Chitosan, Chitosan/IgG-Loaded, and N-Trimethyl Chitosan Chloride Nanoparticles as Potential Adjuvant and Carrier-Delivery Systems
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microfluidic Device Fabrication
2.2. Synthesis of CS and CS/IgG-Loaded Nanoparticles
2.3. Characterization of CS and CS/IgG-Loaded Nanoparticles
2.4. N-Trimethyl Chitosan Chloride Nanoparticles Toxicity in Human Keratinocyte (HaCaT) Cells
3. Materials and Methods
3.1. Fabrication of the Microfluidic Device
3.2. Synthesis of Chitosan and Chitosan Human IgG Loaded Nanoparticles by Microfluidics Assisted by Emulsification
3.3. Characterization of CS and CS/IgG Nanoparticles
3.4. Toxicity of N-Trimethyl Chitosan Chloride Nanoparticles Synthesized by Microfluidics Assisted by Emulsification TMCS-NP Toxicity in Human Keratinocyte (HaCaT) Cells
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Elieh-Ali-Komi, D.; Hamblin, M.R. chitin and chitosan: Production and application of versatile biomedical nanomaterials. Int. J. Adv. Res. 2016, 4, 411–427. [Google Scholar]
- Raghvendrakumar, M.; Yadu-Nath, V.; Aswathy, V.; Parvathy, P.; Sunija, S.; Neelakandan, M.; Nitheesha, S.; Vishnu, K. Chitosan as promising materials for biomedical application: Review. Res. Dev. Mater. Sci. 2017, 2, 170–185. [Google Scholar]
- Li, J.; Deng, L.; Yao, F. Chitosan Derivatives. In Chitosan-Based hydrogels: Functions and Applications, 1st ed.; Yao, K., Li, J., Yao, F., Yin, Y., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 39–108. [Google Scholar]
- Kean, T.; Thanou, M. Chitin and chitosan: Sources, production and medical applications. In Renewable Resources for Functional Polymers and Biomaterials: Polysaccharides, Proteins and Polyesters; Williams, P.A., Ed.; Royal Society of Chemistry: Cambridge, UK, 2011; pp. 292–318. [Google Scholar]
- Brück, W.M.; Slater, J.W.; Carney, B.F. Chitin and chitosan from marine organisms. In Chitin, Chitosan, Oligosaccharides and Their Derivatives: Biological Activities and Applications; Kim, S.K., Ed.; CRC Press: Boca Raton, FL, USA, 2011; pp. 11–24. [Google Scholar]
- Kou, S.; Peters, L.M.; Mucalo, M.R. Chitosan: A Review of Sources and Preparation Methods. Int. J. Biol. Macromol. 2020, 169, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Calvo, P.; Remuñan-López, C.; Vila-Jato, J.L.; Alonso, M.J. Chitosan and Chitosan/Ethylene Oxide-Propylene Oxide Block Copolymer Nanoparticles as Novel Carriers for Proteins and Vaccines. Pharm. Res. 1997, 14, 1431–1436. [Google Scholar] [CrossRef]
- Grenha, A. Chitosan Nanoparticles: A Survey of Preparation Methods. J. Drug Target. 2012, 20, 291–300. [Google Scholar] [CrossRef]
- Hembram, K.C.; Prabha, S.; Ramesh, C.; Bahar, A.; Surendra, N. Advances in preparation and characterization of chitosan nanoparticles for therapeutics. Artif. Cells Nanomed. Biotechnol. 2016, 44, 305–314. [Google Scholar] [CrossRef]
- Sieval, A.B.; Thanou, M.; Kotze, A.F.; Verhoef, J.C.; Brussee, J.; Junginger, H.E. Preparation and N.M.R. Characterization of Highly Substituted N-Trimethyl Chitosan Chloride. Carbohydr. Polym. 1998, 36, 157–165. [Google Scholar] [CrossRef]
- Majedi, F.S.; Hasani-Sadrabadi, M.M.; Emami, S.H.; Shokrgozar, M.A.; VanDersarl, J.J.; Dashtimoghadam, E.; Bertsch, A.; Renaud, P. Microfluidic Assisted Self-Assembly of Chitosan Based Nanoparticles as Drug Delivery Agents. Lab. Chip 2013, 13, 204–207. [Google Scholar] [CrossRef]
- Dittrich, P.S.; Manz, A. Lab-on-a-Chip: Microfluidics in Drug Discovery. Nat. Rev. Drug Discov. 2006, 5, 210–218. [Google Scholar] [CrossRef]
