforced polymers using full biobased matrices from camphoric acid and epoxidized soybean oil. Green Chem. 2021, 23, 2763–2772. [Google Scholar] [CrossRef]
- Jiang, X.; Yu, Y.; Guan, Y.; Liu, T.; Pang, C.; Ma, J.; Gao, H. Random and Multiblock PBS Copolyesters Based on a Rigid Diol Derived from Naturally Occurring Camphor: Influence of Chemical Microstructure on Thermal and Mechanical Properties. ACS Sustain. Chem. Eng. 2020, 8, 3626–3636. [Google Scholar] [CrossRef]
- Pang, C.; Jiang, X.; Yu, Y.; Chen, L.; Ma, J.; Gao, H. Copolymerization of Natural Camphor-Derived Rigid Diol with Various Dicarboxylic Acids: Access to Biobased Polyesters with Various Properties. ACS Macro Lett. 2019, 8, 1442–1448. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Sim, S.J.; Lee, J.H.; Lee, S.; Suh, D.H. Bio-Degradable Polyesters with Rigid Cyclic Diester from Camphor and Tartaric Acid. J. Polym. Environ. 2022, 30, 3463–3473. [Google Scholar] [CrossRef] [PubMed]
- Guidotti, G.; Burzotta, G.; Soccio, M.; Gazzano, M.; Siracusa, V.; Munari, A.; Lotti, N. Chemical Modification of Poly(butylene trans-1,4-cyclohexanedicarboxylate) by Camphor: A New Example of Bio-Based Polyesters for Sustainable Food Packaging. Polymers 2021, 13, 2707. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Zhang, R.; Ying, W.B.; Shi, L.; Yao, C.; Kong, Z.; Wang, K.; Wang, J.; Zhu, J. Sustainable and rapidly degradable poly(butylene carbonate-co-cyclohexanedicarboxylate): Influence of composition on its crystallization, mechanical and barrier properties. Polym. Chem. 2019, 10, 1812–1822. [Google Scholar] [CrossRef]
- Guidotti, G.; Soccio, M.; Siracusa, V.; Gazzano, M.; Munari, A.; Lotti, N. Novel Random Copolymers of Poly(butylene 1,4-cyclohexane dicarboxylate) with Outstanding Barrier Properties for Green and Sustainable Packaging: Content and Length of Aliphatic Side Chains as Efficient Tools to Tailor the Material’s Final Performance. Polymers 2018, 10, 866. [Google Scholar] [CrossRef]
- Gigli, M.; Lotti, N.; Gazzano, M.; Siracusa, V.; Finelli, L.; Munari, A.; Dalla Rosa, M. Fully Aliphatic Copolyesters Based on Poly(butylene 1,4-cyclohexanedicarboxylate) with Promising Mechanical and Barrier Properties for Food Packaging Applications. Ind. Eng. Chem. Res. 2013, 52, 12876–12886. [Google Scholar] [CrossRef]
- Sun, L.; Wang, J.; Mahmud, S.; Jiang, Y.; Zhu, J.; Liu, X. New insight into the mechanism for the excellent gas properties of poly(ethylene 2,5-furandicarboxylate) (PEF): Role of furan ring’s polarity. Eur. Polym. J. 2019, 118, 642–650. [Google Scholar] [CrossRef]
- Quattrosoldi, S.; Guidotti, G.; Soccio, M.; Siracusa, V.; Lotti, N. Bio-based and one-day compostable poly(diethylene 2,5-furanoate) for sustainable flexible food packaging: Effect of ether-oxygen atom insertion on the final properties. Chemosphere 2022, 291, 132996. [Google Scholar] [CrossRef]
- Guidotti, G.; Soccio, M.; Garcia-Gutiérrez, M.-C.; Ezquerra, T.A.; Siracusa, V.; Gutierrez-Fernandez, E.; Munari, A.; Lotti, N. Fully Biobased Superpolymers of 2,5-Furandicarboxylic Acid with Different Functional Properties: From Rigid to Flexible, High Performant Packaging Materials. ACS Sustain. Chem. Eng. 2020, 8, 9558–9568. [Google Scholar] [CrossRef]
- Markwart, J.C.; Battig, A.; Velencoso, M.M.; Pollok, D.; Schartel, B.; Wurm, F.R. Aromatic vs. Aliphatic Hyperbranched Polyphosphoesters as Flame Retardants in Epoxy Resins. Molecules 2019, 24, 3901. [Google Scholar] [CrossRef]
