Evaluation of the Biological Properties of an Optimized Extract of Polygonum cuspidatum Using Ultrasonic-Assisted Extraction
Abstract
:1. Introduction
2. Results
2.1. Model Fitting from Extracts of P. cuspidatum Root
2.2. Response Surface Plot Analysis
2.3. Cytotoxic Assay and EC50 Value
2.4. Compounds Identified by UPLC-Mass Spectrometry (MS)
3. Discussion
4. Materials and Methods
4.1. Plant Material and Reagents
4.2. Optimization of Ultrasonic-Assisted Extraction (UAE)
4.3. Experiment Design Strategy and Statistical Analysis
4.4. Determination of Extraction Yield
4.5. Resveratrol Quantification Using Spectrophotometry UV–Vis
4.6. In Vitro Antioxidant Capacity
4.6.1. DPPH Radical Scavenging Assay
4.6.2. ABTS+ Assay
4.6.3. Total Polyphenolic Compounds
4.7. Caco-2 Cell Culture and Cytotoxic Assay
4.8. Chromatography Analysis by Mass Spectrometry (MS/MS)
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kalra, E.K. Nutraceutical-Definition and Introduction. AAPS PharmSci 2003, 5, 27–28. [Google Scholar] [CrossRef]
- Nasri, H.; Baradaran, A.; Shirzad, H.; Rafieian-Kopaei, M. New Concepts in Nutraceuticals as Alternative for Pharmaceuticals. Int. J. Prev. Med. 2014, 5, 1487. [Google Scholar] [PubMed]
- Sachdeva, V.; Roy, A.; Bharadvaja, N. Current Prospects of Nutraceuticals: A Review. Curr. Pharm. Biotechnol. 2020, 21, 884–896. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Gupta, S.C.; Tyagi, A.K. Reactive Oxygen Species (ROS) and Cancer: Role of Antioxidative Nutraceuticals. Cancer Lett. 2017, 387, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Barba-Ostria, C.; Carrera-Pacheco, S.E.; Gonzalez-Pastor, R.; Heredia-Moya, J.; Mayorga-Ramos, A.; Rodríguez-Pólit, C.; Zúñiga-Miranda, J.; Arias-Almeida, B.; Guamán, L.P. Evaluation of Biological Activity of Natural Compounds: Current Trends and Methods. Molecules 2022, 27, 4490. [Google Scholar] [CrossRef]
- HSU, C.-Y.; CHAN, Y.-P.; CHANG, J. Antioxidant Activity of Extract from Polygonum cuspidatum. Biol. Res. 2007, 40. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Wang, X.; Tang, R.W.-L.; Lee, H.C.; Chan, H.H.; Choi, S.S.A.; Dong, T.T.-X.; Leung, K.W.; Webb, S.E.; Miller, A.L. The Extracts of Polygonum cuspidatum Root and Rhizome Block the Entry of SARS-CoV-2 Wild-Type and Omicron Pseudotyped Viruses via Inhibition of the S-Protein and 3CL Protease. Molecules 2022, 27, 3806. [Google Scholar] [CrossRef] [PubMed]
- Bononi, I.; Tedeschi, P.; Mantovani, V.; Maietti, A.; Mazzoni, E.; Pancaldi, C.; Brandolini, V.; Tognon, M. Antioxidant Activity of Resveratrol Diastereomeric Forms Assayed in Fluorescent-Engineered Human Keratinocytes. Antioxidants 2022, 11, 196. [Google Scholar] [CrossRef]
- Kotta, S.; Mubarak Aldawsari, H.; Badr-Eldin, S.M.; Alhakamy, N.A.; Md, S. Coconut Oil-Based Resveratrol Nanoemulsion: Optimization Using Response Surface Methodology, Stability Assessment and Pharmacokinetic Evaluation. Food Chem. 2021, 357, 129721. [Google Scholar] [CrossRef]
- Syahdi, R.R.; Nadyana, R.; Putri, R.H.; Santi, R.; Mun’im, A. Application of green extraction methods to resveratrol extraction from peanut (Arachis hypogaea L.) skin. Int. J. Appl. Pharm. 2020, 38–42. [Google Scholar] [CrossRef]