- Izaguirre-Hernández, I.Y.; Mellado-Sánchez, G.; Mondragón-Vásquez, K.; Thomas-Dupont, P.; Sánchez-Vargas, L.A.; Hernández-Flores, K.G.; Mendoza-Barrera, C.; Altuzar, V.; Cedillo-Barrón, L.; Vivanco-Cid, H. Non-Conjugated Chitosan-Based Nanoparticles to Proteic Antigens Elicit Similar Humoral Immune Responses to Those Obtained with Alum. J. Nanosci. Nanotechnol. 2017, 17, 846–852. [Google Scholar] [CrossRef]
- Chu, L.; Utada, A.S.; Shah, R.K.; Kim, J.; Weitz, D.A. Controllable Monodisperse Multiple Emulsions. Angew. Chem. 2007, 119, 9128–9132. [Google Scholar] [CrossRef]
- Pezolet, M.; Pigeon-Gosselin, M.; Coulombe, L. Laser Raman Investigation of the Conformation of Human Immunoglobulin G. Biochim. Biophys. Acta (BBA)—Protein Struct. 1976, 453, 502–512. [Google Scholar] [CrossRef]
- Kengne-Momo, R.P.; Daniel, P.; Lagarde, F.; Jeyachandran, Y.L.; Pilard, J.F.; Durand-Thouand, M.J.; Thouand, G. Protein Interactions Investigated by the Raman Spectroscopy for Biosensor Applications. Int. J. Spectrosc. 2012, 2012, 462901. [Google Scholar] [CrossRef]
- Zając, A.; Hanuza, J.; Wandas, M.; Dymińska, L. Determination of N-Acetylation Degree in Chitosan Using Raman Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 134, 114–120. [Google Scholar] [CrossRef]
- Loutfy, S.A.; El-Din, H.M.A.; Elberry, M.H.; Allam, N.G.; Hasanin, M.T.M.; Abdellah, A.M. Synthesis, Characterization and Cytotoxic Evaluation of Chitosan Nanoparticles: In Vitro Liver Cancer Model. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 35008. [Google Scholar] [CrossRef]
- Antoniou, J.; Liu, F.; Majeed, H.; Qi, J.; Yokoyama, W.; Zhong, F. Physicochemical and Morphological Properties of Size-Controlled Chitosan–Tripolyphosphate Nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2015, 465, 137–146. [Google Scholar] [CrossRef]
- Wagner, M.S.; Horbett, T.A.; Castner, D.G. Characterization of the Structure of Binary and Ternary Adsorbed Protein Films Using Electron Spectroscopy for Chemical Analysis, Time-of-Flight Secondary Ion Mass Spectrometry, and Radiolabeling. Langmuir 2003, 19, 1708–1715. [Google Scholar] [CrossRef]
- Weiping, Q.; Fang, Y.; Zhendong, S.; Bingjie, L.; Yu, W. Site–Specific Immobilization of Fab fragments of Goat Antihuman IgG on Quartz Surfaces. Supramol. Sci. 1998, 5, 701–703. [Google Scholar] [CrossRef]
- Mao, C.X.; Imtiaz, S.A.; Zhang, Y. Competitive Adsorption of Ag (I) and Cu (II) by Tripolyphosphate Crosslinked Chitosan Beads. J. Appl. Polym. Sci. 2015, 132, 42717. [Google Scholar] [CrossRef]
- Franca, R.; Mbeh, D.A.; Samani, T.D.; le Tien, C.; Mateescu, M.A.; Yahia, L.; Sacher, E. The Effect of Ethylene Oxide Sterilization on the Surface Chemistry and In Vitro Cytotoxicity of Several Kinds of Chitosan. J. Biomed. Mater. Res. B Appl. Biomater. 2013, 101, 1444–1455. [Google Scholar] [CrossRef]
- dos Santos, Z.M.; Caroni, A.; Pereira, M.R.; da Silva, D.R.; Fonseca, J.L.C. Determination of Deacetylation Degree of Chitosan: A Comparison between Conductometric Titration and CHN Elemental Analysis. Carbohydr. Res. 2009, 344, 2591–2595. [Google Scholar] [CrossRef] [PubMed]
- Zangmeister, R.A. Application of X-ray Photoelectron Spectroscopic Analysis to Protein Adsorption on Materials Relevant to Biomanufacturing. J. Pharm. Sci. 2012, 101, 1639–1644. [Google Scholar] [CrossRef] [PubMed]
- NIST X-ray Photoelectron Spectroscopy Database. Available online: http:/srdata.nist.gov/xps/ (accessed on 29 December 2022).