- Papageorgiou, G.Z.; Papageorgiou, D.G.; Terzopoulou, Z.; Bikiaris, D.N. Production of bio-based 2,5-furan dicarboxylate polyesters: Recent progress and critical aspects in their synthesis and thermal properties. Eur. Polym. J. 2016, 83, 202–229. [Google Scholar] [CrossRef]
- Bikiaris, D. Can nanoparticles really enhance thermal stability of polymers? Part II: An overview on thermal decomposition of polycondensation polymers. Thermochim. Acta 2011, 523, 25–45. [Google Scholar] [CrossRef]
- Terzopoulou, Z.; Wahbi, M.; Kasmi, N.; Papageorgiou, G.Z.; Bikiaris, D.N. Effect of additives on the thermal and thermo-oxidative stability of poly(ethylene furanoate) biobased polyester. Thermochim. Acta 2020, 686, 178549. [Google Scholar] [CrossRef]
- Guidotti, G.; Soccio, M.; Garcia-Gutiérrez, M.-C.; Gutierrez-Fernandez, E.; Ezquerra, T.A.; Siracusa, V.; Munari, A.; Lotti, N. Evidence of a 2D-Ordered Structure in Biobased Poly (pentamethylene furanoate) Responsible for Its Outstanding Barrier and Mechanical Properties. ACS Sustain. Chem. Eng. 2019, 7, 17863–17871. [Google Scholar] [CrossRef]
- Guidotti, G.; Soccio, M.; Lotti, N.; Siracusa, V.; Gazzano, M.; Munari, A. New multi-block copolyester of 2,5-furandicarboxylic acid containing PEG-like sequences to form flexible and degradable films for sustainable packaging. Polym. Degrad. Stab. 2019, 169, 108963. [Google Scholar] [CrossRef]
- Zhu, J.; Cai, J.; Xie, W.; Chen, P.H.; Gazzano, M.; Scandola, M.; Gross, R.A. Poly(Butylene 2,5-Furan Dicarboxylate), a Biobased Alternative to PBT: Synthesis, Physical Properties, and Crystal Structure. Macromolecules 2013, 46, 796–804. [Google Scholar] [CrossRef]
- Hu, Y.S.; Prattipati, V.; Mehta, S.; Schiraldi, D.A.; Hiltner, A.; Baer, E. Improving gas barrier of PET by blending with aromatic polyamides. Polymer 2005, 46, 2685–2698. [Google Scholar] [CrossRef]
- Burgess, S.K.; Kriegel, R.M.; Koros, W.J. Carbon Dioxide Sorption and Transport in Amorphous Poly(ethylene furanoate). Macromolecules 2015, 48, 2184–2193. [Google Scholar] [CrossRef]
- Burgess, S.K.; Karvan, O.; Johnson, J.R.; Kriegel, R.M.; Koros, W.J. Oxygen sorption and transport in amorphous poly(ethylene furanoate). Polymer 2014, 55, 4748–4756. [Google Scholar] [CrossRef]
- Araujo, C.F.; Nolasco, M.M.; Ribeiro-Claro, P.J.A.; Rudic, S.; Silvestre, A.J.D.; Vaz, P.D.; Sousa, A.F. Inside PEF: Chain Conformation and Dynamics in Crystalline and Amorphous Domains. Macromolecules 2018, 51, 3515–3526. [Google Scholar] [CrossRef]
- Burgess, S.K.; Leisen, J.E.; Kraftschik, B.E.; Mubarak, C.R.; Kriegel, R.M.; Koros, W.J. Chain Mobility, Thermal, and Mechanical Properties of Poly(ethylene furanoate) Compared to Poly(ethylene terephthalate). Macromolecules 2014, 47, 1383–1391. [Google Scholar] [CrossRef]
- McKeen, L.W. Chapter 9, Polyolefins, Polyvinyls, and Acrylics. In Permeability Properties of Plastics and Elastomers, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 45–193. [Google Scholar]
- Bianchi, E.; Soccio, M.; Siracusa, V.; Gazzano, M.; Thiyagarajan, S.; Lotti, N. Poly(butylene 2,4-furanoate), an Added Member to the Class of Smart Furan-Based Polyesters for Sustainable Packaging: Structural Isomerism as a Key to Tune the Final Properties. ACS Sustain. Chem. Eng. 2021, 9, 11937–11949. [Google Scholar] [CrossRef] [PubMed]
