Microbial Diversity and Bioactive Compounds in Dried Lycium barbarum Fruits (Goji): A Comparative Study
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Goji Berries
3.2. Determination of the Total Number of Microorganisms in Goji Berries
3.3. Identification of Goji Berries Microbiota
3.3.1. DNA Extraction
3.3.2. PCR Amplification and High-Throughput Sequencing
3.3.3. High-Throughput Sequencing Data Analysis
3.4. Goji Berries Extracts
3.5. Antioxidant Activity
3.6. Total Phenolic Content
3.7. Total Flavonoid Content
3.8. Total Carotenoid Content
3.9. Parametric Index
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Gong, H.; Rehman, F.; Ma, Y.; Biao, A.; Zeng, S.; Yang, T.; Huang, J.; Li, Z.; Wu, D.; Wang, Y. Germplasm resources and strategy for genetic breeding of Lycium species: A review. Front. Plant Sci. 2022, 13, 802936. [Google Scholar] [CrossRef] [PubMed]
- Amagase, H.; Farnsworth, N.R. A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji). Int. Food Res. J. 2011, 44, 1702–1717. [Google Scholar] [CrossRef]
- Gao, Y.; Wei, Y.; Wang, Y.; Gao, F.; Chen, Z. Lycium barbarum: A traditional Chinese herb and a promising anti-aging agent. Aging Dis. 2017, 8, 778–791. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Kong, H. The effect of Lycium barbarum polysaccharide on alcohol-induced oxidative stress in rats. Molecules 2011, 16, 2542–2550. [Google Scholar] [CrossRef] [PubMed]
- Li, X.M.; Ma, Y.L.; Liu, X.J. Effect of the Lycium barbarum polysaccharides on age-related oxidative stress in aged mice. J. Ethnopharmacol. 2007, 111, 504–511. [Google Scholar] [CrossRef]
- Shan, X.; Zhou, J.; Ma, T.; Chai, Q. Lycium barbarum polysaccharides reduce exercise-induced oxidative stress. Int. J. Mol. Sci. 2011, 12, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.M.; Chan, E.; Kwok, C.Y.; Lee, Y.K.; Wu, J.H.; Wan, C.W.; Chan, R.Y.; Yu, P.H.; Chan, S.W. A review of the anticancer and immunomodulatory effects of Lycium barbarum fruit. Inflammopharmacology 2012, 20, 307–314. [Google Scholar] [CrossRef]
- Zhou, Z.Q.; Xiao, J.; Fan, H.X.; Yu, Y.; He, R.R.; Feng, X.L.; Kurihara, H.; So, K.F.; Yao, X.S.; Gao, H. Polyphenols from wolfberry and their bioactivities. Food Chem. 2017, 214, 644–654. [Google Scholar] [CrossRef]
- Jiang, Y.; Fang, Z.; Leonard, W.; Zhang, P. Phenolic compounds in Lycium berry: Composition, health benefits and industrial applications. J. Funct. Foods 2021, 77, 10434. [Google Scholar] [CrossRef]
- Kulczyński, B.; Gramza-Michałowska, A. Goji berry (Lycium barbarum): Composition and health effects—A review. Pol. J. Food Nutr. Sci. 2016, 66, 67–75. [Google Scholar] [CrossRef]
- Juan, C.; Montesano, D.; Maňes, J.; Juan-García, A. Carotenoids present in goji berries Lycium barbarum L. are suitable to protect against mycotoxins effects: An in vitro study of bioavailability. J. Funct. Foods 2022, 92, 105049. [Google Scholar] [CrossRef]
- Yao, R.; Heinrich, M.; Zou, Y.; Reich, E.; Zhang, X.; Chen, Y.; Weckerle, C.S. Quality variation of goji (fruits of Lycium spp.) in China: A comparative morphological and metabolomic analysis. Front. Pharmacol. 2018, 9, 151. [Google Scholar] [CrossRef] [PubMed]