- Guamán-Balcázar, M.C.; Setyaningsih, W.; Palma, M.; Barroso, C.G. Ultrasound-Assisted Extraction of Resveratrol from Functional Foods: Cookies and Jams. Appl. Acoust. 2016, 103, 207–213. [Google Scholar] [CrossRef]
- Jin, S.; Gao, M.; Kong, W.; Yang, B.; Kuang, H.; Yang, B.; Fu, Y.; Cheng, Y.; Li, H. Enhanced and Sustainable Pretreatment for Bioconversion and Extraction of Resveratrol from Peanut Skin Using Ultrasound-Assisted Surfactant Aqueous System with Microbial Consortia Immobilized on Cellulose. 3 Biotech 2020, 10, 293. [Google Scholar] [CrossRef]
- Chimento, A.; De Amicis, F.; Sirianni, R.; Sinicropi, M.; Puoci, F.; Casaburi, I.; Saturnino, C.; Pezzi, V. Progress to Improve Oral Bioavailability and Beneficial Effects of Resveratrol. Int. J. Mol. Sci. 2019, 20, 1381. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhou, L.; Zhang, P.; Liu, T.; Yang, G.; Lin, R.; Zhou, J. Extraction of Polydatin and Resveratrol from Polygonum cuspidatum Root: Kinetics and Modeling. Food Bioprod. Process. 2015, 94, 518–524. [Google Scholar] [CrossRef]
- Signorelli, P.; Ghidoni, R. Resveratrol as an Anticancer Nutrient: Molecular Basis, Open Questions and Promises. J. Nutr. Biochem. 2005, 16, 449–466. [Google Scholar] [CrossRef]
- Dong, J.; Wang, H.; Wan, L.; Hashi, Y.; Chen, S. Identification and Determination of Major Constituents in Polygonum Cuspidatum Sieb. et Zucc. by High Performance Liquid Chromatography/Electrospray Ionization-Ion Trap-Time-of-Flight Mass Spectrometry. Se Pu 2009, 27, 425–430. [Google Scholar] [PubMed]
- Ke, J.; Li, M.-T.; Xu, S.; Ma, J.; Liu, M.-Y.; Han, Y. Advances for Pharmacological Activities of Polygonum cuspidatum—A Review. Pharm. Biol. 2023, 61, 177–188. [Google Scholar] [CrossRef]
- Kuo, C.-H.; Chen, B.-Y.; Liu, Y.-C.; Chang, C.-M.; Deng, T.-S.; Chen, J.-H.; Shieh, C.-J. Optimized Ultrasound-Assisted Extraction of Phenolic Compounds from Polygonum cuspidatum. Molecules 2013, 19, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Stalikas, C.D. Extraction, Separation, and Detection Methods for Phenolic Acids and Flavonoids. J. Sep. Sci. 2007, 30, 3268–3295. [Google Scholar] [CrossRef] [PubMed]
- Martins Strieder, M.; Keven Silva, E.; Angela, A.; Meireles, M. Specific Energy: A New Approach to Ultrasound-Assisted Extraction of Natural Colorants. Food Public Health 2019, 9, 45–52. [Google Scholar] [CrossRef]
- Irfan, S.; Ranjha, M.M.A.N.; Nadeem, M.; Safdar, M.N.; Jabbar, S.; Mahmood, S.; Murtaza, M.A.; Ameer, K.; Ibrahim, S.A. Antioxidant Activity and Phenolic Content of Sonication- and Maceration-Assisted Ethanol and Acetone Extracts of Cymbopogon Citratus Leaves. Separations 2022, 9, 244. [Google Scholar] [CrossRef]
- Ranjha, M.M.A.N.; Irfan, S.; Lorenzo, J.M.; Shafique, B.; Kanwal, R.; Pateiro, M.; Arshad, R.N.; Wang, L.; Nayik, G.A.; Roobab, U.; et al. Sonication, a Potential Technique for Extraction of Phytoconstituents: A Systematic Review. Processes 2021, 9, 1406. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; Smyth, T.J.; O’Donnell, C.P. Optimization of Ultrasound Assisted Extraction of Bioactive Components from Brown Seaweed Ascophyllum Nodosum Using Response Surface Methodology. Ultrason Sonochem. 2015, 23, 308–316. [Google Scholar] [CrossRef]