- Guidotti, G.; Soccio, M.; Gazzano, M.; Siracusa, V.; Lotti, N. Poly(Alkylene 2,5-Thiophenedicarboxylate) Polyesters: A New Class of Bio-Based High-Performance Polymers for Sustainable Packaging. Polymers 2021, 13, 2460. [Google Scholar] [CrossRef] [PubMed]
- Quattrosoldi, S.; Lotti, N.; Soccio, M.; Schick, C.; Androsch, R. Stability of Crystal Nuclei of Poly (butylene isophthalate) Formed Near the Glass Transition Temperature. Polymers 2020, 12, 1099. [Google Scholar] [CrossRef]
- Klug, H.P.; Alexander, L.E. X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd ed.; Wiley: New York, NY, USA, 1974. [Google Scholar]
Polymer | BC Feed mol% | BC Real mol% | b | Mn Da | Ð | WCA |
---|---|---|---|---|---|---|
PBF | - | - | - | 48,700 | 2.2 | 90 ± 2 |
P(BF90BC10) | 90 | 89 | 0.93 | 59,200 | 2.6 | 90 ± 3 |
P(BF70BC30) | 70 | 69 | 0.97 | 56,500 | 2.2 | 97 ± 2 |
Polymer | TGA | DSC | WAXS | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tonset °C | Tmax °C | I Scan | II Scan | Powder | ||||||||||||
Powder | Film | Powder/Film | ||||||||||||||
Tm °C | ∆Hm J/g | Tcc °C | ∆Hcc J/g | Tm °C | ∆Hm J/g | Tg °C | ∆Cp J/g°C | Tcc °C | ∆Hcc J/g | Tm °C | ∆Hm J/g | Xc % | L010 * Å | |||
PBF | 382 | 407 | 170 | 41 | 102 | 26 | 170 | 35 | 39 | 0.281 | 107 | 30 | 170 | 35 | 37 | 47 |
P(BF90BC10) | 373 | 392 | 79 152 | 1.7 19 | 104 | 28 | 151 | 28 | 34 | 0.395 | 119 | 15 | 152 | 15 | 28 | 41 |
P(BF70BC30) | 371 | 392 | 82 136 | 3 24 | 101 | 19 | 139 | 19 | 30 | 0.407 | 116 | 5 | 142 | 5 | 32 | 36 |
E MPa | σB MPa | εB % | GTR-O2 cm3 cm/m2 d atm | GTR-CO2 cm3 cm/m2 d atm | |
---|---|---|---|---|---|
PBF | 1290 ± 140 | 21 ± 3 | 157 ± 10 | 0.10 ± 0.01 | 0.19 ± 0.02 |
P(BF90BC10) | 366 ± 56 | 31 ± 2 | 669 ± 48 | 0.0024 ± 5 × 10−4 | 0.0056 ± 8 × 10−4 |
P(BF70BC30) | 40 ± 8 | 2 ± 1 | 707 ± 98 | 0.0010 ± 6 × 10−4 | 0.0033 ± 6 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guidotti, G.; Soccio, M.; Gazzano, M.; Siracusa, V.; Lotti, N. New Random Aromatic/Aliphatic Copolymers of 2,5-Furandicarboxylic and Camphoric Acids with Tunable Mechanical Properties and Exceptional Gas Barrier Capability for Sustainable Mono-Layered Food Packaging. Molecules 2023, 28, 4056. https://doi.org/10.3390/molecules28104056
Guidotti G, Soccio M, Gazzano M, Siracusa V, Lotti N. New Random Aromatic/Aliphatic Copolymers of 2,5-Furandicarboxylic and Camphoric Acids with Tunable Mechanical Properties and Exceptional Gas Barrier Capability for Sustainable Mono-Layered Food Packaging. Molecules. 2023; 28(10):4056. https://doi.org/10.3390/molecules28104056
Chicago/Turabian StyleGuidotti, Giulia, Michelina Soccio, Massimo Gazzano, Valentina Siracusa, and Nadia Lotti. 2023. "New Random Aromatic/Aliphatic Copolymers of 2,5-Furandicarboxylic and Camphoric Acids with Tunable Mechanical Properties and Exceptional Gas Barrier Capability for Sustainable Mono-Layered Food Packaging" Molecules 28, no. 10: 4056. https://doi.org/10.3390/molecules28104056
APA StyleGuidotti, G., Soccio, M., Gazzano, M., Siracusa, V., & Lotti, N. (2023). New Random Aromatic/Aliphatic Copolymers of 2,5-Furandicarboxylic and Camphoric Acids with Tunable Mechanical Properties and Exceptional Gas Barrier Capability for Sustainable Mono-Layered Food Packaging. Molecules, 28(10), 4056. https://doi.org/10.3390/molecules28104056