- Rajkowska, K.; Simińska, D.; Kunicka-Styczyńska, A. Bioactivities and microbial quality of Lycium fruits (goji) extracts derived by various solvents and green extraction methods. Molecules 2022, 27, 7856. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Rodrigues, C.M.; Teixeira, P. Microbiological quality of raw berries and their products: A focus on foodborne pathogens. Heliyon 2019, 5, e02992. [Google Scholar] [CrossRef]
- Alp, D.; Bulantekin, Ö. The microbiological quality of various foods dried by applying different drying methods: A review. Eur. Food Res. Technol. 2021, 247, 1333–1343. [Google Scholar] [CrossRef]
- Shah, A.S.; Bhat, S.V.; Muzaffar, K.; Ibrahim, S.A.; Dar, B.N. Processing technology, chemical composition, microbial quality and health benefits of dried fruits. Curr. Res. Nutr. Food Sci. 2021, 10, 71–84. [Google Scholar] [CrossRef]
- Berthold-Pluta, A.; Garbowska, M.; Stefańska, I.; Stasiak-Różańska, L.; Aleksandrzak-Piekarczyk, T.; Pluta, A. Microbiological quality of nuts, dried and candied fruits, including the prevalence of Cronobacter spp. Pathogens 2021, 10, 900. [Google Scholar] [CrossRef]
- Ma, Z.F.; Zhang, H.; Teh, S.S.; Wang, C.W.; Zhang, Y.; Hayford, F.; Wang, L.; Ma, T.; Dong, Z.; Zhang, Y.; et al. Goji berries as a potential natural antioxidant medicine: An insight into their molecular mechanisms of action. Oxid. Med. Cell. Longev. 2019, 2019, 2437397. [Google Scholar] [CrossRef]
- Fatchurrahman, D.; Amodio, M.L.; Colelli, G. Quality of goji berry fruit (Lycium barbarum L.) stored at different temperatures. Foods 2022, 11, 3700. [Google Scholar] [CrossRef]
- Huang, T.; Qin, K.; Yan, Y.; He, X.; Dai, G.; Zhang, B. Correlation between the storability and fruit quality of fresh goji berries. Food Sci. Technol. 2022, 42, e46120. [Google Scholar] [CrossRef]
- FAO/WHO. Codex Alimentarius CAC/RCP 3-1969. In Code of Hygienic Practice for Dried Fruits; FAO: Rome, Italy, 2011. [Google Scholar]
- Huang, T.; Qin, K.; Yan, Y.; Zhao, J.; Liu, J.; Duan, L.; Dai, G.; Zhang, B. Bacterial community diversity on the surface of Chinese wolfberry fruit and its potential for biological control. Food Sci. Technol. 2022, 42, e93422. [Google Scholar] [CrossRef]
- Edelman, J.R.; Lin, Y.J. Microbiology (endobacteriology) of fruit and vegetable crops: An expanded and continuing study. Int. J. Food Sci. Nutr. 2016, 5, 95–104. [Google Scholar] [CrossRef]
- Dutkiewicz, J.; Mackiewicz, B.; Lemieszek, M.K.; Golec, M.; Milanowski, J. Pantoea agglomerans: A mysterious bacterium of evil and good. Part I—Deleterious effects: Dust-borne endotoxins and allergens—Focus on cotton dust. Ann. Agric. Environ. Med. 2015, 22, 576–588. [Google Scholar] [CrossRef] [PubMed]
- Dutkiewicz, J.; Mackiewicz, B.; Lemieszek, M.K.; Golec, M.; Skórska, C.; Góra-Florek, A.; Milanowski, J. Pantoea agglomerans: A mysterious bacterium of evil and good. Part II—Deleterious effects: Dust-borne endotoxins and allergens—Focus on grain dust, other agricultural dusts and wood dust. Ann. Agric. Environ. Med. 2016, 23, 6–29. [Google Scholar] [CrossRef]
- Liu, S.; Roopesh, M.S.; Tang, J.; Wu, Q.; Qin, W. Recent development in low-moisture foods: Microbial safety and thermal process. Food Res. Int. 2022, 155, 111072. [Google Scholar] [CrossRef]
- Zhu, M.J.; Song, X.; Tsai, H.C.; Shen, X.; Taylor, M.; Tang, J. Desiccation and thermal resistance of Salmonella and Enterococcus faecium NRRL B-2354 in almond meal as impacted by water activity and storage temperature. Food Control 2021, 126, 108037. [Google Scholar] [CrossRef]