- Beamson, G. High Resolution XPS of Organic Polymers. The Scienta ESCA 300 Database. J. Chem. Educ. 1992, 70, A25. [Google Scholar]
- Pâslaru, E.; Baican, M.C.; Hitruc, E.G.; Nistor, M.T.; Poncin-Epaillard, F.; Vasile, C. Immunoglobulin G Immobilization on PVDF Surface. Colloids Surf. B Biointerfaces 2014, 115, 139–149. [Google Scholar] [CrossRef]
- Foster, R.N.; Harrison, E.T.; Castner, D.G. ToF-SIMS and XPS Characterization of Protein Films Adsorbed onto Bare and Sodium Styrenesulfonate-Grafted Gold Substrates. Langmuir 2016, 32, 3207–3216. [Google Scholar] [CrossRef]
- Vieira, R.S.; Oliveira, M.L.M.; Guibal, E.; Rodríguez-Castellón, E.; Beppu, M.M. Copper, Mercury and Chromium Adsorption on Natural and Crosslinked Chitosan Films: An XPS Investigation of Mechanism. Colloids Surf. A Physicochem. Eng. Asp. 2011, 374, 108–114. [Google Scholar] [CrossRef]
- Baio, J.E.; Weidner, T.; Interlandi, G.; Mendoza-Barrera, C.; Canavan, H.E.; Michel, R.; Castner, D.G. Probing Albumin Adsorption onto Calcium Phosphates by X-Ray Photoelectron Spectroscopy and Time-of-Flight Secondary Ion Mass Spectrometry. J. Vac. Sci. Technol. B 2011, 29, 04D113. [Google Scholar] [CrossRef]
- Li, P.-C.; Liao, G.; Kumar, S.R.; Shih, C.-M.; Yang, C.-C.; Wang, D.-M.; Lue, S.J. Fabrication and Characterization of Chitosan Nanoparticle-Incorporated Quaternized Poly (Vinyl Alcohol) Composite Membranes as Solid Electrolytes for Direct Methanol Alkaline Fuel Cells. Electrochim. Acta 2016, 187, 616–628. [Google Scholar] [CrossRef]
- Ahmed, M.; Byrne, J.A.; McLaughlin, J.A.D. Glycine Adsorption onto DLC and N-DLC Thin Films Studied by XPS and AFM. e-J. Surf. Sci. Nanotechnol. 2009, 7, 217–224. [Google Scholar] [CrossRef]
- Amidi, M.; Romeijn, S.G.; Borchard, G.; Junginger, H.E.; Hennink, W.E.; Jiskoot, W. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J. Control. Release 2006, 111, 107–116. [Google Scholar] [CrossRef]
- Kulkarni, A.D.; Patel, H.M.; Surana, S.J.; Vanjari, Y.H.; Belgamwar, V.S.; Pardeshi, C. N,N,N-Trimethyl Chitosan: An Advanced Polymer with Myriad of Opportunities in Nanomedicine. Carbohydr. Polym. 2017, 157, 875–902. [Google Scholar] [CrossRef]
- Boukamp, P.; Petrussevska, R.T.; Breitkreutz, D.; Hornung, J.; Markham, A.; Fusenig, N.E. Normal Keratinization in a Spontaneously Immortalized Aneuploid Human Keratinocyte Cell Line. J. Cell Biol. 1988, 106, 761–771. [Google Scholar] [CrossRef]
- Patil, A.; Patil, P.; Pardeshi, S.; Shrimal, P.; Rebello, N.; Mohite, P.B.; Chatterjee, A.; Mujumdar, A.; Naik, J. Combined Microfluidics and Drying Processes for the Continuous Production of Micro-/Nanoparticles for Drug Delivery: A Review. Dry. Technol. 2023, 1–36. [Google Scholar] [CrossRef]
- Hao, N.; Nie, Y.; Xu, Z.; Closson, A.B.; Usherwood, T.; Zhang, J.X.J. Microfluidic Continuous Flow Synthesis of Functional Hollow Spherical Silica with Hierarchical Sponge-like Large Porous Shell. Chem. Eng. J. 2019, 366, 433–438. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, H.; Shi, X.; Wu, H.; Hanagata, N. Microfluidic Generation of Chitosan/CpG Oligodeoxynucleotide Nanoparticles with Enhanced Cellular Uptake and Immunostimulatory Properties. Lab. Chip 2014, 14, 1842–1849. [Google Scholar] [CrossRef]