- Aguilar-Hernández, G.; de los Vivar-Vera, M.Á.; de García-Magaña, M.L.; González-Silva, N.; Pérez-Larios, A.; Montalvo-González, E. Ultrasound-Assisted Extraction of Total Acetogenins from the Soursop Fruit by Response Surface Methodology. Molecules 2020, 25, 1139. [Google Scholar] [CrossRef]
- Sun, B.; Zheng, Y.-L.; Yang, S.-K.; Zhang, J.-R.; Cheng, X.-Y.; Ghiladi, R.; Ma, Z.; Wang, J.; Deng, W.-W. One-Pot Method Based on Deep Eutectic Solvent for Extraction and Conversion of Polydatin to Resveratrol from Polygonum cuspidatum. Food Chem. 2021, 343, 128498. [Google Scholar] [CrossRef]
- Vinatoru, M. An Overview of the Ultrasonically Assisted Extraction of Bioactive Principles from Herbs. Ultrason Sonochem. 2001, 8, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, M.; Jose, A.; Tomer, V.; Oz, E.; Proestos, C.; Zeng, M.; Elobeid, T.; Oz, F. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules 2023, 28, 887. [Google Scholar] [CrossRef]
- Thavamoney, N.; Sivanadian, L.; Tee, L.H.; Khoo, H.E.; Prasad, K.N.; Kong, K.W. Extraction and Recovery of Phytochemical Components and Antioxidative Properties in Fruit Parts of Dacryodes Rostrata Influenced by Different Solvents. J. Food Sci. Technol. 2018, 55, 2523–2532. [Google Scholar] [CrossRef] [PubMed]
- Babbar, N.; Oberoi, H.S.; Sandhu, S.K.; Bhargav, V.K. Influence of Different Solvents in Extraction of Phenolic Compounds from Vegetable Residues and Their Evaluation as Natural Sources of Antioxidants. J. Food Sci. Technol. 2014, 51, 2568–2575. [Google Scholar] [CrossRef] [PubMed]
- Aboulghazi, A.; Bakour, M.; Fadil, M.; Lyoussi, B. Simultaneous Optimization of Extraction Yield, Phenolic Compounds and Antioxidant Activity of Moroccan Propolis Extracts: Improvement of Ultrasound-Assisted Technique Using Response Surface Methodology. Processes 2022, 10, 297. [Google Scholar] [CrossRef]
- Jia, W.; Chen, Z.; Zhao, Y.; Li, K.; Tichnell, B.; Tang, Z.; Ruso, J.M.; Liu, Z. The Study of Ultrasound-Assisted Extraction of Flavonoids from Polygonum cuspidatum Sieb. et Zucc. J. Mater. Res. 2019, 34, 3254–3262. [Google Scholar] [CrossRef]
- Ruan, N.; Jiao, Z.; Tang, L. Response Surface Methodology to Optimize Supercritical Carbon Dioxide Extraction of Polygonum cuspidatum. J. AOAC Int. 2022, 105, 272–281. [Google Scholar] [CrossRef]
- Sadowska-Bartosz, I.; Bartosz, G. Evaluation of The Antioxidant Capacity of Food Products: Methods, Applications and Limitations. Processes 2022, 10, 2031. [Google Scholar] [CrossRef]
- Becze, A.; Babalau-Fuss, V.L.; Varaticeanu, C.; Roman, C. Optimization of High-Pressure Extraction Process of Antioxidant Compounds from Feteasca Regala Leaves Using Response Surface Methodology. Molecules 2020, 25, 4209. [Google Scholar] [CrossRef]
- Piyaratne, P.S.; LeBlanc, R.; Myracle, A.D.; Cole, B.J.W.; Fort, R.C. Extraction and Purification of (E)-Resveratrol from the Bark of Conifer Species. Processes 2022, 10, 647. [Google Scholar] [CrossRef]