- Linde, H.J.; Kobuch, R.; Jayasinghe, S.; Reischl, U.; Lehn, N.; Kaulfuss, S.; Beutin, L. Vibrio metschnikovii, a rare cause of wound infection. J. Clin. Microbiol. 2004, 42, 4909–4911. [Google Scholar] [CrossRef]
- Dutta, D.; Kaushik, A.; Kumar, D.; Bag, S. Foodborne pathogenic vibrios: Antimicrobial resistance. Front. Microbiol. 2021, 12, 638331. [Google Scholar] [CrossRef]
- Ling, L.; Luo, H.; Zhao, Y.; Yang, C.; Cheng, W.; Pang, M. Fungal pathogens causing postharvest fruit rot of wolfberry and inhibitory effect of 2,3-butanedione. Front. Microbiol. 2023, 13, 1068144. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Wang, Y.D.; Sun, W.Y.; Guo, X.X.; Ran, G.W.; Zhang, H.Y. Isolation, identification and biological characteristics of pathogenic fungus from Chinese wolfberry fruit. Trans. Chin. Soc. Agric. Eng. 2017, 33 (Suppl. S1), 374–5380. [Google Scholar]
- Wang, X.; Xu, X.D.; Chen, Y.; Zhuo, R.L.; Tian, S.P.; Li, B.Q. Isolation and identification of postharvest pathogens in fresh wolfberry from Ningxia and the inhibitory effect of salicylic acid. J. Food Saf. Qual. 2018, 9, 5837–5842. [Google Scholar]
- Yuan, H.J.; Li, H.J.; Jia, H.; Gong, H.; Feng, Z. Isolation and identification of the pathogen causing mildew rot of the Yongdeng barbary wolfberry in the air-drying process. Sci. Technol. Food Ind. 2016, 21, 135–138. [Google Scholar]
- Jeszka-Skowron, M.; Oszust, K.; Zgoła-Grześkowiak, A.; Frąc, M. Quality assessment of goji fruits, cranberries, and raisins using selected markers. Eur. Food Res. Technol. 2018, 244, 2159–2168. [Google Scholar] [CrossRef]
- Murador, D.C.; Mercadante, A.Z.; De Rosso, V.V. Cooking techniques improve the levels of bioactive compounds and antioxidant activity in kale and red cabbage. Food Chem. 2016, 196, 1101–1107. [Google Scholar] [CrossRef]
- Duda-Chodak, A.; Tarko, T.; Satora, P.; Sroka, P. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: A review. Eur. J. Nutr. 2015, 54, 325–341. [Google Scholar] [CrossRef]
- Zhou, F.; Jiang, X.; Wang, T.; Zhang, B.; Zhao, H. Lycium barbarum polysaccharide (LBP): A novel prebiotics candidate for Bifidobacterium and Lactobacillus. Front. Microbiol. 2018, 9, 1034. [Google Scholar] [CrossRef]
- Plucińska, A.; Marczak, A.; Kunicka-Styczyńska, A.; Baryga, A. Predictive evaluation of microbiological stability of soft drinks with Lycium barbarum L. stored at temperature shifts. Molecules 2022, 27, 5508. [Google Scholar] [CrossRef]
- Mocan, A.; Cairone, F.; Locatelli, M.; Cacciagrano, F.; Carradori, S.; Vodnar, D.C.; Crisan, G.; Simonetti, G.; Cesa, S. Polyphenols from Lycium barbarum (Goji) fruit European cultivars at different maturation steps: Extraction, HPLC-DAD analyses, and biological evaluation. Antioxidants 2019, 8, 562. [Google Scholar] [CrossRef]
- Ilić, T.; Dodevska, M.; Marčetić, M.; Božić, D.; Kodranov, I.; Vidović, B. Chemical characterization, antioxidant and antimicrobial properties of goji berries cultivated in Serbia. Foods 2020, 9, 1614. [Google Scholar] [CrossRef]
- Paradowska, K.; Czerniejewska, M.; Zielińska, A.; Sajkowska-Kozielewicz, J.J. Antioxidative activity of dried Lycium barbarum goji fruit extracts. Zywnosc-Nauka Technol. Jakosc 2016, 4, 115–124. [Google Scholar]