- Tenorio-Barajas, A.Y.; Matus-Muñoz, M.R.; Olvera, M.L.; Altuzar, V.; Mendoza-Barrera, C. Automatization and Control of Home-Made Micro Injection Pumps for a Microfluidic System. In Proceedings of the 13th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, 26–30 September 2016; pp. 1–4. [Google Scholar]
Sample | Average Diameter, D [nm] | First Standard Deviation, FSD [nm] | Variation Coefficient, VC [%] |
---|---|---|---|
CS-NP | 15.4 | 4.1 | 26.4 |
CS/IgG-NP | 79.3 | 20.2 | 25.7 |
Sample | Spectra | Binding Energy (eV) | Bond | % Area |
---|---|---|---|---|
IgG protein | S(2p3/2) | 164.1 | C-S-S-C | 69.5 |
168.9 | S=O | 30.5 | ||
C(1s) | 284.9 | CH-CH | 22.1 | |
286.7 | C-N, C=O | 28.2 | ||
288.2 | N-C=O, O-C=O | 49.7 | ||
N(1s) | 400 | N-H | 100 | |
O(1s) | 531.9 | O=C | 39.8 | |
532.7 | O-C | 60.2 | ||
CS-NP | S(2p3/2) | -- | -- | -- |
C(1s) | 285.1 | CH-CH, C-NH | 15.5 | |
286.7 | C-OH, C-O-C | 47.7 | ||
288.3 | N-C=O, O-C-O | 36.8 | ||
N(1s) | 399.6 | N-H | 5.8 | |
400.7 | O=C-N | 94.2 | ||
O(1s) | 531.5 | O=C | 39.8 | |
532.9 | O-C | 60.2 | ||
CS/IgG-NP | S(2p3/2) | -- | -- | -- |
C(1s) | 284.3 | CH-CH, C-NH | 3.7 | |
286.7 | C-OH, C-O-C | 21.9 | ||
288.1 | N-C=O, O-C-O | 74.4 | ||
N(1s) | 398.8 | C=N | 1.8 | |
399.7 | N-H | 94.9 | ||
401.1 | NH3+ | 3.3 | ||
O(1s) | 531.4 | O=C | 76.8 | |
533.1 | O-C | 23.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tenorio-Barajas, A.Y.; Olvera, M.d.l.L.; Romero-Paredes, G.; Altuzar, V.; Garrido-Guerrero, E.; Mendoza-Barrera, C. Chitosan, Chitosan/IgG-Loaded, and N-Trimethyl Chitosan Chloride Nanoparticles as Potential Adjuvant and Carrier-Delivery Systems. Molecules 2023, 28, 4107. https://doi.org/10.3390/molecules28104107
Tenorio-Barajas AY, Olvera MdlL, Romero-Paredes G, Altuzar V, Garrido-Guerrero E, Mendoza-Barrera C. Chitosan, Chitosan/IgG-Loaded, and N-Trimethyl Chitosan Chloride Nanoparticles as Potential Adjuvant and Carrier-Delivery Systems. Molecules. 2023; 28(10):4107. https://doi.org/10.3390/molecules28104107
Chicago/Turabian StyleTenorio-Barajas, Aldo Y., María de la L. Olvera, Gabriel Romero-Paredes, Victor Altuzar, Efraín Garrido-Guerrero, and Claudia Mendoza-Barrera. 2023. "Chitosan, Chitosan/IgG-Loaded, and N-Trimethyl Chitosan Chloride Nanoparticles as Potential Adjuvant and Carrier-Delivery Systems" Molecules 28, no. 10: 4107. https://doi.org/10.3390/molecules28104107
APA StyleTenorio-Barajas, A. Y., Olvera, M. d. l. L., Romero-Paredes, G., Altuzar, V., Garrido-Guerrero, E., & Mendoza-Barrera, C. (2023). Chitosan, Chitosan/IgG-Loaded, and N-Trimethyl Chitosan Chloride Nanoparticles as Potential Adjuvant and Carrier-Delivery Systems. Molecules, 28(10), 4107. https://doi.org/10.3390/molecules28104107