- El Moussaoui, A.; Jawhari, F.Z.; Almehdi, A.M.; Elmsellem, H.; Fikri Benbrahim, K.; Bousta, D.; Bari, A. Antibacterial, Antifungal and Antioxidant Activity of Total Polyphenols of Withania frutescens L. Bioorg. Chem. 2019, 93, 103337. [Google Scholar] [CrossRef] [PubMed]
- Youmbi, L.M.; Makong, Y.S.D.; Mbaveng, A.T.; Tankeo, S.B.; Fotso, G.W.; Ndjakou, B.L.; Wansi, J.D.; Beng, V.P.; Sewald, N.; Ngadjui, B.T.; et al. Cytotoxicity of the Methanol Extracts and Compounds of Brucea Antidysenterica (Simaroubaceae) towards Multifactorial Drug-Resistant Human Cancer Cell Lines. BMC Complement. Med. Ther. 2023, 23, 48. [Google Scholar] [CrossRef]
- Wang, Y.; Horng, C.; Hsieh, M.; Chen, H.; Huang, Y.; Yang, J.; Wang, G.; Chiang, J.; Chen, H.; Lu, C.; et al. Autophagy and Apoptotic Machinery Caused by Polygonum cuspidatum Extract in Cisplatin-resistant Human Oral Cancer CAR Cells. Oncol. Rep. 2019, 41, 2549–2557. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Shi, X.; Ding, T.; Liu, L. Unraveling the Action Mechanism of Polygonum cuspidatum by a Network Pharmacology Approach. Am. J. Transl. Res. 2019, 11, 6790–6811. [Google Scholar]
- Kosović, E.; Topiař, M.; Cuřínová, P.; Sajfrtová, M. Stability Testing of Resveratrol and Viniferin Obtained from Vitis vinifera L. by Various Extraction Methods Considering the Industrial Viewpoint. Sci. Rep. 2020, 10, 5564. [Google Scholar] [CrossRef]
- Schmidt, M.; Schmitz, H.-J.; Baumgart, A.; Guédon, D.; Netsch, M.I.; Kreuter, M.-H.; Schmidlin, C.B.; Schrenk, D. Toxicity of Green Tea Extracts and Their Constituents in Rat Hepatocytes in Primary Culture. Food. Chem. Toxicol. 2005, 43, 307–314. [Google Scholar] [CrossRef]
- Kim, B.R.; Ha, J.; Lee, S.; Park, J.; Cho, S. Anti-Cancer Effects of Ethanol Extract of Reynoutria Japonica Houtt. Radix in Human Hepatocellular Carcinoma Cells via Inhibition of MAPK and PI3K/Akt Signaling Pathways. J. Ethnopharmacol. 2019, 245, 112179. [Google Scholar] [CrossRef] [PubMed]
- Yi, T.; Zhang, H.; Cai, Z. Analysis of Rhizoma Polygoni Cuspidati by HPLC and HPLC-ESI/MS. Phytochem. Anal. 2007, 18, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Vastano, B.C.; Chen, Y.; Zhu, N.; Ho, C.-T.; Zhou, Z.; Rosen, R.T. Isolation and Identification of Stilbenes in Two Varieties of Polygonum c uspidatum. J. Agric. Food Chem. 2000, 48, 253–256. [Google Scholar] [CrossRef]
- Strieder, M.M.; Silva, E.K.; Meireles, M.A.A. Specific Energy: A New Approach to Ultrasound-Assisted Extraction of Natural Colorants. Probe (Adelaide) 2019, 23, 30. [Google Scholar]
- Medina-Torres, N.; Espinosa-Andrews, H.; Trombotto, S.; Ayora-Talavera, T.; Patrón-Vázquez, J.; González-Flores, T.; Sánchez-Contreras, Á.; Cuevas-Bernardino, J.C.; Pacheco, N. Ultrasound-Assisted Extraction Optimization of Phenolic Compounds from Citrus Latifolia Waste for Chitosan Bioactive Nanoparticles Development. Molecules 2019, 24, 3541. [Google Scholar] [CrossRef]