- Benchennouf, A.; Grigorakis, S.; Loupassaki, S.; Kokkalou, E. Phytochemical analysis and antioxidant activity of Lycium barbarum (Goji) cultivated in Greece. Pharm Biol. 2017, 55, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Islam, T.; Yu, X.; Badwal, T.S.; Xu, B. Comparative studies on phenolic profiles, antioxidant capacities and carotenoid contents of red goji berry (Lycium barbarum) and black goji berry (Lycium ruthenicum). Chem. Cent. J. 2017, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next–generation sequencing–based diversity studies. Nucleic Acids Res. 2012, 41, e1. [Google Scholar] [CrossRef]
- White, T.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal 874 ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M., Gelfand, D., Shinsky, J., White, T., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web–based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt removes adapter sequences from high–throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, J.; Shen, J.; Silva, A.; Dennis, D.A.; Barrow, C.J. A simple 96-well microplate method for estimation of total polyphenol content in seaweeds. J. Appl. Phycol. 2006, 18, 445–450. [Google Scholar] [CrossRef]
- Zhuang, X.P.; Lu, Y.Y.; Yang, G.S. Extraction and determination of flavonoid in gingko. Chin. Herb. Med. 1992, 23, 122–124. [Google Scholar]
- Ishida, B.K.; Chapman, M.H. Carotenoid extraction from plants using a novel, environmentally friendly solvent. J. Agric. Food Chem. 2009, 57, 1051–1059. [Google Scholar] [CrossRef]
Goji Berry Extracts | Antioxidant Capacities (μmol TE/g) | Total Phenolic Content (mg GAE/g) | Total Flavonoid Content (mg CAE/g) | Total Carotenoid Content (mg/g) | |
---|---|---|---|---|---|
G1 | water extract | M: 41.6 b, c SD: 0.2 | M: 5.8 a SD: 0.6 | M: 0.8 a, b SD: 0.1 | M: 7.3 b SD: 0.1 |
ethanol extract | M: 46.3 a SD: 1.1 | M: 4.1 b SD: 0.6 | M: 0.9 a SD: 0.2 | ||
G2 | water extract | M: 39.7 c SD: 0.2 | M: 5.3 a, b SD: 0.1 | M: 0.5 b SD: 0.1 | M: 9.7 a SD: 0.3 |
ethanol extract | M: 43.5 b SD: 0.5 | M: 4.0 b SD: 0.3 | M: 0.8 a, b SD: 0.1 | ||
G3 | water extract | M: 39.8 c SD: 0.9 | M: 6.3 a SD: 0.3 | M: 0.5 b SD: 0.1 | M: 9.2 a SD: 0.7 |
ethanol extract | M: 46.5 a SD: 1.6 | M: 4.2 b SD: 0.9 | M: 0.9 a SD: 0.2 | ||
G4 | water extract | M: 41.3 b, c SD: 0.4 | M: 5.3 a, b SD: 0.4 | M: 0.6 a, b SD: 0.1 | M: 9.2 a SD: 0.4 |
ethanol extract | M: 46.0 a SD: 0.4 | M: 3.4 c, b SD: 0.2 | M: 0.6 a, b SD: 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajkowska, K.; Otlewska, A.; Broncel, N.; Kunicka-Styczyńska, A. Microbial Diversity and Bioactive Compounds in Dried Lycium barbarum Fruits (Goji): A Comparative Study. Molecules 2023, 28, 4058. https://doi.org/10.3390/molecules28104058
Rajkowska K, Otlewska A, Broncel N, Kunicka-Styczyńska A. Microbial Diversity and Bioactive Compounds in Dried Lycium barbarum Fruits (Goji): A Comparative Study. Molecules. 2023; 28(10):4058. https://doi.org/10.3390/molecules28104058
Chicago/Turabian StyleRajkowska, Katarzyna, Anna Otlewska, Natalia Broncel, and Alina Kunicka-Styczyńska. 2023. "Microbial Diversity and Bioactive Compounds in Dried Lycium barbarum Fruits (Goji): A Comparative Study" Molecules 28, no. 10: 4058. https://doi.org/10.3390/molecules28104058
APA StyleRajkowska, K., Otlewska, A., Broncel, N., & Kunicka-Styczyńska, A. (2023). Microbial Diversity and Bioactive Compounds in Dried Lycium barbarum Fruits (Goji): A Comparative Study. Molecules, 28(10), 4058. https://doi.org/10.3390/molecules28104058