- Fonseca-Hernández, D.; Lugo-Cervantes, E.D.C.; Escobedo-Reyes, A.; Mojica, L. Black Bean (Phaseolus vulgaris L.) Polyphenolic Extract Exerts Antioxidant and Antiaging Potential. Molecules 2021, 26, 6716. [Google Scholar] [CrossRef]
- O’Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (Resazurin) Fluorescent Dye for the Assessment of Mammalian Cell Cytotoxicity. Eur. J. Biochem. 2000, 267, 5421–5426. [Google Scholar] [CrossRef]
- Guerrero, R.F.; Valls-Fonayet, J.; Richard, T.; Cantos-Villar, E. A Rapid Quantification of Stilbene Content in Wine by Ultra-High Pressure Liquid Chromatography—Mass Spectrometry. Food Control 2020, 108, 106821. [Google Scholar] [CrossRef]
- Jiménez-Morales, K.; Castañeda-Pérez, E.; Herrera-Pool, E.; Ayora-Talavera, T.; Cuevas-Bernardino, J.C.; García-Cruz, U.; Pech-Cohuo, S.C.; Pacheco, N. Ultrasound-Assisted Extraction of Phenolic Compounds from Different Maturity Stages and Fruit Parts of Cordia Dodecandra A. DC.: Quantification and Identification by UPLC-DAD-ESI-MS/MS. Agriculture 2022, 12, 2127. [Google Scholar] [CrossRef]
Experimental Run | Independent Variables | Responses | ||||||
---|---|---|---|---|---|---|---|---|
Antioxidant Capacity (µg TE mL−1) | TPC | Resveratrol | Extraction Yield | |||||
X1 (mL g−1) | X2 (%) | X3 (W) | DPPH | ABTS+ | (mg GAE mL−1) | Concentration (mg mL−1) | (%) | |
1 | 7 | 45 | 129 | 103.5 | 190.3 | 18.9 | 16.3 | 6.6 |
2 | 7 | 45 | 129 | 116.2 | 198.4 | 18.9 | 16.5 | 8.5 |
3 | 7 | 45 | 129 | 126.7 | 214.7 | 27.9 | 16.3 | 9.3 |
4 | 7 | 45 | 129 | 109.0 | 194.3 | 19.4 | 16.4 | 7.5 |
5 | 7 | 45 | 129 | 109.7 | 195.3 | 19.1 | 16.5 | 7.3 |
6 | 4 | 45 | 107 | 132.9 | 222.2 | 25.0 | 16.5 | 9.9 |
7 | 7 | 30 | 150 | 52.5 | 126.6 | 8.0 | 12.7 | 3.6 |
8 | 10 | 45 | 150 | 103.5 | 188.2 | 16.8 | 16.3 | 5.6 |
9 | 10 | 60 | 107 | 103.3 | 190.4 | 19.3 | 16.2 | 6.6 |
10 | 7 | 30 | 129 | 51.1 | 121.2 | 6.8 | 12.0 | 2.7 |
11 | 7 | 60 | 150 | 126.7 | 215.8 | 29.3 | 16.6 | 9.4 |
12 | 4 | 45 | 107 | 133.8 | 229.0 | 27.6 | 16.7 | 10.1 |
13 | 10 | 30 | 150 | 51.3 | 119.5 | 5.8 | 12.4 | 2.9 |
14 | 4 | 60 | 107 | 135.1 | 230.4 | 33.2 | 16.6 | 12.4 |
15 | 4 | 30 | 129 | 60.3 | 129.4 | 8.8 | 13.6 | 3.3 |
16 | 7 | 60 | 129 | 129.4 | 215.8 | 29.1 | 16.5 | 9.3 |
17 | 10 | 45 | 129 | 99.9 | 197.1 | 17.7 | 16.2 | 5.24 |
Response | Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|---|
ABTS+ | X1 | 1676.21 | 1 | 1676.21 | 18.75 | 0.0123 * |
X2 | 15,815.3 | 1 | 15,815.3 | 176.94 | 0.0002 ** | |
X3 | 55.6513 | 1 | 55.6513 | 0.62 | 0.4742 | |
X22 | 5082.14 | 1 | 5082.14 | 56.86 | 0.0017 * | |
Lack of fit | 555.787 | 8 | 69.4734 | 0.78 | 0.6481 | |
Pure error | 357.52 | 4 | 89.38 | |||
Cor Total | 23,542.6 | 16 | ||||
R2 = 0.9612 | ||||||
R2adju = 0.9483 | ||||||
DPPH | X1 | 1352.0 | 1 | 1352.0 | 17.16 | 0.0143 * |
X2 | 9751.06 | 1 | 9751.06 | 123.80 | 0.0004 ** | |
X3 | 1.90125 | 1 | 1.90125 | 0.02 | 0.8841 | |
X22 | 2934.15 | 1 | 2934.15 | 37.25 | 0.0036 * | |
Lack of fit | 341.858 | 8 | 42.7323 | 0.54 | 0.7860 | |
Pure error | 315.068 | 4 | 78.767 | |||
Cor Total | 14,696.0 | 16 | ||||
R2 = 0.9552 | ||||||
R2adju = 0.9403 | ||||||
TPC | X1 | 153.125 | 1 | 153.125 | 9.80 | 0.0351 |
X2 | 830.281 | 1 | 830.281 | 53.16 | 0.0019 * | |
X3 | 3.00125 | 1 | 3.00125 | 0.19 | 0.6838 | |
Lack of fit | 100.61 | 9 | 11.1789 | 0.72 | 0.6901 | |
Pure error | 62.472 | 4 | 15.618 | |||
Cor Total | 1149.49 | 16 | ||||
R2 = 0.8581 | ||||||
R2adju = 0.8253 | ||||||
Resveratrol content | X1 | 0.66125 | 1 | 0.66125 | 66.12 | 0.0012 * |
X2 | 28.88 | 1 | 28.88 | 2888.00 | 0.0000 ** | |
X3 | 0.10125 | 1 | 0.10125 | 10.12 | 0.0335 * | |
X1X2 | 0.16 | 1 | 0.16 | 16.00 | 0.0161 * | |
X2X3 | 0.09 | 1 | 0.09 | 9.0 | 0.0399 * | |
X12 | 0.0796053 | 1 | 0.0796053 | 7.96 | 0.0478 | |
X22 | 14.2164 | 1 | 14.2164 | 1421.64 | 0.0000 ** | |
X32 | 0.0532895 | 1 | 0.0532895 | 5.33 | 0.0822 | |
Lack of fit | 0.505 | 4 | 0.12625 | 12.62 | 0.0154 * | |
Pure error | 0.04 | 4 | 0.01 | |||
Cor Total | 44.8424 | 16 | ||||
R2 = 0.9878 | ||||||
R2adju = 0.9756 | ||||||
Extraction yield | X1 | 29.6835 | 1 | 29.6835 | 26.46 | 0.0068 * |
X2 | 79.317 | 1 | 79.317 | 70.72 | 0.0011 * | |
X3 | 0.09245 | 1 | 0.09245 | 0.08 | 0.7883 | |
X22 | 9.45017 | 1 | 9.45017 | 8.43 | 0.0440 * | |
Lack of fit | 8.78113 | 8 | 1.09764 | 0.98 | 0.5486 | |
Pure error | 4.48648 | 4 | 1.12162 | |||
Cor Total | 131.811 | 16 | ||||
R2 = 0.8993 | 29.6835 | |||||
R2adju = 0.8658 |
Response | Reduced Equations |
---|---|
ABTS+ | ABTS+ = −223.86 − 4.82X1 + 16.82X2 + 0.12X3 − 0.15X22 |
DPPH | DPPH = −193.35 − 4.33X1 + 12.86X2 − 0.02X3 − 0.12X22 |
TPC | TPC = −4.51 − 1.46X1 + 0.68X2 + 0.03X3 |
Resveratrol content | Resveratrol content = −10.40 − 0.51X1 + 0.89X2 + 0.088X3 + 0.015X12 + 4.4 × 10−3X1 X2 − 8 × 10−3X22 − 4.6 × 10−4 X2 X3 − 2.4 × 10−4 X32 |
Extraction yield | Extraction yield = −11.26 − 0.64X1 + 0.81X2 + 0.017X3 − 6.64 × 10−3X22 |
Independent Variable | Coded Levels | ||
---|---|---|---|
−1 | 0 | 1 | |
X1 | 4 | 7 | 10 |
X2 | 30 | 45 | 60 |
X3 | 107 | 128.5 | 150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fletes-Vargas, G.; Rodríguez-Rodríguez, R.; Pacheco, N.; Pérez-Larios, A.; Espinosa-Andrews, H. Evaluation of the Biological Properties of an Optimized Extract of Polygonum cuspidatum Using Ultrasonic-Assisted Extraction. Molecules 2023, 28, 4079. https://doi.org/10.3390/molecules28104079
Fletes-Vargas G, Rodríguez-Rodríguez R, Pacheco N, Pérez-Larios A, Espinosa-Andrews H. Evaluation of the Biological Properties of an Optimized Extract of Polygonum cuspidatum Using Ultrasonic-Assisted Extraction. Molecules. 2023; 28(10):4079. https://doi.org/10.3390/molecules28104079
Chicago/Turabian StyleFletes-Vargas, Gabriela, Rogelio Rodríguez-Rodríguez, Neith Pacheco, Alejandro Pérez-Larios, and Hugo Espinosa-Andrews. 2023. "Evaluation of the Biological Properties of an Optimized Extract of Polygonum cuspidatum Using Ultrasonic-Assisted Extraction" Molecules 28, no. 10: 4079. https://doi.org/10.3390/molecules28104079
APA StyleFletes-Vargas, G., Rodríguez-Rodríguez, R., Pacheco, N., Pérez-Larios, A., & Espinosa-Andrews, H. (2023). Evaluation of the Biological Properties of an Optimized Extract of Polygonum cuspidatum Using Ultrasonic-Assisted Extraction. Molecules, 28(10), 4079. https://doi.org/10.3390/molecules28104079